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Eucalyptus rust is caused by the biotrophic fungus, Austropuccinia psidii, which affects
commercial plantations of Eucalyptus, a major raw material for the pulp and paper
industry in Brazil. In this manuscript we aimed to uncover the molecular mechanisms
involved in rust resistance and susceptibility in Eucalyptus grandis. Epifluorescence
microscopy was used to follow the fungus development inside the leaves of two
contrasting half-sibling genotypes (rust-resistance and rust-susceptible), and also
determine the comparative time-course of changes in metabolites and proteins in plants
inoculated with rust. Within 24 h of complete fungal invasion, the analysis of 709
metabolomic features showed the suppression of many metabolites 6 h after inoculation
(hai) in the rust-resistant genotype, with responses being induced after 12 hai. In
contrast, the rust-susceptible genotype displayed more induced metabolites from 0 to
18 hai time-points, but a strong suppression occurred at 24 hai. Multivariate analyses
of genotypes and time points were used to select 16 differential metabolites mostly
classified as phenylpropanoid-related compounds. Applying the Weighted Gene Co-
Expression Network Analysis (WGCNA), rust-resistant and rust-susceptible genotypes
had, respectively, 871 and 852 proteins grouped into 5 and 6 modules, of which 5
and 4 of them were significantly correlated to the selected metabolites. Functional
analyses revealed roles for photosynthesis and oxidative-dependent responses leading
to temporal activity of metabolites and related enzymes after 12 hai in rust-resistance;
while the initial over-accumulation of those molecules and suppression of supporting
mechanisms at 12 hai caused a lack of progressive metabolite-enzyme responses
after 12 hai in rust-susceptible genotype. This study provides some insights on how
E. grandis plants are functionally modulated to integrate secondary metabolites and
related enzymes from phenylpropanoid pathway and lead to temporal divergences of
resistance and susceptibility responses to rust.

Keywords: plant-pathogen interaction, fungus development, microscopy, Austropuccinia psidii, LC-MS
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INTRODUCTION

Eucalyptus ssp. is a genus highly utilized in commercial forestry,
with more than 700 species involved in many industrial
agribusinesses (EMBRAPA, 2019). Because of its vigor and
rapid growth (Moon et al., 2007), Eucalyptus grandis and its
hybrids are continuously improved to enhance their capacity
to provide raw material for the pulp and paper companies in
Brazil, the second largest producer of cellulose in the world
(EMBRAPA, 2019). Rust, caused by the biotrophic fungus
Austropuccinia psidii (A. psidii), is one of the most harmful
diseases affecting Eucalyptus plantations, and consequently,
considerably reduces their productivity, particularly in the
first 2 years of plant development (Takahashi, 2002). Since
E. grandis is commonly susceptible to pathogens, geneticists
and breeders have used genomic tools applied to conventional
breeding to select new rust-resistant genotypes and enhance
the development of the next generation trees (Zamprogno
et al., 2008; Boava et al., 2010; Silva et al., 2013; Laia
et al., 2015; Butler et al., 2016). However, the antagonist
bottlenecks have led researchers to question which genes
are expressed and translated into functional proteins (Walley
et al., 2013; Jafari et al., 2017; Yewdell and Chaudhuri,
2017). Particularly in plant immune regulation, there has been
evidence describing that even the induction of transcripts cannot
sufficiently predict temporal changes in protein abundance
(Xu et al., 2017).

Over the last years, a considerable amount of knowledge
became available concerning the molecular mechanisms
governing plant pathogenesis. Recently, Shen et al. (2017)
coined the term “early responses” that describes the effects of
virulent fungi on host plants within an initial interaction that
normally occurs until 24 h after inoculation (hai), when the
fungal pathogens completely invade the host tissues. According
to these authors, many biochemical reactions initiate in the
moment at which pathogens and their hosts come in contact,
including protein phosphorylation, ion flux, production of
reactive oxygen species (ROS) and other signaling events. Using
resources within the literature, Rojas et al. (2014) also divided
those plant responses into early and late induced defenses. The
first consists of cytoskeletal reorganization (Hardham et al.,
2007; Higaki et al., 2011), cell wall fortification (Hardham
et al., 2007), ROS generation (Torres, 2010), and phytoalexins
biosynthesis (Ahuja et al., 2012), and lately, immune defenses
induce transcription of pathogenesis-related (PR) proteins
(van Loon et al., 2006) and activation of programmed cell
death (PCD) allied to the hypersensitive responses (HR),
which limit pathogen spread (Coll et al., 2011). Despite the
effects of late responses, plants rely heavily on pathogen
detection and subsequent signaling cascades to activate genes
to enhance defense and immunity (Andersen et al., 2018),
which must take place during the early period following
initial inoculation.

As one of the key discoveries related to initial plant reactions
to pathogens, the identification of phytoalexin production
has advanced our knowledge of plant pathology, since these
molecules can confer resistance to several diseases. Most of

these interactive molecules are known as secondary metabolites
and are capable of being elicited by either, biotic or abiotic
stresses. Subsequently, they accumulate in host cells to induce
protective effects (Daniel and Purkayastha, 1994). Particularly
with respect to the defense response to fungal pathogens,
phenolic compounds, which are mostly present in leaves, can play
functional roles as antioxidants and antimicrobial activities that
contribute to plant disease resistance (Shalaby and Horwitz, 2015;
Adandonon et al., 2017; Ullah et al., 2017; Maupetit et al., 2018).

Regardless of the role of phytoalexins, other authors have
compared the secondary metabolites of Eucalyptus genotypes to
identify potential molecules that improve resistance against rust.
Dos Santos et al. (2019) studied the cuticular wax of different
species of Eucalyptus and discovered an association between
rust-susceptibility and hexadecanoic acid levels in E. grandis and
E. phaeotricha. Comparing the oil composition of Eucalyptus
leaves in different stages of maturity, Silva et al. (2020) identified
a terpenoid called limonene in resistant leaves, which could be
associated with rust resistance. Nevertheless, there has been no
additional work investigating metabolic activities associated with
the molecular control during rust infection.

Envisioning new strategies for enhancing plant disease
resistance, one of the principal purposes of plant-pathogen
studies is to understand how plants modulate genes, transcripts,
proteins and metabolites to physiologically adapt and respond
to pathogen invasion. Hence, researchers have used network
analyses to group co-expressed genes, integrate omics datasets
and reveal new insights into plant physiology (Walley et al.,
2013; Ployet et al., 2019), as well as plant response to stress (El-
Sharkawy et al., 2015; Yuan et al., 2018; Budzinski et al., 2019;
Song et al., 2019).

Aiming to briefly understand the molecular mechanisms
surrounding the early interaction between E. grandis and
A. psidii, we describe a detailed time-course microscopy study
to characterize the specific events that occur during the
development of the A. psidii infection in both, resistant and
susceptible genotypes. Once defined, time intervals were used
to determine molecular details of the early resistance and
susceptible responses of E. grandis to rust infection. Microscopic
analysis confirmed that A. psidii completely invades susceptible
host tissues within 24 hai, while no pathogen progression
was detected in resistant plants. Molecular analyses revealed
temporal differences in the metabolomic profiles between the
two contrasting genotypes and associated those changes with
a proteomic network. Comparative analyses showed that rust
resistance depends on temporal control of metabolites and
related enzymes from phenylpropanoid pathway, which is
mediated by proteomic changes in photosynthesis, oxidative
homeostasis and response to stress, predominantly induced from
12 hai. Conversely, due to the lack of continuous or progressive
metabolite response after 12 hai, pathogen attack caused rust
susceptibility by weakening of the plant immune system. Even
though these changes could also consider secondary effects of
the experiments, as all omics data, the analyses enabled us to
have some clues of rust-responsive molecules and introduce
a new biology-based approach for the early E. grandis ×

A. psidii interaction.
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MATERIALS AND METHODS

Experimental Materials and A. psidii
Inoculation
One hundred and eight plantlets, kindly provided by Suzano
Papel e Celulose, originated from a segregating population of
half siblings, from seeds of the BRASUZ tree used by the Joint
Genome Institute (JGI)1 to sequence the complete genome of
E. grandis, were used to select the contrasting genotypes, rust-
resistant and rust-susceptible. The plantlets were inoculated with
a suspension of A. psidii spores (105 mL−1) containing 0.2%
Tween 20 solution of the isolate of the strain MF1. To ensure
favorable conditions for fungus development, plants were packed
into plastic bags to maintain high humidity inside and kept in a
controlled growth chamber (Conviron E15) at 20◦C in the dark
for 24 h. The photoperiod was then changed to 12 h light (200
µmols m−2 s−1) and 12 h dark at 24 hai, and the plastic bags
were opened at 48 hai. MF1 was previously isolated from a mono
pustule formed in a leaf of a highly susceptible, non-commercial,
clone of E. grandis (M09D1), used for spore propagation. MF1
was obtained from a population of spores collected in commercial
plantations in the State of São Paulo, Brazil. Following fungus
inoculation, plantlets were evaluated daily for symptoms and
classified according to the level of infection as proposed by
Junghans et al. (2003). Five plants having high levels of infection
(class S3, according to Junghans et al., 2003) and six plants
showing no signal of infection (S0) were selected, cloned and
reinoculated again in a following experiment. The selection this
time proceeded with a higher pressure of spores (106 spores
mL−1 in 0.2% Tween 20 solution). From this experiment, we
were able to select five susceptible and five resistant genotypes,
which were then cloned for further experimentation. The selected
genotypes were then checked using molecular markers to select
two contrasting genotypes as closest genetically as possible.
The selected genotypes were R3, which is completely resistant
to A. psidii MF1 infection, while the S4 genotype is sensitive
to the pathogen.

