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Genetic transformation is a powerful tool to study gene function, secondary metabolism
pathways, and molecular breeding in crops. Cotton (Gossypium hirsutum L.) is one of
the most important economic crops in the world. Current cotton transformation methods
take at least seven to culture and are labor-intensive and limited to some cultivars. In
this study, we first time achieved plantlet regeneration of cotton via embryogenesis
from transformed hairy roots. We inoculated the cotyledon explants of a commercial
cultivar Zhongmian-24 with Agrobacterium rhizogenes strain AR1193, harboring a
binary vector pBI-35S::GFP that contained the NPT II (neomycin phosphotransferase)
gene and the GFP (green fluorescent protein) gene as a fluorescent marker in the
T-DNA region. 82.6% explants produced adventitious roots, of which 53% showed GFP
expression after transformation. 82% of transformed hairy roots produced embryonic
calli, 12% of which regenerated into stable transformed cotton plants after 7 months
of culture. The integration of GFP in the transformed cotton genomes were confirmed
by PCR (Polymerase chain reaction) and Southern blot analysis as well as the stable
expression of GFP were also detected by semi-quantitative RT-PCR analysis. The
resultant transformed plantlets were phenotypically, thus avoiding Ri syndrome. Here
we report a stable and reproducible method for A. rhizogenes-mediated transformation
of cotton using cotyledon as explants, which provides a useful and reliable platform for
gene function analysis of cotton.

Keywords: cotton (Gossypium hirsutum L.), cotyledon, Agrobacterium rhizogenes-mediated, transformed hairy
root, embryogenesis, plant regeneration, southern blot analysis

INTRODUCTION

Cotton is an economically important crop well known for providing natural fibers. It also is
a producer of seed oil which ranks third in oil production globally, after soybean and canola

Abbreviations: MS, Murashige and Skoog medium; B5, Gamborg B5-medium; GFP, green fluorescent protein gene; KT,
kinetin; NAA, 1-Naphthaleneacetic acid; IAA, Indole-3-acetic acid; 2.4-D, 2, 4-Dichlorophenoxyacetic acid; NPT II, neomycin
phosphotransferase gene; CTAB, hexadecyltrimethylammonium bromide; PCR, Polymerase Chain Reaction.
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(Shang et al., 2017). Cotton seed oil is rich in a range
of fatty acids, such as oleic acid, stearic acid, and palmitic
acid as well as having a low flavor reversion, making it an
important oil in the food industry (Liu et al., 2017). In the
last century, traditional breeding attempted to improve some
agronomic traits of cotton, such as fiber length and quality,
disease resistance, and oil yield. However, progress has been
unsatisfactory due to the lack of useful genetic resources in
cotton. In contrast with classical breeding, genetic transformation
is a powerful research tool for use in gene discovery and crop
improvement. Recently, many genes have been identified which
have putative function in fiber development and the seed oil
biosynthesis pathway (Walford et al., 2011; Liu et al., 2017;
Shang et al., 2017). Analysis of the recently sequenced genome
sheds new light on basic metabolism and further unravels the
oil biosynthesis pathway (Du et al., 2018). However, previous
cotton transformation protocols have key limitations, including
the inefficient regeneration of transformed shoots, with successful
transformants obtained through time-consuming and labor
intensive methods (Sunilkumar and Rathore, 2001; Leelavathi
et al., 2004; Zhao et al., 2006).

Since Agrobacterium tumefaciens-mediated transformation
and regeneration of cotton from hypocotyls or cotyledons
via somatic embryogenesis was first reported by Firoozabady
et al. (1987) and Umbeck et al. (1987), other methods of
transforming cotton have been described, such as particle
bombardment (Finer and McMullen, 1990; John and Keller, 1996;
Rajasekran et al., 1996; Liu et al., 2011), utilizing the pollen-
tube pathway (Huang et al., 1999; Wang et al., 2004), and a
combination of Agrobacterium and shoot-apex explants (Zapata
et al., 1999). To date, A. tumefaciens-mediated transformation
has been most widely used for cotton transformation and has
introduced some commercially useful genes into cotton cultivars,
leading to the subsequent generation of transgenic cotton plants
(Leelavathi et al., 2004; Khan et al., 2010; Abdurakhmonov
et al., 2014). Whilst eventually successful, these methods are
slow, complex selection process, inefficient and also suffer from
poor regeneration.

