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Stomatal closure is one of the earliest responses to water stress but residual water
losses may continue through the cuticle and incomplete stomatal closure. Residual
conductance (gres) plays a large role in determining time to mortality but we currently
do not understand how do drought and shade interact to alter gres because the
underlying drivers are largely unknown. Furthermore, gres may play an important role
in models of water use, but the exact form in which gres should be incorporated into
modeling schemes is currently being discussed. Here we report the results of a study
where two different oak species were experimentally subjected to highly contrasting
levels of drought (resulting in 0, 50 and 80% losses of hydraulic conductivity) and
radiation (photosynthetic photon flux density at 1,500 µmol m−2 s−1 or 35–45 µmol
m−2 s−1). We observed that the effects of radiation and drought were interactive and
species-specific and gres correlated positively with concentrations of leaf non-structural
carbohydrates and negatively with leaf nitrogen. We observed that different forms of
measuring gres, based on either nocturnal conductance under high atmospheric water
demand or on the water mass loss of detached leaves, exerted only a small influence on
a model of stomatal conductance and also on a coupled leaf gas exchange model. Our
results indicate that, while understanding the drivers of gres and the effects of different
stressors may be important to better understand mortality, small differences in gres

across treatments and measurements exert only a minor impact on stomatal models
in two closely related species.

Keywords: cuticular conductance, stomatal conductance, night conductance, dark respiration, drought, shade

INTRODUCTION

Plant transpiration through stomatal pores and leaf cuticles dominates global evapotranspiration
(Hetherington and Woodward, 2003). As water stress intensifies under global warming, there is an
increasing interest toward understanding ecological variation in residual leaf conductance (gres).
After stomatal closure, water loss continues until mortality due to a mixture of cuticular water loss
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and incomplete stomatal closure (residual conductance;
Blackman et al., 2016; Martin-Stpaul et al., 2017).

Studies addressing ecological and physiological variation
in the drivers of residual conductance are currently rare
(Heredia-Guerrero et al., 2018). According to a recent review
on this topic (Duursma et al., 2019), only 10 studies have
addressed the effect of drought on gres and, from those,
only 4 had been performed on trees. Consequently, multi-
factorial studies addressing ecological variation in residual
conductance are much needed to understand its variation.
For instance, while shade and drought are both known to
decrease residual conductance (Boyer et al., 1997; Shepherd
and Wynne Griffiths, 2006), it is currently unknown whether
the effect of both stressors would be additive or interactive.
However, the effects of residual conductance on mortality
have been documented to be dramatic: time to mortality
nearly doubles if gres declines from 4 to 2 mmol m−2 s−1

(Duursma et al., 2019).
Understanding the physiological and ecological drivers of gres

has been the topic of some discussion (Riederer and Müller,
2007; Fernández et al., 2017). Some studies report that variations
in the degree of sclerophylly (as indicated by leaf mass area)
would increase gres because leaves that are more scleromorphic
will show thicker cuticles, but other work has demonstrated that
changes in wax composition may compensate for such effect
(Bueno et al., 2020). Another alternative, explored to a lesser
degree, is that further reductions in gres may be inhibited by
changing carbohydrate allocation priorities (Zhang et al., 2020).
In other words, as non-structural carbohydrate reserve pools
deplete, cuticle production to prevent cuticular water losses may
be limited by NSC availability.

Understanding variation in residual conductance is also
necessary for models of water use (Leuning, 1995; Barnard
and Bauerle, 2013; De Kauwe et al., 2015), where residual
conductance acts as the intercept of commonly used stomatal
models (gint). The most common stomatal models being used in
land surface models are Ball-Berry model types, which have the
general form:

gs = gint + mA/Ca f (D) (1)

Where gs is stomatal conductance, A, Ca, and D represent
photosynthesis, ambient CO2 concentration and vapor pressure
deficit, respectively, and m is the slope parameter. When gint is
estimated through regression fitting, it may either be equal to
0, which creates problems because then the ratio of intercellular
to ambient CO2 (Ci/Ca) does not vary with light (Collatz et al.,
1991; Leuning, 1995; Duursma et al., 2019), or it may be negative,
which is nonsensical.

There are at least two possible definitions of gint : (1) g0, which
represents the lowest conductance reached as photosynthesis
tends to 0 because light declines (Leuning, 1995; Barnard and
Bauerle, 2013); (2) gmin, which refers to the residual conductance
after (complete or not) stomatal closure under strong water stress
(Duursma et al., 2019). We note that some studies use gmin and
gres interchangeably but, for clarity, we will differentiate them
here as previously defined.

The problem then becomes how to measure g0 and gmin. g0
could simply be measured as daytime conductance (gd) under
low light in non-droughted plants and, similarly, gmin could
similarly be measured from gd in droughted plants (for as long as
photosynthesis tends to zero, in both cases; Barnard and Bauerle,
2013; Duarte et al., 2016). Additionally, residual conductance
has most often been measured by monitoring the water mass
loss in detached leaves (gMLD; Kerstiens, 1996; Schuster et al.,
2017). g0 and gmin could thus be measured with this method by
comparing gMLD in plants that have grown under strong light
limitation or under strong water limitation, respectively. The
problem with this approach, however, is that some acclimation
responses (particularly in response to low radiation) could alter
leaf morphology and it is unclear whether g0 measured through
gMLD after low light acclimation would be representative of that
in plants without acclimation to low radiation.