Twelve plants from each genotype were then prepared for a
new experiment following the conditions described above. Six
plants were inoculated with MF1 spores at a density of 105 mL−1

in 0.2% Tween 20 solution and other six control plants were
mock-inoculated with 0.2% of Tween 20 solution. Eleven days
after inoculation (dai), no disease symptoms were detected in
control and inoculated R3 plants. Inoculated S4 plants, however,
displayed pustule formation on their leaves 11 dai. DNA-specific
amplification of A. psidii (Bini et al., 2018) was possible at 3 dai
for both inoculated genotypes (Supplementary Figure S1).

To detail the steps of fungus development in both genotypes,
whole inoculated leaves were collected at 0, 3, 6, 12, 24, 72
hai and 6, 9, and 12 dai. For molecular analyses of plant
responses to rust infection, young leaves were sampled at
0, 6, 12, 18, and 24 hai. Total metabolites were extracted
from leaves of each plant separately, while total proteins were
obtained from leaves of two plants pooled in a sample. This
resulted in six and three biological replicates for metabolomics

1https://phytozome.jgi.doe.gov

and proteomics, respectively. For the purpose of combining
these omics datasets, analyses were performed using the mean
of the metabolite replicates corresponding to each protein
sample and the relative abundance of both datasets (ratios of
inoculated/mock-inoculated plants).

Determination of Developmental Stages
of A. psidii via Epifluorescence
Microscopy
All steps were prepared using filter papers with different solutions
to avoid spore detachment from leaves during submersion,
according to Leite et al. (2013). First, leaves were fixed/bleached
with acetic acid:ethanol (1:3) solution for 24 h, rehydrated with
water for 4 h and kept in lacto-glycerol solution (lactic acid,
glycerol and water 1:1:1 v:v:v). Leaves were then transferred to
another filter paper containing boiled KOH solution (1 M) for
10 min and stained with 0.1% calcofluor. Images were taken with
an epifluorescence microscope (Zeiss Axioslop 2) using the blue
excitation filter (BP 450–490 nm), a beamsplitter (FT 510 nm)
and a green barrier filter (Lo 515 nm).

LC-MS Metabolomics
Approximately 25 mg of leaf powder was ground using a
vibration mill (Retch MM400) with tungsten carbide beads for
1 min at 20 Hz. Samples were homogenized with a 500 µL
chloroform: water: methanol (1:1:6 v:v:v) solution containing
50 pmol of quercetin (Sigma-Aldrich) (internal standard).
The mixture was sonicated (UltraCleaner 1600A, Unique) for
15 min at 4◦C, centrifuged (Centrifuge 5415R—Eppendorf) at
16,000 g and 6◦C for 10 min, and the supernatant was filtered
(Millex/PVDF, 0.22 µm of porosity) to remove contaminants.

Metabolite samples were analyzed in a Q-TOF Ultima-API
mass spectrometry, using an electrospray ionization (ESI) source,
coupled to an Acquity UPLC HSS T3 (Waters, Corp., Milford,
United States). Aliquots of 5 µL of samples were injected onto a
reverse-phase column (1.0 × 150 mm, 1.8 µm, Acquity Waters)
and two eluents were used as mobile phase: A (100% water
containing 0.1% formic acid) and eluent B (100% acetonitrile
containing 0.1% formic acid). The gradient used was: 95% A and
5% B for 6 min, 25% A and 75% B for 6 min, 5% A and 95% B
for 1 min, as described by Schaker et al. (2017). Voltage was set at
3 kV and 35 kV for capillar and cone, respectively. Temperatures
of the ESI-source and desolvation were set at 150◦C and 450◦C,
respectively, and nitrogen flow rates were 50 L h−1 in the cone
and set 550 L h−1 at the source. Using MassLynx 4.1 software
(Waters), data were acquired in negative and positive ion mode
in a mass range from 100 to 1,000 m/z.

The processing and interpretation of the data obtained by
Mass Spectrometry were performed in MassLynx 4.1 (Waters) for
alignments of chromatograms, noise exclusion, deconvolution
and detection of the intensity of metabolites.

Statistical Analysis and Metabolite
Selection
Statistical analyses of time-series datasets were performed with
MetaboAnalyst 4.0 Software (Chong et al., 2018). All data were
log transformed and pareto scaled for the following analyses.
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In order to evaluate effects of spore inoculation on plants over
the time, for each genotype, we performed a 2-way ANOVA using
“group” (mock-inoculated and inoculated) and “time” (time-
points) as two factors. Significant metabolites were clustered
using Euclidean distance and Ward method to plot heatmaps. To
investigate effects of “group vs. time interaction,” the differential
abundances of metabolites were calculated using the contrast of
mock-inoculated vs. inoculated plants for each genotype within
each time-point by t-test. Results were considered statistically
significant when FDR-adjusted p < 0.05.

For genotype comparison over the time-course, we used
relative abundances of metabolites (rates of inoculated/mock-
inoculated values) to perform a PCA for “genotype” (resistant-R3
and susceptible-S4) and “time” (time-points) factors, and analyze
the data to detect metabolites that can be used to differentiate
rust-resistant and rust-susceptible genotypes throughout the
period considered. Metabolites were selected using ANOVA
Simultaneous Component Analysis (ASCA) (Smilde et al.,
2005) for “genotype vs. time interaction” prominent effects
(leverage > 0.9 and Squared Predicted Error < 0.05) and
Multivariate Empirical Bayes Analysis (MEBA) (Tai and Speed,
2006) for the first 50 ranking metabolites. The ASCA model was
validated with the permutation test (100×), as described by Vis
et al. (2007).

LC-ESI-MS/MS analyses of the selected metabolites were
performed in the same ionization conditions previously
described, and the fragmentation was carried out using collision
energies ranging between 15 and 40 eV. We used the Human
Metabolite Database (HMDB)2 for features identification,
considering the aducts [M-H-] (mass error < 0.05 Da) and the
in silico fragmentation was done with the software ACD/MS
structure ID suíte (ACD/Labs, Toronto—Canada) and manually
checked. The values of “Spectrum Assigned,” which refers to
a percentage of matches in fragmentation similarities, were
used to define the best hits of chemical classes attributed to the
selected metabolites.

Proteomics Shotgun Label-Free
Leaf samples (100 mg) were ground using a vibration mill
(Retch MM400) with tungsten carbide beads for 1 min at 20 Hz,
and were homogenized in 0.8 mL of protein extraction buffer
[0.5M Tris-HCl pH 7.5; 0.7M Sucrose; 0.1M Potassium Chloride;
50 mM EDTA; 1mM PMSF; 2% (v/v) β-mercaptoethanol e
1% (m/v) PVPP]. After, 0.8 mL of saturated phenolic solution
in Tris-HCl pH 7.5 was added, samples were centrifuged
at 10,000 g and 4◦C for 30 min. The supernatants were
collected and used to repeat this procedure three more times.
Proteins were precipitated in 1.2 mL of 0.1 M ammonium
acetate in methanol and the pellet was washed with the same
solution (two times) and acetone (one time). After the last
centrifugation step at 10,000 g and 4◦C for 30 min, pellets were
dried and proteins were resuspended in 0.4 mL solubilization
buffer (7M Urea, 2M Thiourea, 10 mM DTT and 0.4% v/v
Triton X-100). Proteins in the supernatant were desalted in
50 mM ammonium bicarbonate buffer (pH 8.5) using an

2https://hmdb.ca/

Amicon 3 kDa filter (Millipore), and were quantified using
the Bradford method (Bradford, 1976). The quality of protein
samples was evaluated using a 12% polyacrylamide gel stained
with Comassie Blue G250, and bovine serum albumin was used
as an internal standard.