Similar to A. tumefaciens, Agrobacterium rhizogenes has the
ability to transfer T-DNA using the root-inducing (Ri) plasmid
to the target plant genome, whilst also inducing the formation
of hairy roots (Tepfer, 1984; Seki et al., 2005). A. rhizogenes can
also transfer T-DNA binary vectors, enabling the production of
transformed hairy roots containing genes of interest that are
carried on a binary vector (Cho et al., 2000; Cui et al., 2001).
Transformed hairy roots are induced rapidly and efficiently
from explant tissues and are easy to identify to separate as
individual clones. They show rapid growth and have the same
genetic characteristics to normal roots. The culture procedure
is simple and plants can be maintained for a substantial
period of time. Hairy root culture methods have been used
in soybean (Kereszt et al., 2007), Medicago (Boisson-Dernier
et al., 2001), tomato (Ron et al., 2014), Saussurea involucrata
(Fu et al., 2005), Duboisia leichhardtii (Mano et al., 1989),
Antirrhinum (Gao et al., 2013). It has also been used for
cotton (Triplett et al., 2008; Frankfater et al., 2009; Wubben
et al., 2009; Kim et al., 2011; Gao et al., 2013), but whilst

FIGURE 1 | The T-DNA structureof expression vector pBI-35S::GFP. The right
border (RB) and left border (LB) of T-DNA were indicated by black arrow. Pnos:
Nopaline synthase gene promoter, NPT II: The neomycin phosphotransferase
II gene,Tnos: Terminator of nopaline synthase gene, P35S: 35S promoter of
cauliflower mosaic virus, GFP: Green fluorescent protein gene.

coming close, these methods have not tackled the problem of
efficient regeneration.

Here, we present an efficient and stable method of
transformation mediated by A. rhizogenes and for the first-time
regeneration of cotton via embryogenesis using the cultivar
Zhongmian-24. We show that through production of hairy roots,
transformation with a fluorescent marker followed by callus
induction, stable transformed plantlets can be regenerated after
6–7 months of culture. This transformation period is shorter
compared with other transformation methods and use somatic
embryogenesis for efficient regeneration to allow for higher
production of stable transformants and providing a reliable tool
for the study of gene function in cotton.

Materials and Equipment
Materials

• Cotton cultivar: Zhongmian-24 (From institute of cotton
research of CAAS).

• Agrobacterium strain: AR1193/pBI121-GFP (Figure 1).

General Reagents
• Sterile distilled and deionized water.
• Mercury dichloride (HgCl2, Shanghai, China).
• Agar (A1296-1, Sigma, Aldrich).
• Gelrite (G1910, Sigma, Aldrich).
• Sucrose (S2792, Sangon Biotech, China).
• MS medium (M519, PhytoTech Labs, United States).
• MSB5 medium (M404, PhytoTech Labs, United States).
• Absolute ethanol (A500737, Sangon Biotech, China).
• Isopropanol (A507048, Sangon Biotech, China).
• RNAiso Plus (9108, Takara, Dalian).
• LB Agar Plate (B530111, Sangon Biotech, China).
• LB sterile liquid medium (B540111, Sangon

Biotech, China).
• Yeast Extract (A610961, Sangon Biotech, China).
• Tryptone (A650217, Sangon Biotech, China).
• Sodium chloride (A100241, Sangon Biotech, China).
• Glutamine (816016, Sigma, Aldrich).
• Rifampicin (A600812, Sangon Biotech, China).
• Kanamycin (A600286, Sangon Biotech, China).
• 1-Naphthaleneacetic acid (NAA) (N0640, Sigma, Aldrich).
• 3-Indole acetic acid (IAA) (A600723, Sangon

Biotech, China).
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• 2.4-Dichlorophenoxyacetic acid (2.4-D) (D7299,
Sigma, Aldrich).

• Kinetin (KT) (K0753, Sigma, Aldrich).
• Acetosyringone (AB1111-Sangon Biotech, China).
• SV total RNA isolation system (Z3101, Promega).
• Super Script III First-strand synthesis Kit

(18080, Invitrogen).
• PCR Dig Probe Synthesis Kit (11636090910, Roche).
• DIG High Prime DNA Labeling and Detection Starter Kit I

(11745832910, Roche).
• Molecular-Weight Marker II (11218590910, Roche).
• cefotaxime (A601276, Sangon Biotech, China).