An alternative would be to use nocturnal conductance (gn;
Lombardozzi et al., 2017) in non-droughted and droughted
plants. An advantage would be that photosynthesis would always
be zero in this case. Duursma et al. (2019), however, proposed
that gn should not be used given the evidence of active regulation
of stomatal conductance overnight (Resco De Dios et al., 2019),
and that the drivers of nocturnal conductance could differ
from those driving daytime conductance (Ogle et al., 2012).
Amongst other processes, gn varies through time due to circadian
regulation (Resco De Dios et al., 2015). However, gn often retains
some sensitivity to D such that maximum stomatal closure and,
potentially, residual conductance, may be achieved at lower D
than during the daytime (Barbour and Buckley, 2007). One could
thus hypothesize that measurements of gn under high D may be
indicative of gres.

Regardless of how g0 and gmin are estimated, Duursma et al.
(2019) proposed to replace Eq. 1 by:

gs = max
[
max

(
g0, gmin

)
,mA/Ca f (D)

]
(2)

That is, according to Eq. 2, residual conductance would not
be added to the right-hand term of Eq. 1. Instead, one would
use measured residual conductance (the maximum between g0
and gmin) as an actual minimum (De Kauwe et al., 2015).
However, this formulation has not yet been tested against data
and, therefore, we do not yet know whether it enhances the
predictive power of stomatal models.

Here we evaluate the effects of shade and water stress on gres
across two different oak species, the deciduous Quercus faginea
and the sclerophyll Q. ilex. These two species are common in
the calcareous soils from Spain and the Western Mediterranean
Basin and we expected conductance to be significantly lower
in Q. ilex, a species with a more conservative water use. More
specifically, we sought to test: (1) how do drought and shade
interact to affect gres? and (2) what are some of the possible
mechanisms underlying variation in gres across drought and
shade treatments? Because gMLD is probably the most accepted
method to measure residual conductance, here we focused on
gMLD. In particular, we addressed whether gMLD would be driven
by water stress (as indicated by water potential), NSC, LMA, or
nitrogen concentration (Nmass, an indicator of photosynthetic
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capacity), and whether gres could limit respiration. We also
sought to understand: (3) whether we obtain different values of
gres depending upon whether it is measured from gMLD, gn, and
gd; and (4) how do we incorporate residual conductance into Ball-
Berry type stomatal models and what are the consequences of
variation in gres across treatments and types of measurements for
coupled leaf gas exchange models?

MATERIALS AND METHODS

Experimental Design and Growing
Conditions
The experiment was performed at the experimental fields from
the University of Lleida (Spain; 41.62 N, 0.59 E). We built a
rain-out shelter covered by clear polyethylene plastic, which is
commonly used in greenhouse building. Half of the structure
received solar radiation (sun treatment), with a maximum
photosynthetically active radiation (PAR) of 1,500 µmol m−2

s−1. The other half was covered by a dense shading cloth (shade
treatment) with a maximum PAR of 35–45 µmol m−2 s−1, which
was near the light compensation point in this species (data not
shown). The structure had openings on both sides to increase
ventilation. Temperature inside the rain out shelter was 3◦C
higher than outside, but differences between the sun and shade
treatment were negligible. Full details on the infrastructure have
been provided elsewhere (Resco De Dios et al., 2020).

For this study we sourced 2 year-old seedlings from local
nurseries (n = 120). The ecotypes for both species were original
from the mountain range of the Iberian System. Plants were
grown in 11 L cubic pots (20 cm × 20 cm × 27.5 cm). The
substrate used was Humin Substrat Neuhaus N6 [Klasman-
Deilmann GmbH, Geeste, Germany], a commercial potting
mix. Pots were regularly fertilized with a slow release NPK
MgO fertilizer (17-09-11-2, Osmocote Universal, KB, Ecully,
France) and daily watered to field capacity until treatment
implementation. The position of the pots was randomly shifted
every other week.

The plants grew for 4 months into the rainout shelter before
experiment inception in July 2017. That is, they developed
new leaves under the assigned experimental light conditions.
Although we cannot discard legacy effects from the previous
growing season in the nursery (Aranda et al., 2001), all plants
were treated equally.

We performed a full factorial experiment with the plants
experiencing two light treatments crossed with three water stress
treatments. Half of the plants grew under the sun treatment and
the other half under the shade treatment, as previously described.
We implemented three different water stress treatments using
three different levels of percent loss of hydraulic conductivity
(PLC): (i) P0, where plants were irrigated at field capacity;
(ii) P50, where plants experienced 50% losses in hydraulic
conductivity and which represents an important stress; and
(iii) P80, where the plant experienced 80% losses in hydraulic
conductivity, which represents a major stress and potentially
mortality (Resco et al., 2009).