For each sample, 50 µg of proteins were added to 25 µL
2% (v/v) RapiGest SF (Waters) and incubated at 80◦C for
15 min. Then, samples were reduced in 2.5 µL 100 mM
dithiothreitol (DTT) for 30 min at 60◦C and alkylated in
2.5 µL 100 mM iodoacetamide (IAA) for 30 min in the
dark. Proteins were digested in 10 µL 50 ng/µL trypsin
at 37◦C for 16 h, and the reaction was stopped using 10
µL 5% trifluoroacetic acid (TFA). Samples were centrifuged
at 14,000 g at 6◦C for 30 min, and the peptide-containing
supernatant was transferred to another tube to be concentrated
using a SpeedVac (Concentrator 5301, Eppendorf). Dried
peptides were resuspended in 50 µL 0.1% TFA, purified using
reverse-phase micro columns (Reverse phase Zip-Tip C18,
Millipore) and dried.

Samples were then resuspended in 32 µL 20 mM pH10
ammonium formate with 8 µL of the 100 fmol µL−1 internal
standard (P00489. rabbit glycogen-phosphorylase). Peptides were
sequenced in a Synapt G2 HDMS mass spectrometer (Waters,
Manchester, United Kingdom), connected to UPLC NanoAcquity
(2D technology, Waters). In the first dimension, peptides were
separated using an XBridge BEH 130 C18 column that was 5 µm
(300 µm × 50 mm) (Waters, Manchester, United Kingdom),
using a 3–45% gradient of solvent B [0.1% (v/v) ACN], and
captured using a C18 symmetry column (5 µm, 180 µm ×

20 mm) (Waters, Manchester, United Kingdom). Separation
in the second dimension was carried out using an HSS T3
column (1.8 µm, 75 µm × 100 mm) (Waters, Manchester,
United Kingdom), and a 7–40% binary gradient of acetonitrile
in 0.1% (v/v) and formic acid.

Data acquisition was performed with a Q-TOF Synapt
MS, with a nanolockspray font in a positive mode (Waters,
Manchester, United Kingdom). The MS run was calibrated
with 200 fmol µL−1 of Glu1 ([M + 2H]2 + = 785,84206
Daltons), which was also used for lock mass. Mass
spectra were processed with the ProteinLynx GlobalServer
(PLGS) Program, version 3.0.3, using the protein database
with 46,280 proteins of Eucalyptus grandis available on
Phytozome v13 2.03 (accessed on 03/10/2020). Processing
parameters included automatic tolerance of precursors
and ion-products and required a minimum of three
corresponding ion-fragments per peptide, minimum of
seven corresponding ion-fragments per protein, minimum
of two corresponding peptides per protein, possible cleavage
error of trypsin, carbamidometilation of cysteine with fixed
modification and methionine oxidation as variable modifying
factors (FDR = 1%).

For protein identification and quantification, spectral
intensities were calculated using the stoichiometric method,
with an internal standard analyzed with MSE and normalized
with the PLGA auto-normalization function. The sequence and

3https://phytozome.jgi.doe.gov
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abundance of peptides were determined based on the mean
values of the three most abundant peptides identified from data
obtained from the three biological replicates assessed. FDR values
were determined using a reverse database search, which was
automatically created by the PLGS 3.0.3 program. Only proteins
with confidence levels higher than 95% that were identified
and quantified at least in two replicates were considered for
subsequent analytical steps.

The mass spectrometry data was deposited to the
ProteomeXchange Consortium via the PRIDE (Vizcaíno et al.,
2016) partner repository with the dataset identifier PXD021280.

WGCNA Network Analysis
The WGCNA R package was used to build protein networks
based on protein profiles of both resistant-R3 and susceptible-
S4 genotypes over the period of 24 hai, identifying protein
modules (groups of proteins with similarities in abundance
patterns along the time) with minimum size of 80 proteins, and
analyze the correlation between protein modules and selected
metabolites. The relative abundance of proteins was used to
construct networks of positive correlations (signed network)
for both genotypes at all time-points. Soft thresholds were
chosen by powers (7 for resistant-R3 genotype and 6 for
susceptible-S4 genotype) that suit a maximum approximation
of a scale free topology distribution and small connectivity
corresponding to high correlations between protein pairs
(Supplementary Figure S2). Since WGCNA was performed
for each genotype separately, module names initiated by “R”
belong to the resistant-R3 genotype and “S” belong to the
susceptible-S4 genotype. The network of protein modules was
visualized in Cytoscape, in which each node represented a
protein and the length of each edge represented the strength
of the correlation between a protein pair. These plots were
used to observe the proximity between proteins in modules
and the network topology obtained for each genotype. To
identify groups of proteins that could potentially explain
the occurrence of selected metabolites, eigenvalues of protein
modules were calculated as the first principal component
to represent each protein group and were correlated to the
metabolites. Correlations were considered significant when
p < 0.05. All WGCNA analyses were performed in R,
according to Langfelder and Horvath (2008).

Functional Analysis
To better enhance our understanding of mechanisms influencing
resistance and susceptibility of genotypes when challenged by
the biotrophic fungi, all protein modules were functionally
analyzed. The gene ontology (GO) of all proteins in modules
was determined using AgriGO v2.04 and the E. grandis database.
GO-terms were considered enriched when FDR < 0.05.

For modules that were significantly correlated to the
metabolites, the sequences of proteins were used in KAAS-
KEGG5 to map metabolic pathways containing metabolite-
related enzymes.

4http://systemsbiology.cau.edu.cn/agriGOv2/
5https://www.genome.jp/tools/kaas/

RESULTS

Evidence of rust disease was observed in inoculated S4
plants appearing as yellow pustules containing spores on leaf
surfaces (both adaxial and abaxial sides) at 11 dai, while
inoculated R3 leaves displayed mild flecking (chlorosis spots)
response for resistance mediated by HR. Controls (mock-
inoculated) did not show disease symptoms (Supplementary
Figures S1A,B). The presence or absence of the pathogen
in inoculated and mock-inoculated plants was also confirmed
by PCR using pathogen-specific primers of A. psidii at 3 dai
(Supplementary Figures S1C,D).

Epifluorescence Microscopic Analysis of
A. psidii Development
To better understand the temporal development of A. psidii in
R3 and S4 plants, inoculated leaves were collected at different
time-points post-treatment and examined using epifluorescence
microscopy (Figure 1). Until 12 hai, the development of A. psidii
occurred similarly on both genotypes. Rust urediniospores
germinated at 3 hai, formed appressoria at 6 hai and penetrated
inside the leaf tissue at 12 hai, but subepidermal vesicle was only
visible in the S4 genotype (Figures 1A–F). Following 24 hai,
haustorium mother cells were observed in S4 leaves, while only
hyphal fragments were noticed and thereafter no evidence of the
pathogen progression was detected in R3 (Figures 1G,H).

Overall, little or no fungal growth was observed in S4 plants
between 24 and 72 hai, indicating that the fungus was apparently
in a latent state. However, at 72 hai it was possible to observe the
secondary hyphae colonizing the mesophyll (Figure 1I). With 6
dai several parts of the leaf ’s mesophyll were intensely colonized
(Figure 1J) and, at 9 dai it was completely colonized with the
hyphae converging to form the first pustules (Figure 1K). Finally,
at 12 dai a plethora of large pustules burst is observed, covering
the leaves with urediniospores (Figure 1L).

This result showed that A. psidii was able to cross the first
physical barrier of the plant to penetrate the leaves of both R3
and S4 genotypes. However, the progression through all stages of
A. psidii development was reported exclusively in S4 leaves within
24 hai. On the other hand, responses of R3 plants highly diverged
from S4 leaves at 12 hai, since the subepidermal vesicle of the
fungus was not detected. At 24 hai the R3 defense system was
probably induced, and the pathogen had no more progression.

From the eight time-points analyzed using epifluorescence
microscopy, five were chosen to well characterize the stages
within the infection process to compare the molecular responses
of R3 and S4 after rust inoculation: 0 h established as the
control, 6 hai where the spores have already germinated and
appressoria were produced, 12 hai where the pathogen penetrated
the leaf tissue and forms subepidermal vesicles, 18 hai where R3
potentially activates the defense response (between 12 and 24 hai)
and 24 hai the defense process was installed in R3 and the fungus
formed haustorium in S4.