Equipment and Materials
• Clean bench (Boxun, China).
• Shaker (THZ-C-1, Taicang, China).
• Fluorescence microscope (Leica165 FC) (Leica, Germany).
• GeneAmp PCR System 2700 (ABI, United States).
• 20 ml Syringes.
• Plastic pot (5 cm × 5 cm × 12 cm).
• Plastic sterile Petri dishes (90 mm ×17 mm).
• 50 ml conical polypropylene tubes.
• Scalpel (no. 23).
• 15–20 cm Forceps.
• Syringe filter (0.22 µ m).

Reagent Setup
• 1 mg/ml IAA: Add 1 N HCl dropwise to 50 mg IAA until

completely dissolved. Make up to 50 ml with distilled water,
store at 4◦C.

• 1 mg/ml NAA: Add 1 N HCl dropwise to 50 mg NAA until
completely dissolved. Make up to 50 ml with distilled water,
store at 4◦C.

• 1 mg/ml 2,4-D: Add 1 N NaOH dropwise to 50 mg 2,4-D
until completely dissolved. Make up to 50 ml with distilled
water, store at 4◦C.

• 1 mg/ml Kinetin (KT): Add 1 N NaOH dropwise to 50 mg
kinetin until completely dissolved. Make up to 50 ml with
distilled water, store at 4◦C.

• 20 mg/ml acetosyringone stock: Dissolve 1 g acetosyringone
in 50 ml of dimethyl sulfoxide and store in the dark at
−20◦C.

• Liquid LB medium (10 g tryptone, 5 g yeast extract, 10 g
NaCl per liter, adjusted to pH 7.2): Once sterilized by
autoclaving, store at 4◦C for several months.

• Plant tissue culture media.

The media used in this study were indicated Table 1.

METHODS

Plant Material
(1) The cultivar Zhongmian-24 was used in this study.
(2) The seeds from the removed coat were sterilized with 0.1%

HgCl2 for 5 min and rinsed five times with sterile distilled
water for 3 min to remove the disinfectant completely.

TABLE 1 | Composition of the media used in this study.

Medium Composition

MS: seed germination Macro and micro salts of MS +1x vitamins of
MS + 30 mg/L sucrose + 3.5 g/L gelrite, pH 5.8

CM: co-cultivation Macro and micro salts of MS +1x vitamins of
MS + 30 mg/L sucrose + 0.2 mg/L
NAA + 40 mg/L acetosyringone + 3.5 g/L
gelrite, pH 5.5

RIM: hairy root
induction

Macro and micro salts of MS +1x vitamins of
MS + 30 mg/L Sucrose + 0.2 mg/L
NAA + 200 mg/L cefotaxime + 3.5 g/L gelrite,
pH 5.8

PCIM: primary callus
induction

Macro and micro salts of MS +1x vitamins of
MS + 30 mg/L sucrose + 0.1 mg/L
IAA + 0.15 mg/L 2. 4-D + 0.2 mg/L
KT + 200 mg/L cefotaxime + 3.5 g/L gelrite, pH
5.8

ECIM: embryogenic
callus induction

Macro and micro salts of MS +1x vitamins of
MS + 30 mg/L sucrose + 0.01 mg/L
IAA + 0.01 mg/L 2. 4-D + 0.02 mg/L
KT + 50 mg/L asparagine + 75 mg/L
glutamine + 200 mg/L cefotaxime + 3.5 g/L
gelrite, pH 5.8

SEIM: somatic embryo
induction

Macro and micro salts of MS +1x vitamins of
B5 + 30 mg/L sucrose + 50 mg/L
asparagine + 75 mg/L glutamine + 50 mg/L
cefotaxime + 3.5 g/L gelrite, pH 5.8

SEGM: somatic
embryos germination

Macro and micro salts of MS + 1x vitamins of
B5 + 30 mg/L sucrose + 50 mg/L
cefotaxime + 3.5 g/L gelrite, pH 5.8

MS, Murashige and Skoog medium; B5, Gamborg B5-vitamin (Gamborg et al.,
1968); NAA, 1-Naphthaleneacetic acid; IAA, Indole-3-acetic acid; 2.4-D, 2, 4-
Dichlorophenoxyacetic acid; KT, Kinetin.