We kept plants at field capacity until treatment
implementation. We then stopped watering and allowed plants
to dehydrate and we measured midday stem water potential
(9md) every other day in a subset of plants (n = 5). The levels
of PLC were controlled from the relation between midday shoot
water potential (9md) and PLC values reported previously in
vulnerability curves from Quercus faginea Lam. (Esteso-Martínez
et al., 2006) and Quercus ilex L. (Peguero-Pina et al., 2014). Shoot
9md was regularly measured during treatment implementation
with a pressure bomb (PMS 1000, PMS Instruments, Albany,
Oregon) after clipping the sample and allowing for equilibration
in the dark for ∼30 min. Once plants reached the target PLC,
we kept soil moisture constant at that level for 2 weeks. This was
achieved by weighing a subset of pots (n = 5 per each treatment)
and adding back the water that had evaporated every day. We
also measured native embolism to test the actual levels of PLC
that we achieved in every treatment, as previously published
(Resco De Dios et al., 2020). It is important to note that we
did not always reach the target PLC levels (see Supplementary
Table 1), but treatment implementation was successful in that we
created a gradient in water availability with our treatments. Full
details have been provided by Resco De Dios et al. (2020).

Gas Exchange Measurements
Leaf gas exchange was measured with a portable photosynthesis
system (LI-6400XT, Li-Cor Inc., Lincoln, NE, United States). We
measured 3–5 plants in each treatment at two different periods
during the night: between 23:00 h and 01:00 h and between
03:00 h and 05:00 h, and also during the day (10:00–13:00 h).
We did not observe significant differences between the stomatal
conductance measured over night at the different times (p = 0.79)
and measurements were pooled together in subsequent analyses.
To understand if measurement errors arising from low flux rates
affected our measurements, we also conducted measurements
with an empty chamber for 4–5 h, following previously published
protocols (Resco De Dios et al., 2013). Results were always one
or more orders of magnitude lower or negative. Given these
results, we concluded that leaf observations were reliable and that
a general correction was not required.

Block temperature was set at 25◦C during the night and at
30◦C during the day, CO2 at 400 ppm and relative humidity at
∼30%. This meant that D during nighttime measurements was
at ∼2.2 kPa, which was substantially higher than that naturally
occurring during the night (Resco De Dios et al., 2020). We chose
this design to induce nocturnal stomatal closure and test whether
gn indicates gres.

During the daytime, we performed measurements at two
different levels of PAR: 1,500 µmol m−2 s−1 and 40 µmol m−2

s−1. We first measured under growth PAR (1,500 µmol m−2

s−1 for plants in the sun treatment and 40 µmol m−2 s−1 for
plants in the shadow treatment) and then at the other PAR level
(40 µmol m−2 s−1 for plants in the sun treatment and 1,500 µmol
m−2 s−1 for plants in the shadow treatment). The leaves were
exposed for 10–20 min under the different light intensities until
acclimation to the new light level. We only used data measured
under growth PAR for analyses, and the rest was reserved for
model validation. We note that a sudden exposure to 1,500 µmol
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m−2 s−1 for a plant growing in the shade would represent a
sunfleck, and this could affect the performance of steady-state
stomatal models (Way and Pearcy, 2012). When the leaf did not
cover the chamber completely, it was scanned and we corrected
measurements for leaf area.

In order to parameterize the photosynthesis component
of the coupled leaf gas exchange model, we also measured
the response of photosynthesis (A) to different internal CO2
concentrations (Ci) following the protocols from Long and
Bernacchi (2003). Briefly, we started measurements with an
ambient CO2 concentration (Ca) of 400 ppm and, after 5 min of
acclimation, we sequentially changed Ca to 300, 250, 200, 150,
100, 50, 0, 400, 500, 650, 800, 1000, 1250, and 1500 ppm. These
measurements were performed at saturating light (1,500 µmol
m−2 s−1), setting block temperature at 30◦C and with RH as high
as we could achieve, which was∼50%.

Measurements of gMLD
gMLD was measured as the mass loss of detached leaves following
Phillips et al. (2010) in five leaves per treatment, weighting the
leaves every 5 min during 2 h after collection. We wrapped the
petiole with paraffilm so that only water lost through the leaf was
measured. We performed the measurements in the laboratory,
briefly after collection, where we monitored the temperature and
relative humidity. Residual conductance was then calculated as:

gMLD = EMLD PD−1 (3)

where EMLD is mass loss per projected leaf area (mol m−2 s−1), P
is atmospheric pressure (kPa) and D is the vapor pressure deficit
(kPa). g0 was defined as gMLD when the leaf originated from the
shade treatment at P0 (P0_shade) and gmin was defined as gMLD
at P80 in the sun treatment (P80_sun).

Analyses of Non-structural
Carbohydrates and Elemental
Composition
To better understand the physiological mechanisms explaining
variations in gres with treatments, we analyzed the concentrations
of non-structural carbohydrates, changes in leaf mass per area
(LMA) and nitrogen concentrations (Nmass). We collected all
the leaves in five plants for each treatment. Immediately after
collection, we scanned the leaves to measure the total area and
they were then microwaved for 30 s and 700W to stop further
metabolic processes. We then oven dried the samples (48 h in
105◦C) and recorded the dry mass. Leaf area and dry weight was
used to estimate LMA.