Analysis of Metabolomic Profiles for
Metabolites Selection
LC-MS metabolomic analyses were performed in positive and
negative ion mode. However, in positive mode we were able
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FIGURE 1 | Microscopy images of fungus development in both resistant-R3 and susceptible-S4 genotypes. (A,B) The beginning of the germination process where a
single unbranched germ tube (GT) emerges from the urediniospore (US) at 3 hai in the resistant-R3 and susceptible-S4 genotypes, respectively. (C,D) The
apressorium (AP) formation at 6 hai in the resistant-R3 and susceptible-S4 genotype, respectively. (E,F) The penetration process at 12 hai in resistant-R3 and
susceptible-S4 genotypes, respectively. White arrows show the subepidermal vesicule arising from the AP only in susceptible-S4 genotype. (G) At 24 hai, just some
hyphae fragments (white arrow) can be found in the resistant-R3 genotype. (H) The Haustorium Mother Cell (HMC) can be seen at 24 hai in the susceptible-S4
genotype. (I) The beginning of the colonization phase at 72 hai in susceptible-S4 genotype. Red arrows show the secondary hyphae. White arrow shows the HMC.
(J) At 6 dai in the susceptible-S4 genotype, the fungus has colonized large areas of the leaf and numerous HMCs (white arrows) can be seen. (K) At 9 dai, the
mesophyll are completely colonized and small pustules (PS) are being formed in the susceptible-S4 genotype. (L) After 12 dai, the vast majority of the pustules had
burst (BP) through the leaf epidermis spilling new urediniospores (US) onto the leaf surface of the susceptible-S4 genotype.

to detect few metabolite features, whereas in negative mode we
detected 709 features, from all treatments. Therefore, we decided
to consider only the results obtained in negative mode.

The 2-way ANOVA showed that, for the resistant-R3 and
susceptible-S4 genotypes, most of the metabolite features were

significantly affected by both “group,” “time,” and “group vs. time
interaction” effects (Figures 2A,B). These results demonstrated
that the artificial inoculation of A. psidii uredospores induced
abundance changes in metabolite features of both genotypes
along the time. However, many other metabolite features were
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exclusively significant for “time” effects, which highlighted that
some variations were caused by other temporal effects, such as
the circadian rhythm, exposure to light absence and/or other
environmental condition. All these metabolite features were
observed in heatmaps illustrating hierarchical clustering based
on their abundance values (Figures 2C,D). Apparently, in the
resistant-R3 genotype, the metabolite profile of mock-inoculated
and inoculated plants had some differences at all time-points, but
changes were more remarkable at 6 and 24 hai. On the other
hand, in the susceptible-S4 genotype, abundance patterns of some
metabolite features became closer between mock-inoculated and
inoculated plants throughout the time.

To depict effects of “group vs. time interaction,” differential
abundance analysis between mock-inoculated and inoculated
plants within each time-point revealed distinct metabolite
profiles for both genotypes over the time. R3 inoculated plants
had increased abundances of 70, 72, 75, 69, and 112 metabolite
features and reduced abundances of 44, 121, 21, 57, and 34
metabolite features compared to the R3 mock-inoculated plants
at 0, 6, 12, 18, and 24 hai, respectively. In S4 inoculated plants,
however, 65, 75, 36, 81, and 20 metabolite features increased in
abundance and 51, 28, 33, 45, and 57 decreased in abundances
compared to the S4 mock-inoculated plants at 0, 6, 12, 18, and
24 hai, respectively (Figure 2E). Thus, we observed that at 0
hai, the rates of positive and negative changes in abundance of
metabolite features (1.79 for resistant-R3 and 1.32 for susceptible-
S4) were similar in both genotypes. However, production of many
metabolite features was abruptly suppressed in R3 plants at 6
hai, which was followed by a greater number of metabolites
that increased in abundance at subsequent time-points, mostly
evident at 24 hai. On the other hand, the metabolic profiles of
S4 plants had more metabolites increasing than decreasing in
abundance at 6, 12, and 18 hai, but there were more features being
suppressed at 24 hai. Analysis using Venn diagrams also showed
that, at 0 and 6 hai, more than 12% of the differentially abundant
features identified from R3 and S4 overlapped (Figure 2F).
This value decreased to approximately 9% at 12 and 18 hai,
and 5.69% at 24 hai. These results indicated that at 6 hai,
part of the metabolites of R3 and S4 genotypes were inversely
regulated activating divergent responses observed after 12 hai,
with differences that were most striking at 24 hai.

Using relative abundances of metabolite features (rates of
inoculated/mock-inoculated values) to compare resistant-R3
and susceptible-S4 responses against A. psidii infection, the
PCA revealed that the metabolite profiles at different time-
points in S4 plants were more similar than R3 genotype
(Figure 3). For R3 plants, the metabolite profiles of each time-
point were scattered and a major distinction at 6 and 24
hai was observed. To identify metabolites whose abundances
are most representative of temporal differences between R3
and S4 genotypes, ASCA analysis was performed, allowing the
detection of 27 prominently affecting metabolite features for
“genotype vs. time interaction” (Supplementary Figure S3),
which were compared to the list of the 50 highest ranking features
from the MEBA analysis (Supplementary Table S1). MS/MS
analyses showed that these features had correspondence with
different metabolites (Supplementary Material 1). The statistical

and fragmentation analyses resulted in 16 selected metabolites,
mostly predicted as secondary metabolites derived from the
phenylpropanoid pathway (Table 1). The identification of this
biosynthetic pathway was consistent with this pathosystem,
since A. psidii is a biotrophic fungus which can induce the
biosynthesis of phenylpropanoids in plants as a metabolic
response (Doehlemann et al., 2008; Hossain et al., 2018; Correr
et al., 2020). Five metabolites were considered as “unknown”
because of the low MS intensity required for fragmentation or no
correspondence in MS/MS metabolites of HMDB.

Comparing the time-course of selected metabolites
synthesized in different genotypes, we noted a degree of
temporal divergence with respect to the time-points at which
the metabolites were produced. Most of the metabolites were
induced before 12 hai in S4 plants and from 12 hai in R3 plants.
None were detected in S4 plants at 24 hai (Figure 4).

WGCNA Protein Modules and Their
Correlation to the Selected Metabolites
Shotgun label-free proteomic analysis identified and quantified a
total of 1007 proteins from all treatments. As recommended by
WGCNA developers (Langfelder and Horvath, 2008), proteins
were not filtered by differential abundance to be clustered in
modules, according to their corresponding gene co-expression
values. Based on relative abundance, 871 and 852 proteins
from respective R3-resistant and S4-susceptible genotypes were
grouped into 5 and 6 modules defined by “R” and “S” color-
names, with size ranging from 102 to 226 proteins, and
represented by their eigenvalue, as the principal component of
each protein group (Supplementary Figure S4). However, 94 and
48 proteins did not fit to any pattern of respective R3 and S4
module profiles and were not used for the following analyses.

Protein networks created in WGCNA were visualized in the
Cytoscape R© environment to observe the connections between
proteins within each module. Proteins were represented by nodes
and the strength of connections between protein pairs were
indicated by the length of each edge. To investigate differences in
network topologies and rearrangement of the proteins between
the two contrasting genotypes, module colors of the present
genotype were used to fill nodes and the border were colored by
the module color of the alternative genotype. For both genotypes,
we were able to note that proteins from the same module were
relatively near to each other (Figures 5A,B). Nonetheless, we also
identified strong connections between proteins from S-red and
S-turquoise neighboring modules of the susceptible-S4 genotype,
confirming high proximities among these two different protein
modules. Comparing genotypes, we could note that proteins were
differentially distributed across “R” and “S” modules resulting
in distinct characterization of the resistant-R3 and susceptible-
S4 network topologies. Looking at the border colors of nodes,
we observed that only the R-turquoise and S-turquoise modules,
defined by the same color, overlapped many proteins; and also
that, R-yellow module had more proteins that belong to the
S-blue module than the others of the susceptible-S4 genotype,
and vice-versa. The other “R” and “S” protein modules were
composed by proteins from different color modules of the
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FIGURE 2 | Two-way ANOVA for 709 metabolite features obtained from “groups” (inoculated and mock-inoculated plants) and “time” (00, 06, 12, 18, and 24 hai
time-points) treatments of the resistant-R3 and susceptible-S4 genotypes of E. grandis in response to rust infection. Venn diagrams showing the number of
significant features for “groups,” “time,” and “groups vs. time interaction” effects: (A) resistant-R3 and (B) susceptible-S4 genotypes. Heatmaps of significant
features: (C) resistant-R3 and (D) susceptible-S4 genotypes. (E) The number of differential metabolite features of the resistant R3 and suceptible-S4 genotypes by
contrasting inoculated and mock-inoculated groups within each time-point by t-test. Bars in green indicate down-regulated metabolites and bars in red represent
up-regulated metabolites. (F) Venn diagrams of differential metabolite features in contrasting genotypes at each time-point considered. Green circles represent the
resistant-R3 genotype and red circles represent the susceptible-S4 genotype. Results of statistical analyses were considered significant when FDR-adjusted
p < 0.05.

Frontiers in Plant Science | www.frontiersin.org 8 January 2021 | Volume 11 | Article 604849

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-604849 December 23, 2020 Time: 12:39 # 9

Sekiya et al. Rust Molecular Mechanism in Eucalyptus

FIGURE 3 | PCA of genotype- and time-point-based groups. Values were represented using relative abundances (rates of inoculated/mock-inoculated values) of
genotypes and time-points.

alternative genotype, which confirmed their divergence in protein
distribution through the networks.