(3) The seeds were germinated on MS medium (Murashige
and Skoog, 1962) supplemented with 3% sucrose and 3.5%
phytagel and the pH was adjusted to 5.8 in plastic pots.

(4) The plant materials were grown at 25◦C under a 16/8 h
light/dark photoperiod at an intensity of 60 µmol m−2 s−1.
After 2 weeks of culture.

(5) Fully expanded cotyledons that were green in color were
used for the transformation experiment.

Transformation Vector and
Agrobacterium Strain

(1) The A. rhizogenes strain AR1193 harboring the binary
vector pBI-35S::GFP (Figure 1) was used for the
transformation of cotton.

(2) The plasmid pBI-35S::GFP containing the NPT II gene
and GFP gene in the T-DNA region. The pBI-35S::GFP
expression vector was introduced to A. rhizogenes AR1193
cells by electroporation method (Shen and Forde, 1989).

Transformation and Hairy Root Induction
(1) Pick up a little of A. rhizogenes strain AR 1193/pBI-

35S::GFP of stocked at −80◦C was grown in 5 mL of LB
liquid medium added 50 mg/L kanamycin (used 50 ml
conical tube), at 28◦C, 200 rpm, for 20–24 h.
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(2) Take 1 ml, transfer to a sterile 50 ml conical tube containing
40 ml liquid CM medium (without gelrite) (Table 1), about
OD 0.1–0.2 used to infection of cotyledon of cotton.

(3) The 2-week-old green and expanded cotyledons were
excised from the seedlings and wounded with a sterile
scalpel, infection with the diluted Agrobacterium rizhogenes
AR 1193/pBI-35S::GFP suspension for 8 min.

(4) The infected cotyledons transferred to CM solid
medium (Table 1) and co-culture for 48 h at 20◦C in
the dark condition.

(5) The cotyledons were transferred to RIM (Table 1) and
hairy roots were induced. The infection experiment was
repeated three times.

Embryonic Induction and Regeneration
of Plantlets From Transformed Hairy
Roots

(1) Hairy roots (4–5 cm) were excised from the cotyledons, cut
into ∼1–2 cm segments, and placed on PCIM (Table 1) to
induce primary calli.

(2) The hairy root segments or calli were changed to the same
fresh medium at 3-week intervals.

(3) After ∼8 weeks of culture, the induced calli were transferred
to ECIM (Table 1) to induce embryonic calli.

(4) After culturing for 2 months, the induced embryogenic
calli were transferred to SEIM (Table 1) to induce
somatic embryos.

(5) The induced embryos were transferred to SEGM
(Table 1) to allow elongation and the development of
normal plantlets.

(6) The normal like plantlets were transferred to MS medium
containing 250 mg L−1 cefotaxime induce roots.

(7) Selected, normal-like plantlets were transferred to nutrient
soil and grown in the culture room at 25◦C, 16 h light
/8 h dark condition.

Observation of GFP Expression
Green fluorescent protein activity was observed in emerging
hairy roots and induced primary calli, and at embryogenic
calli induction, somatic embryo induction, and rooting stages,
using a fluorescence microscope (Leica165 FC) equipped with a
GFP2 filter. The images were captured using an imaging system
DFC310 FX (Leica) and the Leica software (LAS V4.2). Digital
image processing was performed using Adobe Photoshop CS2.

Detection of GFP Gene in Transformed
Calli and Plantlets by PCR

(1) Genomic DNA was extracted from fresh embryo calli and
young leaves of geminated somatic embryos using the
CTAB method (Rogers and Bendich, 1985).

(2) Detection of the GFP gene was used following primer
sets: GFP(+) ATGGTGAGCAAGGGCGAG GAGC and
GFP(−) TTACTTGTACAGCTCGTCCATGC.

(3) Reactions were carried out on a GeneAmp PCR System
2700, and the PCR program was set with denaturation at
94◦C for 5 min followed by 35 cycles at of 94◦C for 30 s,

57◦C for 30 s, and 72◦C for 40 s, and a final extension at
72◦C for 5 min.

(4) The PCR products were separated use 1% agarose gels.

Semi-Quantitative RT-PCR Analysis of
GFP Expression

(1) Total RNA was extracted from 100 mg young leaves
of a wild-type and nine transformed cotton plantlets
combination with SV total RNA isolation kit and RNase-
free DNase (Promega), respectively.