We followed previously developed protocols for extracting
the percentage for sugar and starch (Palacio et al., 2007). This
method consists of grinding the dried leaves with a mill (IKA A10,
IKA-Werke, Staufen, Denmark) and making two extractions:
one for extracting soluble sugars (sugars from now on) and a
second extraction for starch. The first step of the sugar extraction
consisted of adding 10 ml of ethanol (80% v/v) to 50 mg of
sample, which we then left for 30 min at 60◦C in water bath,
and then we centrifuged (NEYA 8, REMI ELEKTROTECHNIK
LTD., Vasai, India) the sample for 10 min at 3200 rpm. In

the second step we added 50 µl of the supernatant, 450 µl
of ethanol (80%), 500 µl of phenol (28%), and 2500 µl of
sulfuric acid (96%), we shook the mix and let it stand for
30 min. In the third step we read the absorbance at 490 nm
with spectrophotometer (Spectrophotometer UV-1600PC, VWR,
Radnor, PA, United States) after removing the supernatant and
drying the sample at 70◦C during 16 h.

In the starch extraction, we added 4 ml of sodium acetate
(pH 4.5) to the dry sample and left it for 60 min in a water
bath (60◦C). Once the sample cooled down, we added 1 ml
of Amyloglucosidase (0.5% w/v) and we incubated the mix in
the stove for 16 h at 50◦C. We then added sample 50 µl of
supernatant, 450 µl of sodium acetate (pH 4.5), 500 µl of phenol
(28%), and 2,500 µl of sulfuric acid (96%). We then mixed it and
let sit for 30 min, and then we measured the absorbance at 490 nm
with the spectrophotometer.

We analyzed nitrogen concentration in an elemental analyzer
(Carlo Erba 1110 Elemental Analyzer) at the University
of Wyoming following previously published procedures
(Hoffman et al., 2019).

Statistical Analyses
We examined statistical differences across treatments in gMLD,
gn, and gd using an ANOVA (followed by Tukey’s HSD
test) with species, light and water treatments as explanatory
variables. Measurements of gMLD, were conducted on different
individuals within a treatment. Consequently, we examined
whether values were comparable within a given treatment by
examining variation in the mean± 95% CI in gMLD, gn, and gd.

To examine potential drivers of variation in gres, we
additionally performed correlation analyses between
conductance and NSC, LMA, gas exchange parameters and
9 md.

All data was analyzed with R 3.6.3 (R Core Team, 2020)
using base packages and, additionally, “corrplot” for plotting the
correlation table (Wei and Simko, 2017).

Modeling
In order to examine the effects of the different forms of measuring
residual conductance over stomatal predictions and coupled
photosynthetic responses, we performed two exercises. First,
we examined the effects on stomatal predictions on different
implementations of Eqs 1, 2. Second, we examined the effects of
the different measured values of gres on a photosynthesis-stomatal
conductance coupled model.

For the first exercise, we compared the performance of
different versions of the Ball-Berry (BB) model (Ball et al., 1987).
First, we examined the version proposed by Duursma et al. (2019,
BBD):

gs = max
[
max

(
g0, gmin

)
,mA RH/Ca

]
(4)

and we used three different forms of the left hand term [max (g0,
gmin)]. That is, we compared model performance when the left
hand term used g0 and gmin estimated from gMLD (BBDMLD),
gn (BBDn), and gd (BBDd). In all cases, g0 was defined as
conductance (gMLD, gn, or gd, depending on the case) in the
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shade treatment without water stress (P0_shade) and gmin as
conductance in the sun under strong water stress (P80_sun).

We compared these results with the original version of the
Ball-Berry model (BB):

gs = gint + mA RH/Ca (5)

where gint and m were both estimated through least
squares fitting.

Finally, we used an intermediate option where we used Eq. 5
but where gint was replaced by actual gMLD measurements
(BB_meas_gMLD), instead of being estimated through least
squares. We also tried with gn, in addition to gMLD, but
differences were negligible, as will be discussed later in
more detail.

Model calibration was performed with data collected under
growth PAR (1,500 µmol m−2 s−1 for sun treatment and
40 µmol m−2 s−1 for the shade treatment). Model validation
was performed with data collected under different PAR levels.
That is, with PAR at 40 µmol m−2 s−1 for the sun treatment
and at 1,500 µmol m−2 s−1 for the shade treatment. Model
comparison was performed calculating the Akaike Information
Criterion (AIC) and a model was considered more plausible when
the AIC was smaller by a difference of 2 or more units (Burnham
and Anderson, 2002). We also examined the variation in the
slope, intercept and R2 of the observed vs predicted relationship.

For the second exercise, we simulated the effects of the
different values of gMLD, gn and gd on predictions of Ci
with varying PAR and on the effect temperature on leaf
evaporation. We used the A/Ci curves to parameterize a coupled
photosynthesis model (Duursma, 2015) and we conducted
the simulation following previously published protocols
(Duursma et al., 2019). We note that differences in mesophyll
conductance across species and treatments could affect estimates
of photosynthetic parameters (Flexas et al., 2012).