Protein time-courses of each module were apparently
responsible for specific time-points, but in some cases, a slight
variation was also observed at others (Figures 5C,D). R3 plants
had changes in protein levels of the R-turquoise module at
0 hai; R-blue module at 6 hai; R-yellow at 12 hai; R-green
module at 18 hai; R-brown modules at 24 hai. On the other
hand, S4 plants had changing proteins at 0 hai in S-turquoise
and S-red modules; at 6 hai in S-brown module; at 12 hai
in S-blue module; at 18 hai in S-yellow module; and at 24
hai in S-green module. The high similarity of S-turquoise and
S-red time-courses probably explains their strong connection
observed in the S4 protein network. Only R-green and S-blue
modules reported low abundances of proteins compared to the
other time-points.

To measure the relationship between protein groups and
metabolites, for each genotype, module eigenvalue values
were correlated to selected metabolites, which resulted in
15 significant correlations (p < 0.05) between 5 protein
modules and 14 metabolites for the resistant-R3 genotype
and 14 significant correlations (p < 0.05) between 4
protein modules and 14 metabolites for the susceptible-S4

(Figures 6, 7). Two metabolites had no significant correlation
to protein modules in the resistant-R3 and susceptible-
S4 genotypes. Most of the significant metabolite-protein
relationships were positively correlated. Only the R-Brown
and R-green module of the resistant-R3, the S-green and
S-turquoise modules of the susceptible-S4 had negatively
correlated metabolites.

For the resistant-R3 genotype, R-turquoise protein module
was positively correlated to m/z 784.0677 (no match) metabolite;
R-blue protein module was positively correlated to m/z 489.0887
(Depsides) and m/z 533.1832 (Diarylheptanoids) metabolites;
R-yellow protein module was positively correlated to m/z
399.1279 (Benzothiazepines) and m/z 935.0937 (no match)
metabolites; R-brown protein modules was positively correlated
to m/z 169.0847 (Heteroaromatic compounds), m/z 191.052
(no match), m/z 207.0997 (Benzenes), m/z 487.147 (Steroids),
m/z 505.0924 (Flavonoids) metabolites and negatively correlated
to m/z 533.1794 (Diarylheptanoids) metabolite; and R-green
protein module was negatively correlated to m/z 301.0362
(Benzenes), m/z 533.1794 (Diarylheptanoids), m/z 865.1768
(Benzopyrans) and m/z 915.0872 (no match) metabolites
(Figure 6). Only m/z 615.0893 (Flavonoids) and m/z 985.1147 (no
match) were not explained by any R-module.
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TABLE 1 | Biochemical classes of the 16 selected metabolites based on MS/MS analysis using searches of the m/z values in Human Metabolite Database (HMDB),
considering [M-H]-ion mode and molecular weight tolerance < 0.05 Da.

m/z HMDB_code Spectrum assigned Class Super class

169.0847 HMDB0030471 61.7 Heteroaromatic compounds Organoheterocyclic compounds

191.052

207.0997 HMDB0029872 82.2 Phenol ethers Benzenoids

HMDB0034991 83.7 Benzene and substituted derivatives Benzenoids

HMDB0040225 84.1 Benzene and substituted derivatives Benzenoids

301.0362 HMDB0015039 91.9 Benzene and substituted derivatives Benzenoids

399.1279 HMDB0061023 48.7 Benzothiazepines Organoheterocyclic compounds

HMDB0033258 45.7 Furanoid lignans Lignans, neolignans and related compounds

HMDB0040556 44.9 Flavonoids Phenylpropanoids and polyketides

487.147 HMDB0035860 78.0 Steroids and steroid derivatives Lipids and lipid-like molecules

489.0887 HMDB0128306 38.1 Depsides and depsidones Phenylpropanoids and polyketides

505.0924 HMDB0033894 57.7 Flavonoids Phenylpropanoids and polyketides

HMDB0037352 58.4 Flavonoids Phenylpropanoids and polyketides

533.1794 HMDB0031584 36.4 Diarylheptanoids Phenylpropanoids and polyketides

533.1832 HMDB0133430 58.5 Diarylheptanoids Phenylpropanoids and polyketides

615.0893 HMDB0037367 66.8 Coumarans Organoheterocyclic compounds

HMDB0033593 68.5 Flavonoids Phenylpropanoids and polyketides

784.0677

865.1768 HMDB0036339 41.5 Benzopyrans Organoheterocyclic compounds

915.0872

935.0737

985.1147

FIGURE 4 | Heatmap of genotype-specific (resistant-R3 and susceptible-S4) time-course for 16 metabolites selected by ASCA (ANOVA simultaneous component
analysis) producing prominent effects for “genotype vs. time-point” interactions and MEBA (multivariate empirical Bayes analysis) to rank features, and evaluated by
MS/MS analysis.

The Susceptible-S4 genotype had S-brown protein module
positively correlated to m/z 207.0997 (Benzenes), m/z 301.0362
(Benzenes), m/z 399.1279 (Benzothiazepines), m/z 615.0893
(Flavonoids), m/z 915.0872 (no match), and m/z 985.1147 (no

match) metabolites; S-green protein modules was negatively
correlated to m/z 169.0847 (Heteroaromatic compounds);
S-yellow protein modules was positively correlated to m/z
191.052 (no match), m/z 487.147 (Steroids) and m/z 505.0924
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FIGURE 5 | Protein networks visualization from Cytoscape software. (A) Resistant-R3 genotype with 777 protein nodes from 5 modules represented by colors and
34,469 connecting edges. Module colors of the resistant-R3 genotype were used to fill nodes and the border were colored with the module color of the same
proteins in the susceptible-S4 genotype. (B) Susceptible-S4 genotype with 804 protein nodes from 6 modules represented by colors and 49,803 connecting edges.
Module colors of the susceptible-S4 genotype were used to fill nodes and the border were colored with the module color of the same proteins in the resistant-R3
genotype. In (A,B), connection strength is proportional to edge length and border nodes with gray color have no protein correspondence with the alternative
genotype. (C) Temporal profiles of resistant-R3 protein modules using eigenvalues. (D) Temporal profiles of susceptible-S4 protein modules using eigenvalues.

(Flavonoids) metabolites; and S-turquoise protein modules was
positively correlated to 784.0677 (no match) and m/z 865.1768
(Benzopyrans) metabolites and negatively correlated to m/z
489.0887 (Depsides) and m/z 533.1832 (Diarylheptanoids)
metabolites (Figure 7). The metabolites m/z 533.1794
(Diarylheptanoids) and m/z 935.0937 (no match) had no
corresponding S-module, as well as S-red and S-blue modules
were not correlated to any metabolite.

As we expected, most of the selected metabolites were
correlated to protein modules with higher abundance of proteins

after 12 hai in resistant-R3 genotype (R-brown and R-green
modules) and before 12 hai in susceptible-S4 genotype (S-brown
and S-turquoise modules) (Figures 6, 7).

Functional Biology of Protein Modules
and Their Metabolite-Related Pathways
To elucidate a biological purpose of the protein changes involved
in the temporal resistance or susceptibility of E. grandis to rust
disease, the GO terms of all protein modules were analyzed in
AgriGO and main results were summarized in Table 2.
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FIGURE 6 | Resistant-R3 correlation analysis of protein modules and selected metabolites. Protein modules are represented by colors at the left side and selected
metabolites are represented by their m/z and chemical classes at the bottom. Correlation values and p-values are present inside the rectangles. Red and green
colors indicate positive and negative correlations, respectively. Correlations were considered significant when p < 0.05.

In early response of plants to rust, both genotypes had
enriched GO-terms related to changes in primary metabolism
(i.e., GO:0008152, metabolic process; GO:0044281, small
molecule metabolic process; GO:0006091, generation of
precursor metabolites and energy, GO:0009056, catabolic
process) and processing of genetic information (i.e., GO:0009117,
nucleotide metabolic process; GO:0006163, purine nucleotide
metabolic process; GO:0006753, nucleoside phosphate metabolic
process) in almost all “R” and “S” modules of the resistant-R3
and susceptible-S4 genotypes respectively (Supplementary
Tables S2–S12). At the beginning of infection, R-turquoise
and S-turquoise modules, mostly related to high abundance
of proteins 0 hai, were similarly enriched for other GO-terms,
such as translation (GO:0006412), photosynthesis (GO:0015979)
and cellular homeostasis (GO:0019725) (Supplementary
Tables S2, S8). Although R-blue and S-brown modules did not
shared many proteins at 6 hai, both kept enriched GO-terms
associated with translation (GO:0006412), but only R-blue
module was enriched for cellular homeostasis (GO:0019725) yet
(Supplementary Tables S3, S9).