(2) The first-cDNA was synthesized using Super Script III
kit (Invitrogen).

(3) The GFP primer set: GFP(+) ATGGTGAGCAAGG
GCGA GGAGC and GFP(−)TTACTTGTACA
GCTCGTCCATGC, and a set of cotton ubiquitin gene
primer: Ubi (+) GAAGGCATTCCACC TGACCAAC
and Ubi(−) CTTGACCTTC TTCTTCTTGTGCTTG as a
positive control were used RT-PCR analysis.

(4) Semi-quantitative RT-PCR were carried out according to
described by Gao et al. (2015).

(5) The PCR products were analyzed 1% agarose gels and
confirmed by sequencing.

(6) The electrophoretogram processing was performed with
Adobe Photoshop 7.0.

Detection of Transformed Plantlets by
Southern Blot Analysis
To confirm the stable integration of transgenes was performed
Southern blot analysis.

(1) Total DNA was isolated from young leaves geminated from
somatic embryos of seven PCR positive cotton plantlets and
a wild type cotton plant using the CTAB extraction method
(Rogers and Bendich, 1985).

(2) 20 µg total genomic DNA were completely digested with
Hind III, separated by electrophoresis on 1% agarose gel at
200 V for 10 h, and then transferred onto a Hybond-N+
membrane (Amersham).

(3) The membrane was hybridized a digoxin-labeled full-length
GFP gene probe, which synthesized by a PCR Dig Probe
Synthesis Kit (Roche) using the primer set above.

(4) The hybridization was performed at 60◦C using the
protocol provided for the DIG High Prime DNA Labeling
and Detection Starter Kit I (Roche).

(5) All hybridization and signal detection procedures
were carried out according to the manufacturer’s
instructions (Roche).

RESULTS

Hairy Root Induction From Cotyledon
Explants
Hairy roots induced by A. rhizogenes are a visible and simple
marker that permits the selection of transformed roots. To
establish stable conditions for the production of cotton hairy
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FIGURE 2 | Induction of transformed hairy roots from wounded 2-week-old
cotyledon. (a) Emerging hairy roots from wounded cotyledon after 10 days of
infection A. rhizogenes AR1193/pBI-35S::GFP; (b) GFP expression on
induced hairy root in (a); (c) induced hairy root from wounded cotyledon after
4 weeks of infection A. rhizogenes AR1193; (d) GFP expression on induced
hairy roots in (c).

TABLE 2 | Induction of hairy roots from cotyledons of Zhongmian-24, after
4-weeks infection with A. rhizogenes AR1193 containing a binary vector
pBI-35S::GFP on RIM.

Number of
cotyledon
explantsa

Number of
emerged

adventitious
roots

cotyledon
explants

Number of
independent
adventitious

roots

Number of
GFP-

positive
roots

Frequency
of GFP-
positive

roots (%)b

177 141(79.66%) 229 132 57.64

124 103(83.06%) 346 186 53.76

142 121(85.21%) 93 44 47.31

a Infection experiment was repeated three times. b(Number of GFP-positive
roots/number of adventitious roots) × 100%.

roots, a combination of the A. rhizogenes strain AR 1193/pBI-
35S::GFP and 2-week-old hypocotyl segments, leaf explants,
and cotyledon of cotton were examined. After 2 weeks of
infection, adventitious roots emerged from wounded cotyledons,
which were growing fast on RIM (Figures 2a,c). Emerging
adventitious roots were also observed from explants of infected
hypocotyl segments and leaves, but the number of adventitious
roots was lower than the number of cotyledons (data not
shown). Therefore, cotton transformation was performed using
a combination of A. rhizogenes AR1193/pBI121-GFP and
2-week-old cotyledons and the experiment was repeated three
times. After 4 weeks of infection, 79.6%, 83%, and 85% of the
infected cotyledons emerged with a large number of adventitious
roots, obtained 229, 346, and 93 independent adventitious
roots, respectively; among them, 57.6%, 53.7%, and 47.3% of
adventitious roots showed strong GFP expression, respectively
(Table 2 and Figures 2b,d).