RESULTS

Effects of Shade and Drought on gMLD
and gn
We observed that gMLD varied significantly with species and
light and also with light and water (Table 1 and Figure 1).
The interactions between species and light resulted in gMLD
significantly declining from 6.9 in the sun to 3.4 mmol m−2 s−1

shadow in Q. faginea. However, gMLD in Q. ilex did not differ
across light levels (5.6 in the sun and 4.4 mmol m−2 s−1 in the
shade). The interaction between light and water was such that
gMLD declined with drought in the sun treatment (from 7.4 at P0
to 5.5 mmol m−2 s−1 at P80), but gMLD increased with drought in
the shade from 3.1 at P50 to 5.0 mmol m−2 s−1 at P80).

Variation in gn followed a pattern of variation similar to that
of gMLD in that it also varied significantly with species and light
treatments (Table 1 and Figure 2). gn was not different between
species at the shade treatment (4.5 and 5.6 mmol m−2 s−1 in
Q. faginea and Q. ilex, respectively), but there was a significant
increase in gn in Q. faginea (7.8 mmol m−2 s−1) in the sun

TABLE 1 | ANOVA Table on the effects of species, light treatment, water treatment
on residual conductance measured from the mass loss of detached leaves (gMLD),
from nocturnal conductance (gn), and also from daytime conductance (gd ).

Factor Df F P-value

gMLD

Species 1 0.12 0.73

Light 1 23.4 <0.0001

Water 2 1.35 0.27

Species × Light 1 5.41 0.02

Species × Water 2 0.75 0.48

Light × Water 2 4.04 0.02

Species × Light × Water 2 0.35 0.71

gn

Species 1 0.89 0.35

Light 1 1.27 0.26

Water 2 2.14 0.12

Species × Light 1 4.98 0.03

Species × Water 2 2.53 0.09

Light × Water 2 0.14 0.87

Species × Light × Water 2 0.20 0.82

gd

Species 1 5.84 0.02

Light 1 51.21 <0.001

Water 2 138.66 <0.001

Species × Light 1 16.99 <0.001

Species × Water 2 1.08 0.34

Light × Water 2 91.74 <0.001

Species × Light × Water 2 21.24 <0.001

treatment. Instead, gn in Q. ilex at the sun treatment was similar
to that in the shade (4.0 mmol m−2 s−1; Figure 1B). Differences
across water treatments were not significant.

Effects of Shade and Drought on gd
Of particular relevance for this study is to examine gd when Anet
approaches zero (Figure 3B), so that one can test the potential use
of gd as an indicator of residual conductance. There are different
definitions in the literature as to what is meant by photosynthesis
approaching zero (Leuning, 1995; Barnard and Bauerle, 2013).
Here we used gd when Anet was at, or below, 1 µmol m−2 s−1. In
Q. faginea, this occurred under the shade treatments at all water
stress levels, where gd varied between 14.6 and 29.5 mmol m−2

s−1 (Figure 3).
In Q. ilex, Anet was always below 1 µmol m−2 s−1 in the

shadow treatments at all water stress levels. However, there was
significant variation in gd as it varied from 58 mmol m−2 s−1 in
P0 to 14 and 4 mmol m−2 s−1 in P50 and P80, respectively. Within
the sun treatments, Anet was always below 1 under water stress
(at P50 and P80) where gd varied between 4 and 1 mmol m−2 s−1,
respectively. gd under water stress (P50 and P80) was not different
between shadow and sun treatments (Figures 3A,B).

Differences Between gMLD, gn, and gd
Within a given treatment, gn was indistinguishable from gMLD:
95% CI error bars always overlapped (Figure 3C). In Q. faginea,
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FIGURE 1 | (A) Variation in residual conductance measured from the mass loss of detached leaves (gMLD) across different light treatments (shadow vs sun) and water
treatments (P0, P50, and P80). Significant interactions across treatments are plotted in (B,C). Bars indicate mean values per treatment and error bars indicate SE.

values of gMLD were usually below those of gn, but the absolute
difference was less than 4 mmol m−2 s−1. InQ. ilex, the difference
between gn and gMLD was less than 1 mmol m−2 s−1.

In contrast, gd was consistently and significantly above both,
gMLD and gn in Q. faginea. It should be noted that, for this
comparison, we only used gd when Anet was below 1 µmol m−2

s−1. That is, we did not seek to compare values of gd with gMLD
and gn if Anet was above 1 µmol m−2 s−1 because, in that case,
photosynthesis does not tend to zero. The average difference of
gd with gMLD was 17.7 mmol m−2 s−1 and the average difference
of gd with gn was 10 mmol m−2 s−1. The only case in which gd
was not different from gMLD and gn was in the sun treatments
in Q. ilex.

Correlates Explaining Variation in gMLD
Overall, the relationships between the different indicators of
gMLD and other physiological parameters were species-specific
(Figure 4A). The only exceptions were Nmass and NSC
concentrations which had a negative and a positive correlation,
respectively, with gMLD in both species (Figure 4). In turn,
Nmass correlated negatively with NSC concentrations and LMA
in both species. NSC also correlated with LMA in both species,
albeit positively. In Q. faginea, gMLD and gn also correlated
positively with LMA and gMLD also correlated positively. In

Q. ilex, gn showed a negative correlation with respiration
(R) and a positive correlation with 9md and with Anet. NSC
concentrations were negatively affected by the shade treatment
(Supplementary Figure 1A).