At 12 hai, when R-yellow and S-blue modules inversely
regulated some common proteins, many GO-terms
related to photosynthesis regulation (i.e., GO:0015979,
photosynthesis; GO:0034357, photosynthetic membrane;
GO:0009579, thylakoid) were enriched for both protein modules
(Supplementary Tables S4, S10). This may indicate that the high
abundance of photosynthesis-related proteins at this time-point
had a functional role in inducing resistance to rust disease, as well

as the low abundance of the same proteins could lead to rust-
susceptibility. Moreover, R-yellow module also had GO-terms
for response to oxidative stress (GO:0006979) and oxidation-
reduction process (GO:0055114), which were only enriched for
proteins with high abundance at 18 hai of the S-yellow module
(Supplementary Table S11). At this time-point, R-green module
had down-regulated proteins for translation-related GO-terms
(i.e., GO:0006412, translation; GO:0043043, peptide biosynthetic
process; GO:0006518, peptide metabolic process), also found in
S-yellow module (Supplementary Tables S5, S11).

At 24 hai, resistant-R3 and susceptible-S4 genotypes exhibited
major functional differences between each other. Highly
abundant proteins of R-brown module were enriched for
many GO-terms linked to photosynthesis (i.e., GO:0015979,
photosynthesis; GO:0019684, photosynthesis, light reaction;
GO:0009765, photosynthesis, light harvesting; GO:0009579,
thylakoid; GO:0009521, photosystem), translation (GO:0006412,
translation; GO:0043043, peptide biosynthetic process), response
to stress (GO:0006950, response to stress; GO:0006979, response
to oxidative stress) and antioxidant processes (GO:0055114,
oxidation-reduction process; GO:0016491, oxidoreductase
activity; GO:0016491, antioxidant activity) (Supplementary
Table S6). Otherwise, proteins of the S-green module had no
relevant GO-term when compared to the other S-modules
(Supplementary Table S12).

During the time-course many proteins in R3 plants related
to plant defense were produced. Before 12 hai, induced
proteins that were related to stress (i.e., Stress responsive
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TABLE 2 | Summary of important GO-terms* associated with protein modules of resistant-R3 and susceptible-S4 genotypes.

Resistant-R3 Susceptible-S4

0 hai R-turquoise module S-turquoise and S-red modules

– Metabolic process (GO:0008152) – Metabolic process (GO:0008152)

– Generation of precursor metabolites and energy (GO:0006091) – Generation of precursor metabolites and energy (GO:0006091)

– Catabolic process (GO:0009056) – Catabolic process (GO:0009056)

– Nucleotide metabolic process (GO:0009117) – Nucleotide metabolic process (GO:0009117)

– Purine nucleotide metabolic process (GO:0006163) – Purine nucleotide metabolic process (GO:0006163)

– Translation (GO:0006412) – Translation (GO:0006412)

– Photosynthesis (GO:0015979) – Photosynthesis (GO:0015979)

– Cellular homeostasis (GO:0019725) – Cellular homeostasis (GO:0019725)

6 hai R-blue module S-brown module

– Metabolic process (GO:0008152) – Generation of precursor metabolites and energy (GO:0006091)

– Generation of precursor metabolites and energy (GO:0006091) – Catabolic process (GO:0009056)

– Catabolic process (GO:0009056) – Nucleotide metabolic process (GO:0009117)

– Nucleotide metabolic process (GO:0009117) – Purine nucleotide metabolic process (GO:0006163)

– Purine nucleotide metabolic process (GO:0006163) – Translation (GO:0006412)

– Translation (GO:0006412)

– Cellular homeostasis (GO:0019725)

12 hai R-yellow module S-blue module

– Metabolic process (GO:0008152) – Metabolic process (GO:0008152)

– Generation of precursor metabolites and energy (GO:0006091) – Generation of precursor metabolites and energy (GO:0006091)

– Catabolic process (GO:0009056) – Catabolic process (GO:0009056)

– Nucleotide metabolic process (GO:0009117) – Nucleotide metabolic process (GO:0009117)

– Purine nucleotide metabolic process (GO:0006163) – Purine nucleotide metabolic process (GO:0006163)

– Photosynthesis (GO:0015979) – Photosynthesis (GO:0015979)

– Response to oxidative stress (GO:0006979)

– Oxidation-reduction process (GO:0055114)

18 hai R-green module S-yellow module

– Metabolic process (GO:0008152) – Metabolic process (GO:0008152)

– Generation of precursor metabolites and energy (GO:0006091) – Catabolic process (GO:0009056)

– Catabolic process (GO:0009056) – Response to oxidative stress (GO:0006979)

– Nucleotide metabolic process (GO:0009117) – Oxidation-reduction process (GO:0055114)

– Purine nucleotide metabolic process (GO:0006163) – Translation (GO:0006412)

– Translation (GO:0006412)

24 hai R-brown module S-green module

– Metabolic process (GO:0008152) – Metabolic process (GO:0008152)

– Generation of precursor metabolites and energy (GO:0006091) – Generation of precursor metabolites and energy (GO:0006091)

– Catabolic process (GO:0009056) – Catabolic process (GO:0009056)

– Nucleotide metabolic process (GO:0009117) – Nucleotide metabolic process (GO:0009117)

– Purine nucleotide metabolic process (GO:0006163) – Purine nucleotide metabolic process (GO:0006163)

– Photosynthesis (GO:0015979)

– Translation (GO:0006412)

– Response to stress (GO:0006950, GO:0006979)

– Oxidation-reduction process (GO:0055114)

*GO-terms were considered enriched when FDR-adjusted p < 0.05. The whole list of all enriched GO-terms associated with these protein modules are available in
Supplementary Tables S2–S12.

alpha-beta barrel domain protein; heat shock protein 70;
Pathogenesis-related thaumatin superfamily protein) and
oxidative balancing [i.e., ascorbate peroxidase 4; – NAD(P)-linked
oxidoreductase superfamily protein; lipoxygenase 2; thioredoxin
family protein; Peroxidase superfamily protein] were found
in R-blue module (Supplementary Table S3). Subsequently,
proteins for correlated metabolites (i.e., dehydroquinate
dehydratase, putative/shikimate dehydrogenase, putative;

cinnamyl-alcohol dehydrogenase; Chalcone-flavanone isomerase
family protein; Chalcone and stilbene synthase family protein)
and many others strongly associated to plant oxidative responses
(i.e., ascorbate peroxidase 1; Thioredoxin superfamily protein;
catalase 2; copper/zinc superoxide dismutase 1; Eucgr.I01408—
ascorbate peroxidase 3; ascorbate peroxidase 1; NAD(P)-linked
oxidoreductase superfamily protein; thioredoxin-dependent
peroxidase 1; glutathione peroxidase 6; Glutaredoxin family
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FIGURE 7 | Susceptible-S4 correlation analysis of protein modules and selected metabolites. Protein modules are represented by colors at the left side and selected
metabolites are represented by their m/z and chemical classes at the bottom. Correlation values and p-values are present inside the rectangles. Red and green
colors indicate positive and negative correlations, respectively. Correlations were considered significant when p < 0.05.

protein) were present in the R-yellow and R-brown modules
(Supplementary Tables S4, S6).

On the other hand, susceptible-S4 plants also had proteins
associated with the selected metabolites (i.e., Chalcone-
flavanone isomerase family protein; dehydroquinate dehydratase,
putative/shikimate dehydrogenase, putative) and oxidative
balancing [NAD(P)-linked oxidoreductase superfamily protein;
ascorbate peroxidase 1; thioredoxin-dependent peroxidase 1;
Thioredoxin superfamily protein; NAD(P)-linked oxidoreductase
superfamily protein; Glutaredoxin family protein; copper/zinc
superoxide dismutase 2] mainly in S-turquoise, S-red, and
S-brown modules strongly associated to the time-point before
12 hai (Supplementary Tables S7–S9), but it was less intensive
than the resistant-R3 responses. Further, proteins related to
stress (Stress responsive alpha-beta barrel domain protein; heat
shock protein 70; heat shock protein 91; heat shock protein
70B) were lately observed in S-yellow and S-green modules
(Supplementary Tables S11, S12).