Induction of Embryos From Transformed
Hairy Roots
Choice independent hairy roots with showing strong GFP
expression and fast growing were cut into pieces of length 1–
2 cm and placed on PCIM-induced calli. Three-to-four weeks
after the culture, yellowish and soft calli were observed as
emerging, mainly from the cut end, and after 2 months of
culture, about 82% of the hairy root segments produced yellowish
and soft calli at the cut end and inner side (Figures 3a,f).
The yellowish and soft calli were transferred to ECIM-
induced embryos. After two subcultures on ECIM (changing
the medium every 3 weeks), newly formed creamy-white and
friable calli or a few green globular embryos appeared on their
surface, and the green globular embryos exhibited strong GFP
expression (Figures 3b,g). The creamy-white and friable calli
were transferred to SEIM-induced mature somatic embryos.
Following 2 months of culture on SEIM medium, numerous
globular or oval-like embryos developed (Figure 3c,h).

Plantlet Regeneration
The green globular or oval-like embryos were transferred
to SEGM. The embryos rapidly developed a green shoot
and primary root (Figure 3d), which showed strong GFP
expression (Figure 3i). After 4 weeks of culture, plantlets
were obtained from 23 independent hairy root lines, and the
regenerated plantlets were normally grown on MS medium
containing 50 mg/L kanamycin. Among them, a few regenerated
plantlets showed severe Ri syndrome such emerged numerous
adventitious roots (Figures 3e,j), and some regenerated plantlets
no showed clear morphological alteration in the roots and leaves
(data not shown) which morphologically similar to the non-
transformed cotton plant.

Molecular Analysis of Transformed
Cotton Plantlets
To confirm the GFP gene in the regenerated putative transgenes
cotton plantlet genomes, DNA was isolated from nine
independent cotton plantlets that showing stable GFP expression
and a non-transformed cotton plant, and using GFP specific
primers were performed PCR analysis. The result, the 780-bp
GFP specific bands were detected in each of the nine selected
cotton plants, however, the band was not amplified in the
non-transformed cotton plant (Figure 4A). Next to detection
of the GFP expression in the transgenes cotton plantlets, semi-
quantitative RT-PCR was performed using a GFP specific primer
pairs. The results of GFP was transcribed and expressed in
all nine tested cotton plantlets, but no expression of GFP was
detected in non-transformed wild-type cotton plant (Figure 4B).

Southern Blot Hybridization Analysis
Furthermore, to confirm the stable integration of GFP in the
cotton plantlet genomes, genomic DNA from seven independent
GFP positive plantlets were carried out Southern blot analysis
using Dig-labeled 780 bp GFP fragment as a probe (Figure 4A).
The results all seven independent plants were displayed different
patterns. Among them, two plant lets (line 4 and 6) were showed
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FIGURE 3 | Callus induction and plantlet Regeneration from transformed hairy roots. (a) Induction of primary callus from a transformed hairy root after 2 months
culture on PCIM; (b) Induction of an embryogenic callus after 2 months culture on ECIM; (c) Appearance of embryos after 4 weeks culture on SEIM; (d) Green
shoots germination from somatic embryos after 2 weeks culture on SEGM; (e) Numerous abnormal roots development from a transformed cotton plantlet; (f) GFP
expression in induced primary callus (a); (g) GFP expression in induced embryogenic callus (b); (h) GFP expression on globular or oval-like embryos (c); (i) GFP
expression on germinated plantlets (d); (j) GFP expression the abnormal roots of a transformed cotton plantlet. Scale bars were indicated.

FIGURE 4 | Molecular analysis of transformed cotton plantlets. Total RNA and
DNA were extracted in young leaf of a wild-type cotton plant and nine
independent transformed plantlets, which showing stable GFP expression.
(A) The PCR analysis for detection of GFP in transformed cotton plantlets. M,
2-kb DNA ladder marker; P, pBI-35S::GFP plasmid DNA (positive control); Wt,
wild-type cotton DNA (negative control); Lane 1–9, nine independent
transformed cotton plantlets; (B) The RT-PCR analysis for GFP expression in
transformed cotton plantlets. The GFP-specific primers and ubiquitin-specific
primers of cotton were used. Wt, wild-type plant; lanes 1–9, independent
transformed plantlets of cotton.

one copies, two plant lets (line 1 and 2) were showed two
copies, and three plant lets (line 3, 5, and 7) were showed
multi copies. However, no hybridization signal was detected in
non-transformed wild type cotton plant (Figure 5).