Modeling gd: Comparing Different
Formulations of the BB Model
We first compared the performance of the model proposed by
Duursma et al. (2019) when g0 and gmin had been defined on
the basis of gMLD (BBDMLD), of gn (BBDn), and of gd (BBDd).
In all cases, the original g0 and gmin were defined as the level
conductance (gMLD, gn, or gd, depending on case) in the P0_shade
treatment (low light) and in the P80_sun treatment, respectively,
(high water stress).

Model performance was superior when the model was based
on gMLD (BBDMLD), but differences with the model based on
gn were minor (1AIC = 0.3 for Q. faginea and 2.3 for Q. ilex).
However, the model based on gd showed consistently a larger
AIC, indicating smaller plausibility (Table 2).

We compared the performance of these three models against
the original Ball- Berry (BB) and we observed that BBDMLD and
BBDn performed better only in Q. faginea, where the difference
in AIC was bigger than 4. For Q. ilex, however, the AIC was
similar across models although the intercept of the observed
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FIGURE 2 | (A) Variation in residual conductance measured from nocturnal conductance under high D (gn) across different light treatments (shadow vs sun) and
water treatments (P0, P50, and P80). Significant interactions across treatments are plotted in (B). Bars indicate mean values per treatment and error bars indicate SE.

vs predicted relationship was significantly different from 0 only
in the BB model.

Finally, we compared the performance of the Ball-Berry model
but where, instead of fitting gint through least squares, we use
actual gMLD measurements (BB_meas_gMLD), which we defined
originally as gMLD under water stress (P80_sun). We observed
that this was the best model in Q. ilex as it had the smallest
AIC although the difference was not significant with BBDMLD
(1AIC = 1.64). In Q. faginea, BB_meas_gMLD peformed worst
than BBDMLD (1 AIC = 2.6).

Differences between BB_meas_gMLD were significant with
the BB model (AIC = 2 for both species) and it was also
more plausible than the BBDd model in Q. faginea (AIC > 2).
Differences between BB_meas_gint and the other models were not
significant. We tried fitting BB_meas_gint with different values of
gint (e.g., using values under shade, or from gn), but differences
were not significant (data not shown).

Modeling gd: Coupled Leaf Gas
Exchange Model
Depending on how gres was measured, we found significant
differences of simulated gas exchange. In particular, when gd was
used we always observed higher values of Ci at any PAR level and

also higher leaf transpiration rates (El) as temperatures increased
because gd was often larger than gMLD and gn (Figure 5).

Generally speaking, there was little difference in simulated Ci
and El regardless of whether gMLD or gn were used, and whether
they were defined from g0 or from gmin. The only exception
was that, in Q. ilex, there were some differences in predicted Ci
(particularly at low PAR levels) and in predicted leaf transpiration
(particularly at peak El) when gres was defined from gn: using gn
from the P0_shade (g0) treatment led to higher predicted Ci and
El than using gn from the P80_sun treatment (gmin). It should
be noticed that gn from the P0_shade treatment was one order
of magnitude larger than gn from the P80_sun treatment (9.1 vs
0.6 mmol m−2 s−1, respectively).

DISCUSSION

We observed that residual conductance varied significantly
across light and water treatments in an interactive (non-
additive) fashion and the responses differed across species.
There were no significant differences as to whether residual
conductance was measured from gMLD or from gn, but the values
were significantly higher when using gd. gMLD was positively
correlated with NSC concentrations, suggesting that further
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FIGURE 3 | Variation in daytime leaf conductance (A, gd ) and net assimilation (B, Anet ) across different light treatments (shadow vs sun) and water treatments (P0,
P50, and P80). Bars indicate mean values per treatment and error bars indicate SE. Hatched bars in (A) indicate that Anet in that treatment is significantly higher than
1. (C) Differences in residual conductance as measured by from the mass loss of detached leaves (gMLD), from nocturnal conductance under high D (gn), or from gd

when Anet was smaller than 1 [note that some values of gd are missing in (C) if Anet for that treatment was higher than 1]. Error bars indicate 95% CI.

reductions in gMLD under drought may be limited by low NSC
availability. From a modeling perspective, the small measured
differences between gMLD and gn generally did not impact
model performance. Although residual conductance differed
significantly under experimental treatment, such differences in
residual conductance showed only a moderate impact on model
performance. That is, model performance did not critically
depend upon whether residual conductance was measured under
strong shade or under strong water stress. There was also
little difference in model fit when either gMLD or gn were
used as an absolute minimum in Eq. 4 (BBDMLD or BBDn),
or when they were used as the intercept of the BB equation
(BB_meas_gMLD).

Shade and Drought Interact as Drivers of
gMLD Although Responses Are
Species-Specific
We observed that gMLD declined under increasing drought in the
sun treatment. In the shade treatment, however, gMLD remained

low and constant, regardless of the water treatment. This result
indicates that drought only affects gMLD under high light because,
under shade, light limitations lower gMLD to a minimum that
is not affected by water stress. It is worth noting that, at least
for some species, full acclimation after changes in the light
growth environment may require more than one growing season
(Aranda et al., 2001). In other words, the strong limitation
imposed by the low light over gMLD may increase even more in
subsequent years.