To confirm the metabolite-protein correlations described,
5 and 4 protein-enzymes from significantly metabolite-
correlated modules of the genotypes were mapped in
respective phenylpropanoid and flavonoid pathways (KEGG)
(Figures 8, 9). Both genotypes controlled their levels of the
caffeate O-methyltransferase enzyme (e.c. 2.1.1.68) and cinnamyl-
alcohol dehydrogenase (e.c. 1.1.1.195) from phenylpropanoid
pathway, and chalcone-flavanone isomerase (e.c. 5.5.1.6) and
flavonol synthase (e.c. 1.14.20.6) from flavonoid pathway along
the time. However, only R-modules had coniferyl-aldehyde

dehydrogenase (e.c. 1.2.1.68) and peroxidase (e.c. 1.11.1.7)
from phenylpanoid pathway and chalcone synthase (e.c.
2.3.1.74) from flavonoid pathway. In the same way, shikimate
O-hydroxycinnamoyltransferase (e.c. 2.3.1.133) was unique to
the S-modules. In general, resistant-R3 genotype accumulated
more metabolite-related enzymes in the R-brown module, closely
associated with 24 hai; while in susceptible-S4, more enzymes
were detected in the S-turquoise module with high abundances
of proteins at 0 hai. These findings corroborated with the results
we got from metabolomic analysis, in which metabolites involved
in the phenylpropanoid pathway showed high abundances
before 12 hai in the susceptible-S4 genotype, and after 12 hai in
the resistant-R3.

DISCUSSION

The early responses of plants to pathogen infection are comprised
of a wide range of molecular events which may initiate rapidly
after plants and pathogens come into contact. Studies have shown
that the initial stages of plant-pathogen interactions usually occur
within 24 h after inoculation. In this period, pathogens can
completely invade host tissues and the efficiency of plant defenses
determines whether plants will be susceptible or resistant to
infection (Shen et al., 2017).

In general, the stages of rust infection can be categorized
into temporal phases corresponding to fungal development
in which plants recognize specialized structures and activate
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FIGURE 8 | Simplified representation of KEGG phenylpropanoid pathway. Enzymes identified in protein modules are highlighted in red according to their response
within each genotype and protein-module assessed. Resistant-R3 and susceptible-S4 genotypes are indicated with square and circle shapes, respectively. Protein
modules were represented by their module colors. e.c. numbers correspond to: e.c. 2.1.1.68—caffeate O-methyltransferase enzyme; e.c.
1.1.1.195—cinnamyl-alcohol dehydrogenase; e.c. 1.2.1.68—coniferyl-aldehyde dehydrogenase; e.c. 1.11.1.7—peroxidase; e.c. 2.3.1.133—shikimate
O-hydroxycinnamoyltransferase. Enzymes and related precursors and products, which are not present in “R” and “S” protein modules, were removed.

defense responses (Hu and Rijkenberg, 1998). Therefore, light
microscopy analysis can be a useful method to elucidate the
timeframe in which the pathogen growth ceases in resistant
plants (Hu and Rijkenberg, 1998; Xavier et al., 2001; Ayliffe
et al., 2011; Zhang et al., 2011) and progress in susceptible
tissues. We noticed that MF1 urediniospores germinated at
3 hai and facilitated appressorium formation at 6 hai in
both R3 and S4 genotypes. Xavier et al. (2001) also observed
no differences on A. psidii germination and appressorium
formation between E. grandis rust-divergent genotypes, however,
these structures delayed three more hours to be detected
in comparison to our study. It is possible that the use
of different plant genotypes and fungal isolates explains the
variation in timing.

To support pathogen invasion and colonization, chemical
compounds produced in fungal appresorium can degrade plant
cell wall to be transferred into the subepidermal vesicle, located
just inside the host tissue. Then, the penetrating hypha elongates

in the leaf parenchyma to invade the host cells and induce
haustorium formation, a bulging structure used to absorb
nutrients from plants. MF1 fungal isolate was able to penetrate
in the leaf mesophyll of both R3 and S4 genotypes at 12 hai, but
the subepidermal vesicle was only visible in susceptible plants.
Its absence in the R3 genotype revealed the developmental stage
in which fungal growth disruption probably occurs. In a similar
investigation of Puccinia recondita sp. tritici in non-host species,
Hu and Rijkenberg (1998) were also unable to detect fungal
development after substomatal vesicle formation in sorghum.
In addition, only fragments of hyphal structures were observed,
and the pathogen had no progression in R3 genotype at 24
hai, at the same time-point A. psidii produced haustorium in
S4 plants. Xavier et al. (2001) also noticed similar observations
of A. psidii development in rust-resistant and rust-susceptible
genotypes of E. grandis within 24 hai. As determined by Shen
et al. (2017), for early plant responses to fungal infections, A.
psidii had completely invaded leaf tissues of S4-susceptible plants
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FIGURE 9 | Simplified representation of KEGG flavonoid pathway. Enzymes identified in protein modules are highlighted in red according to their response within
each genotype and protein-module assessed. Resistant-R3 and susceptible-S4 genotypes are indicated with square and circle shapes, respectively. Protein
modules were represented by their module colors. e.c. numbers correspond to: e.c. 5.5.1.6—chalcone-flavanone isomerase; e.c. 1.14.20.6—flavonol synthase; e.c.
2.3.1.74—chalcone synthase; e.c. 2.3.1.133—shikimate O-hydroxycinnamoyltransferase. Enzymes and related precursors and products, which are not present in
“R” and “S” protein modules, were removed.

within 24 hai. During this period, E. grandis resistance was
established between 12 and 24 hai, initiating just after pathogen
penetration in R3 plants.

Since the early molecular events can mostly define either
incompatible or compatible interactions of plants and fungal
pathogens, the use of multi-omics strategies offer an ideal
approach to understand mechanisms underlying plant disease
resistance and susceptibility, and consequently, has the potential
for the discovery of new molecules or genes to be used to enhance
molecular breeding and/or gene-editing programs (Yuan et al.,
2018). Despite omics experiments yield hypothetical results
concerning the up- and down-regulation of molecules, since
they can reflect other secondary effects, researchers have been
applied these technologies to uncover the molecular mechanisms
involved in plant-pathogen interactions (Cueto-Ginzo et al.,
2016; Chong et al., 2018; Pang et al., 2018; Chen et al., 2019;
Jia et al., 2020). Based on the time-course established by the
study of fungus development, we also report our efforts to
compare an integrative metabolomic and proteomic responses of
two half-sibling genotypes of E. grandis during the early stages
of rust infection.

Since plant-pathogen interactions are a spatially dynamic
process, the bioactive effects of secondary metabolites on
plant immunity depend on their accumulation at the proper
concentration, at a specific time and place (Piasecka et al.,
2015). During A. psidii infection, E. grandis genotypes had more
than 60 metabolites per genotype and time with differential
abundance, but distinctions in metabolite profile were observed
between genotypes, even more at 24 hai, when pathogen
produced haustorium in susceptible-S4 leaves and had no
progression in resistant-R3. The genotype-specific divergence
observed regarding the number of induced and suppressed
metabolites support the idea that A. psidii could weaken the
defense system of S4 plants within this period. Santos et al. (2020)
also suggested that the down-regulation of genes associated with
plant defenses at 24 hai is mediated by A. psidii effectors in rust-
susceptible E. grandis plants. This may lead to the suppression of
pathogen-induced changes in secondary metabolism. Although
the authors did not find many differentially expressed genes in
the rust-resistant genotype at 24 hai, the progressive induction
of effective metabolites in R3 plants was able to disrupt fungi
development just after its penetration.
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Our analysis revealed 16 important metabolites that were
significantly different in both genotypes in specific time-
points, to explain temporal differences between resistant and
susceptible plants inoculated with A. psidii. The results identified
putative targets for breeding efforts. Most metabolites were
chemically classified as flavonoids, benzenoids, diarylheptanoids,
coumarans, lignans, and other phenolic compounds or
derivatives. As a special defense against biotrophic pathogens,
phenylpropanoid metabolic pathways are activated in response
to shikimate pathway and provide a large array of molecules with
antioxidant and/or antimicrobial activities.

As it was reported before, most of the selected metabolites
were identified as derivatives of phenylpropanoid pathway, of
which three can be potential flavonoids. R3 plants accumulated
an increased number of selected metabolites after 12 hai, at
the same interval that pathogen penetrated their leaves and
then had no more growth. On the other hand, the initial over-
accumulation followed by a decreased abundance of selected
metabolites just after pathogen penetration in S4 plants suggested
that it was an unsuccessful plant strategy used to control its
infection process. Alternatively, it could have been a result of the
manipulation of plant metabolic pathways by the pathogen to
weaken plant defenses and facilitate its development. It is widely
known that flavonoids and other phenolic compounds play a key
role in plant immunity, but their antimicrobial efficacy depends
on both chemical structure and the strain of microorganism
(Iranshahi et al., 2015). Scientific reviews have also described
the antifungal potential of flavonoids (Treutter, 2006; Iranshahi
et al., 2015; Piasecka et al., 2015; Chen et al., 2019), but the
understanding of how these biochemical compounds interact
with pathogenic microorganisms requires further investigation.