Summary of Transformation Process
The method for transformation of cotton by A. rhizogenes
AR1193 is summarized in Figure 6. Two-week-old cotyledons
were inoculated with A. rhizogenes strain AR1193, and after
2 days of co-cultivation, the cotyledons were transferred onto
hairy root induction medium (RIM). The induced hairy roots
were subsequently cut into 1–2 cm pieces for culturing on
PCIM. After 2 months, the induced calli were transferred to
ECIM to induce embryogenic calli. After a further 2 months,
the embryogenic calli were transferred to SEIM. At the end of

FIGURE 5 | Confirmation of GFP integration in transformed cotton plants by
Southern blot analysis. The genome DNA was extracted from a wild type
cotton plant and independent seven transformed cotton plants. The Southern
blot analysis were used 20 µg genome DNA of digested with Hind III,
respectively, and hybridized with a DIG labeled 720-bp GFP coding fragment
amplified by PCR. M, DIG labeled DNA marker (Roche); P, pBI-35S::GFP
plasmid; Lane 1–7, The DNA from seven independent transformed cotton
plants, respectively; Wt, The DNA from a wild type cotton plant.

next 2 months, the embryos were transferred to the germination
medium (SEGM) to produce plantlets. The plantlets were then
transferred to a rooting medium to induce roots and were
subsequently potted in soil.

DISCUSSION

We developed an A. rhizogenes-mediated stable transformation
method for a commercial cotton cultivar Zhongmian-24, and
the first time successfully regenerated plants from transformed
hairy roots via somatic embryogenesis. Expression of the GFP
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FIGURE 6 | Diagram of A. rhizogenes-mediated transformation of cotton. The
time schedule and medium are indicated on the left and the corresponding
figures were showed on the right.

reporter gene was detected at each stage from inoculation to
plantlet development, and the GFP gene integration was also
confirmed by both PCR and Southern blot analysis. The period
from induction of hairy roots to mature plant development
needed is about 7 months, with a transformation efficiency of
12%. These results show that this transformation method is a
simple and suitable for selection transformed hairy roots and
obtain transformed plants as well as a useful and reliable platform
for gene function analysis of cotton.

In plant transformation process widely use the kanamycin-,
hygromycin- or bialaphos (bar) resistant genes as selectable
markers (Manoharan and Dahleen, 2002; Ceasar and
Ignacimuthu, 2011; Acanda et al., 2017). However, these
antibiotics or herbicides were retard the plant cell differentiation
and adventitious shoots formation during tissue culture process
(Catlin, 1990). The A. rhizogenes-mediated transformation
compare to A. tumefaciens-mediated transformation has some
advantages such as induce transformed hairy root rapidly and
efficiently from explant, easy to identify individual transformed
clones and no requires selection marker genes, therefore this
technique has also been used for study gene functions, plant
transformation and study of secondary metabolism (Cui et al.,
2001; Gao et al., 2013; Aggarwal et al., 2018; Ho-Plágaro et al.,
2018). In this study, A. rhizogenes strain 1193 was used, and
the characters of hairy roots that fast elongation and increase
lateral roots on non-plant hormone media as selection marker,
342 independent hairy root clones were obtained after 4 weeks
infection (Table 2). Among them 79 independent hairy roots
were emerged embryogenic callus and 54 hairy roots were

obtained transformed plant lets. In this study, the GFP also
used as a selection marker, and monitored the GFP expression
at different developmental stages as well as detected that GFP
expression from hairy root induction to development of plantlets
on transformed calli (Figure 3). In this study, we also found
that about 50% adventitious roots were no showed visible
GFP expression, among them some adventitious roots showed
Ri syndrome such as fast elongation and increase blanch,
however, other some adventitious roots that are probably non-
transformed escape root were stopped elongation and died early
(data not shown). Therefore, this two-step selection method
is more reliable and fast obtain transformed calli than those
reported previously.