Previous studies had identified how gMLD often decreases
under exposure to water stress and light, as a result of changes
in wax composition, when each effect is examined in isolation
(Shepherd and Wynne Griffiths, 2006). However, our experiment
may be the first to examine gMLD responses in a multifactorial
experiment. Interestingly, light and water effects were not
additive. That is, we did not observe a lower gMLD under low
light and high water stress, as would be expected from an additive
effect of both factors.

The response to shade was, however, species-specific.
gMLD increased in the sun treatment only in the deciduous
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FIGURE 4 | Correlation table between the measured parameters in Q. faginea (Qf, A) and Q. ilex (Qi, B). Relationship between conductance measured as mass loss
of detached leaves under and non-structural concentrations (NSC) in Qf (C) and Qi (D). NSC are provided relative to the maximum values measured in our
experiment. Values in (C,D) indicate mean per treatment, and each treatment is indicated by a different color following the same convention as in Figures 1–3.

TABLE 2 | Model comparison. We compared for Q. faginea (QF) and Q. ilex (QI) different models based on the Akaike Information Criterion (AIC), the change in AIC
relative to the lowest (1AIC) and the R2, slope and intercept of the observed vs predicted relationship. For the slope and intercept we show the mean value (and SE).

gint (mmol m−2 s−1) AIC 1 AIC R2 Slope Intercept

QF

BBDMLD 5.5 −106.88 0 0.88 1.04 (0.09) 0.001 (0.005)

BBDn 7.1 −106.6 0.28 0.87 1.06 (0.09) 0.0006 (0.005)

BBDd 20.3 −102.32 4.56 0.84 1.23 (0.13) −0.013 (0.007)

BB1 8.9 −102.3 4.58 0.85 1.02 (0.09) −0.01 (0.006)

BB_meas_gMLD 5.5 −104.3 2.58 0.86 0.99 (0.09) 0.002 (0.005)

QI

BBDMLD 5.3 −98.52 1.64 0.97 1.2 (0.05) −0.0001 (0.003)

BBDn 9.1 −96.22 3.94 0.97 1.2 (0.05) −0.002 (0.008)

BBDd 58.2 −69.92 30.24 0.85 1.6 (0.17) −0.067 (0.01)

BB1 16.8 −98.14 2.02 0.98 1.3 (0.05) −0.018 (0.004)

BB_meas_gMLD 5.3 −100.16 0 0.98 1.2 (0.04) −0.001 (0.003)

The models compared include the Ball-Berry model (Eq. 5, BB), the BB model where the intercept is measured, rather than estimated (BB_meas_gMLD) and the
modification of the Ball-Berry model proposed by Duursma (Eq. 4, BBD) using gMLD (BBDMLD), gn (BBDn), or gd (BBDd ) as g0 and gmin. We also provide the values of the
intercept, gint (the maximum between g0 and gmin in the first three models), that were used in each case. Values in bold (or italics) in slope and intercept indicate values
significantly (or marginally) different from 1 and 0, respectively.
1Note that gint in this case is estimated through least squares, rather than measured as in the other models.
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FIGURE 5 | Effects of different values of gres on a coupled photosynthesis model as in Duursma et al. (2019). Models are for Q. faginea (A,B) and Q. ilex (C,D). g0

and gmin represent gres under low light (P0_shadow treatment) and water stress (P80_sun treatment), respectively. Subscripts MLD, n, and d indicate that g0 or gmin

(depending on case) were estimated from mass loss of detached leaves, from nocturnal conductance, or from daytime conductance.

Q. faginea, whereas the increase in Q. ilex gMLD under sun was
not significant.

gMLD Correlated With Low NSC
Concentrations
We can speculate that the reason why gMLD was not lower under
the high water stress and shade treatment (relative to other shade
treatments under less water stress) is related to carbohydrate
limitations. We observed a significant and positive correlation
between NSC and gMLD across species. A synthesis of variation
in NSC across species reports that a minimum NSC of 46% is
always conserved (Martínez-Vilalta et al., 2016). In our results we
also observed a minimum NSC that was close to the 46% of the
maximum NSC that we measured (Figures 4C,D).

A possible explanation on why gMLD did not decrease further
under the joint drought and shade stress is related to a lack of
NSC to feed the building of additional wax and/or epidermal
layers. That is, once plants have reached the minimum NSC
threshold of 46% relative to maximum, they will seek to preserve
their NSC for other functions, such as osmoregulation, at the
expense of building thicker cuticles or additional wax layers. We
note that osmoregulation under shade may be impaired in oaks
(Aranda et al., 2005; Rodriguez-Calcerrada et al., 2010).

At any rate, this is the first study, to our knowledge to
raise this possibility. This result should thus be interpreted with

caution. We acknowledge that the correlation between gMLD and
NSC may have been affected by jointly considering plants under
different light and water regimes. Subsequent work would thus be
needed to confirm this hypothesis.