Establishment of a stable and efficient transformation method
improves the amount of regenerable explants. In cotton, the
hypocotyl, cotyledon, the shoot apex, and embryogenic calli have
been used as materials for transformation (Thomas et al., 1995;
Rajasekran et al., 1996; Zapata et al., 1999; Leelavathi et al.,
2004; Wu et al., 2008; Jiang et al., 2012). Several studies have
reported that cotyledon explants produce more hairy roots than
hypocotyl segments in cotton and other plants, when inoculated
with A. rhizogenes strains (Xu et al., 2004; Triplett et al., 2008). In
this study, we also used the cotyledon and hypocotyl as material
for inoculation with A. rhizogenes strain AR1193 and observed
similar results. We found that even though both cotyledon and
hypocotyl segments can be infected by AR1193, the cotyledon
is more reliable. Numerous adventitious roots appeared on the
surface of each cotyledon after 10 days of infection (Figure 2a),
which was faster than hypocotyl segments which took 15 days
(data not shown). 57% of the independent adventitious roots
exhibited strong green fluorescence (Figures 2b,d). 82% of the
hairy roots showing strong GFP expression were derived from
cotyledons, which produced yellowish and soft primary calli
in the presence of low concentrations of 2.4-D (0.1 mg/L) in
2 months of culture (Figure 3a). Among these, 22% produced
embryogenic calli within 2 months of culture, and ultimately 12%
of the independent hairy roots yielded normal-like transformed
plantlets after 7 months of culture (Table 3). These results show
that the cotyledon is the best material for A. rhizogenes -mediated
transformation of cotton, and that the cotyledon explants of
cultivar Zhongmian-24 and the A. rhizogenes strain AR 1193 is
a suitable combination for cotton transformation.

Agrobacterium rhizogenes harbors the Ri plasmid, which
infects through wounded plant tissue induce hairy roots

TABLE 3 | Frequency of A. rhizogenes-mediated cotton transformation via an
embryogenic process.

No. of GFP
Positive
independent
roots

No. of
growing

primary callus
rootsa

No. of
growing

embryogenic
callus rootsb

No. of
regenerated
plantlet roots

(%)c

132 109 (82.58%) 33 17 (12.88%)

186 155 (83.33%) 37 22 (11.83%)

44 35 (79.55%) 9 5 (11.36%)

aHairy roots cut into 1–2 cm segments were cultured on PCIM for 2 months.
bThe primary callus transferred on SEIM was cultured for 2 months. c(Number
of regenerated plantlets / number of GFP-positive independent roots) × 100%.
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(Tepfer, 1990; Christey, 2001). The rol genes modify the hormone
levels of the host plants for proliferation of hairy roots. Plants
regenerated from hairy roots can show altered phenotypes,
known as Ri syndrome, such as dwarfism, reduced apical
dominance in both stem and roots, wrinkled leaves, and altered
flower morphology (Cui et al., 2001; Jiang et al., 2012). In
present study, we found that supplemented 0.2 mg/L NAA
auxin in the hairy root induction medium (RIM) strongly
promoted hairy root formation on cotyledon explants and
adventitious root elongation. This result was in contrast to
the findings of Triplett et al. (2008) who reported that in
cotton cotyledon explants inoculated with a highly virulent
strain of A. rhizogenes 135834, the best condition for hairy
root induction was the use of hormone-free MS medium, and
that supplementation with low concentrations of auxin reduced
hairy root production and affected the hairy root growth. We
also found that some transformed cotton plants showed normal
like morphology at the apical meristems and leaves, and no
obvious severe Ri syndrome was observed in them (data not
shown). Although we could not confirm the expression patterns
of rol genes in the transformed cotton plants in this study,
we postulate that the normal-like phenotype of transformed
cotton plants and the low concentrations of supplemented
auxin promoted hairy root formation on cotyledon could be
a result of A. rhizogenes AR1193 being a low-virulence strain;
therefore, the levels at which the rol genes synthesized hormones
might not have disturbed the internal cytokinin-auxin balance
in the cells and tissues, nor the organ development process in
host cotton plants. Taken together, our results suggest that the
low-virulence A. rhizogenes AR1193 is a suitable strain and a
combination with low concentration of auxin is a best condition
for A. rhizogenes-mediated cotton transformation.

Through present study, we first time reports for the
development of an efficient and reliable cotton plantlets
regeneration method mediated by A. rhizogenes. This method of
A. rhizogenes-mediated transformation has several advantages.

First, hairy roots act as a visible marker for the selection of
transformed roots, which makes the process simple and fast,
thus reducing the selection period of transformed calli. Second,
regenerated transformants can be obtained 6–7 months after
A. rhizogenes infection via embryogenesis. Furthermore, the
transformation efficiency was found to be 12% of cotton plants
with a normal phenotype. Therefore, we provide a useful tool
for use in the functional analysis of cotton genes and with
potential application to the molecular breeding and genome
editing of cotton.
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