Residual Conductance in Relation to
Respiration, LMA and Nmass
Despite stomatal closure, gres did not limit CO2 diffusion
out of the leaf. In fact, there was a negative correlation
between nocturnal conductance and respiration in one of our
(Q. ilex) species, indicating higher CO2 efflux at lower gn and,
consequently, that reduced gn levels were far from limiting
respiration. This contradicts earlier studies that cytotoxic CO2
build-up could occur under nocturnal stomatal closure (Fricke,
2019) but it aligns along with the results of modeling, indicating
that only under conductances that are orders of magnitude lower
to those reported here could a cytotoxic CO2 build-up occur
(Resco De Dios et al., 2019).

gMLD increased in the sun in Q. faginea. LMA also increased
with light (data not shown) and it was significantly correlated
with gn and with gMLD in Q. faginea. LMA is an indicator of
the degree of sclerophylly, which could serve to decrease residual
conductance by increasing cuticle thickness. However, LMA also
increased with light in the sclerophyll Q. ilex, where LMA did
not correlate with gn or gMLD. This result matches with previous
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studies in Quercus indicating that any effects of LMA in gn and
gMLD may be modified by changes in the cuticle composition
(Bueno et al., 2020). We note that this argument is speculative
and based only on circumstantial evidence.

Nmass showed a negative correlation with gMLD in both species,
and with gn in Q. faginea. This result indicates that species with a
higher photosynthetic investment will decrease the investment in
residual conductance. This points toward a potential mechanism
underlying the trade-off between investment for C uptake (higher
Nmass) and preventing catastrophic water losses (reduced gMLD).
Further studies will be necessary to test the generality of
this hypothesis.

Residual Conductance May Be Measured
via gMLD or via gn Under High D
Measurements of nocturnal conductance under the relatively
high D from this experiment were statistically indistinguishable
from independent measurements of residual conductance
indicating that the latter was driving the former. It had been
previously argued that measurements of gn would not be
valid indicators of residual conductance, because gn is actively
regulated (Duursma et al., 2019). Our results suggest that this
argument from Duursma et al. (2019) may only be valid when
gn is measured under low D.

Previous studies document that stomata often reach complete
closure (or as complete as it can be) under lower D in the night,
than in the day (Barbour and Buckley, 2007). This phenomenon
would explain why gn was much lower than gd although D was
comparable, and it is likely explained by the capacity of stomata
to sense and open in response to light.

We also show how modeling results were not affected by either
using gMLD or gn. This result, however, needs to be interpreted
with caution. We only focused on BB-type stomatal models and
other results may be obtained in different model types. For
instance, as Duursma et al. (2019) noted, changing minimum
conductance from 2 to 4 mmol m−2 s−1 halved the time to
reach mortality in a hydraulics model because it doubled the
water losses (Duursma et al., 2019). Although differences were
statistically not significant between gMLD and gn, we still observed
differences in mean residual conductance of 4 mmol m−2 s−1

across measurements, indicating that measurement errors and
other sources of uncertainty may play a large for other model
types, such as mortality models.

Modeling gs
We acknowledge our dataset was limited to thoroughly test the
best form of the BB model: we sampled under highly contrasting
light and water conditions, but only once in time. We would
thus need data over more time periods for a more thorough
evaluation. However, our dataset allows for the development of
some hypotheses, which may be expanded in subsequent studies.

We observed that there were only little differences between
Eq. 5, where the original BB function was used but including
measured gMLD (BB_meas_gMLD), instead of the version
proposed by Duursma et al. (2019; Eq. 4). Duursma et al. (2019)
note that residual conductance acts as an actual minimum in the

function they propose. However, if the goal is to use residual
conductance as an actual stomatal minimum, one could consider
the following equation instead:

gs = max
(
min

(
g0, gmin

)
,mA RH/Ca

)
(6)

where the minimum between g0 and gmin is chosen [not the
maximum, as proposed by Duursma et al. (2019)].

At any rate, we did not observe major differences in model
performance between the BBD model or Eq. 5. This result
indicates that it is unlikely that losses in model performance will
derive from the adoption of the alternative model formulations,
as proposed by previous studies (De Kauwe et al., 2015; Duursma
et al., 2019).

Our results also indicate that gMLD and gn can both be
interchangeably, and that the choice between g0 and gmin exerts
negligible consequences for model fitting. Earlier studies indicate
a major effect of gres (De Kauwe et al., 2015; Duursma et al.,
2019). This is because those studies used a wide range of gres
values (10–40 mmol m−2 s−1, depending on the case), much
higher that the variability we reported here when using gMLD
and gn across treatments (Table 2). Synthesis studies similarly
indicate limited variation in gres within a family (Duursma et al.,
2019). After discarding gd as a reliable indicator of gres, our results
indicate a minor effect of different methods and approaches used
for measuring gres and for modeling water use, at least in our two
closely related species.
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Supplementary Figure 1A | Variation in leaf non-structural carbohydrate
concentrations measured across different light treatments (shadow vs sun) and
water treatments (P0, P50, and P80) in Quercus faginea (QF) and Q. ilex (QI). Bars
indicate mean values per treatment and error bars indicate SE.

Supplementary Table 1A | Target midday water potential (9md ) to reach the
desired PLC according to Esteso-Martínez et al. (2006) for Q. faginea and to
Peguero-Pina et al. (2014) for Q. ilex, and actual values. Mean (and SE) actual
values are presented. The letters in “Actual PLC” indicate the results of post hoc
analyses (Tukey HSD). This is a reproduction (with permission from the publisher)
of Table 1 originally published in Resco De Dios et al. (2020).
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