Although there is insufficient information regarding the
interaction between metabolites and the pathogen, we aimed
to enhance our understanding of how E. grandis genotypes
molecularly respond to A. psidii infection. Using WGCNA,
resistant-R3 and susceptible-S4 genotypes had, respectively,
5 and 6 protein modules with particular abundance profiles
throughout the time. Therefore, once each protein module was
determined to be more responsive to a specific time-point, we
paid special attention to temporal-specific responses.

Regarding to the protein network and time-course
information, we could consider that the manner of how
these proteins were rearranged through the networks had
strong relation with the molecular mechanisms that resistant-R3
and susceptible-S4 genotypes responded to the interaction
with the pathogen. R-turquoise and S-turquoise modules had
common proteins with high abundance at the 0 hai, showing that
both genotypes initiated their protein profiles similarly at the
beginning of infection. However, R-yellow and S-blue modules,
which also shared many proteins, interestingly displayed
respective high and low abundances of the proteins at 12 hai.
The inverse regulation of proteins related to photosynthesis may
elucidate important details of how the genotypes diverged their
defense responses and report the time-point when it occurred.
ATP, NADPH and carbohydrates derived from photosynthesis
reactions have functional roles in plant defenses, since they may
lead to the biosynthesis of many compounds, such as salicylic

acid (SA), primary and secondary metabolites (Lu and Yao, 2018).
Santos et al. (2020) also revealed that rust-resistant eucalypts
constitutively overexpress genes involved in photosynthesis
compared to rust-susceptible plants, which reinforce that
photosynthesis is a key process to unveil the mechanism of plant
responses to A. psidii infection.

The other protein modules and corresponding time-
points had no evident relationship between resistant-R3
and susceptible-S4 genotypes, since their composition were
clearly different. This contrast possibly explain the molecular
dynamics governing mechanisms that lead to rust-resistance and
rust-susceptibility of E. grandis plants within 24 hai.

As a typical plant immune response, the generation of
ROS triggers multiple resistance strategies against biotrophic
pathogens (Passardi et al., 2005). Incompatible interactions
usually involve two temporal oxidative bursts for pathogen
detection and signaling that lead to HR and PCD, to create
a delimited zone that is used to prevent its growth and
spread (Barna et al., 2012). Oxidative environments are toxic
and unsuitable even for pathogen survival and can inhibit
fungal spore germination (Lamb and Dixon, 1997). In addition
to these pathogen-targeted responses, ROS also participates
in signal transduction and facilitates lignin polymerization to
strengthen the cell wall and prevent microbial penetration
(Bradley et al., 1992; Passardi et al., 2005; Calderan-Rodrigues
et al., 2019). However, to not suffer by their toxic effects, plants
must provide a good balance between ROS production and
detoxifying mechanisms to activate defense responses avoiding
the destruction of their own plant cells by themselves (Decros
et al., 2019). Different types of reduction-oxidation proteins and
associated GO-terms were present in protein modules associated
with potential antimicrobial and/or antioxidant metabolites in
both genotypes, but a temporal difference suggest that R3
plants responded more appropriately to the oxidative stress and
produced many more proteins involved in oxidative balancing
at each time-point than S4 plants. Moreover, only R3 inoculated
plants confirmed resistance responses mediated by HR appeared
as fleck spots on leaf surfaces at 11 dai, when pustules containing
spores ensured successful rust infection in S4 inoculated leaves.
Other works have also reported HR in resistant genotypes at
48 hai using staining methods (Xavier et al., 2001) and fleck
reactions as a symptom of HR used to phenotype resistance
response of Eucalyptus to rust (Junghans et al., 2003).

To support our findings, many stress-related proteins were
induced in R3 plants during the first contact to pathogens
before 12 hai. Subsequently, even more proteins related to
oxidative balancing and those that were associated with the
selected metabolites likely enhanced resistance against A. psidii
after its penetration. In contrast, the high abundance of
metabolites and correlated proteins with potential antioxidant
and antimicrobial effects at early time-points, and other proteins
related to stress and oxidation-reduction processes after 12
hai, were not enough to defend S4 plants against pathogen
attack. Possibly, a decompensated temporal control of initial
putative antioxidant metabolites and subsequent detoxifying
proteins could strongly reduce oxidative species in S4 plants,
mitigating key downstream processes of plant defenses. Other
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works have previously reported that the up-regulation of ROS
scavengers could trigger susceptibility to powdery mildew in
barley (El-Zahaby et al., 1995).

As another way to understand the molecular relationship
between metabolic and proteomic responses of E. grandis
during A. psidii infection, an integrative assessment revealed the
temporal modulation of phenylpropanoid and flavonoid enzymes
in both genotypes. When challenged by biotrophic pathogens,
plants activate metabolic processes to produce salicylic acid
(SA), a shikimate-derived phenolic compound produced in
late pathogen signaling (Li et al., 2019). The most common
mechanism of SA biosynthesis involves the phenylpropanoid
pathway, which also originates a myriad of other phenolic
compounds. Studies of some fungal diseases have reported the
enrollment of this intricate pathway in plant disease resistance.
For example, in maize, it was reported to be related to defense
against Ustilago maydis (Doehlemann et al., 2008), in soybean
the pathway mediated resistance to Rhizoctonia solani (Copley
et al., 2017) and in sorghum it enhanced the defense response
against Colletotrichum sublineolum (Tugizimana et al., 2019). In
E. grandis, comparative transcriptomics of contrasting genotypes
reveal constitutive expression of genes for response to SA in rust-
resistant plants (Santos et al., 2020). Here, a great part of the 16
selected metabolites belong to the phenylpropanoid pathway, of
which some were classified as possible flavonoids. During 24 h of
A. psidii infection, R3 and S4 plants differently modulated both
metabolites and related enzymes. As mentioned previously, those
were concentrated before 12 hai in susceptible-S4 and after 12
hai in resistant-R3 genotype. Besides that, R3 plants produced
two other enzymes from phenylpropanoid pathway that were
not noticed in S4 plants. Coniferyl-aldehyde dehydrogenase
(e.c. 1.2.1.68) and peroxidase (e.c. 1.11.1.7) enzymes participate
in different stages of lignin biosynthesis (Calderan-Rodrigues
et al., 2019; Ferro et al., 2020). As a consequence of oxidative
effects, these results may suggest that rust-resistance also relies
on strengthening the cell wall, while rust-susceptibility is
characterized by a defect in temporal strategy that lacks an
efficient response against A. psidii-specific infection.

CONCLUSION

In spite the fact that Eucalyptus species have other mechanisms
that enhance rust resistance, combined metabolome and
proteome analyses could help us to elucidate differences in the
early responses of two half-sibling genotypes of E. grandis to
rust. In accordance with our temporal investigation of the plant
pathosystem, rust-resistance and rust-susceptibility are defined
within 24 hai. Microscopy analysis shows that A. psidii equally
grows in both genotypes until 12 hai, when it penetrates inside
leaf mesophyll. After that, progressive pathogen development
only occurs in S4 plants while R3 defenses are probably
activated. Molecular signatures of R3 and S4 plants also reveal
that secondary metabolites and enzymes from phenylpropanoid
pathway have distinct profiles in plant responses before and
after 12 hai. During pathogen development outside leaves,
rust resistance is conditioned by dynamic processes that are

mediated by proteins for stress-related before 12 hai. Changes
in photosynthesis deliver the energy and precursors required
to produce targeted defenses after 12 hai, when an equilibrated
distribution of secondary metabolites and related enzymes is
crucial for rust resistance. Its association with proteins reveals a
role for the modulation of oxidative effects in the enhancement
of immune activation against the biotrophic fungus A. psidii. On
the other hand, the initial accumulation of potential antioxidant
metabolites and detoxifying proteins possibly acting as ROS
scavengers before 12 hai, and a molecular suppression of
photosynthesis at 12 hai, likely induced rust-susceptibility by
disabling dependent responses for the secondary metabolism
after pathogen penetration. Thus, comparative analyses used to
study the early responses of E. grandis genotypes by applying
integrative metabolomics and proteomics approaches during
rust infection enabled us to determine temporal differences in
plant responses that lead to either resistance or susceptibility
for this plant-pathosystem model, and were able to identify key
pathways involving potential metabolites and proteins with roles
in the plant immunity.
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Supplementary Figure 1 | Images of inoculation and control plants at 11 days
after inoculation. (A) Control R3 and (B) S4 plants lack disease symptoms. (C)
Inoculated R3 plants do not form pustules, but display symptoms of hypersensitive
reactions. (D) Inoculated S4 plants have pustules covering the leaf surface. An
agarose gel containing amplified DNA fragments produced using A. psidii-specific
primer that confirm the inoculation of (E) R3 and (F) S4 genotypes.

Supplementary Figure 2 | Choosing soft threshold based on power value
(numbers in red) for constructing adjacency matrix network. (A) Power 7 of
resistant-R3 samples showed scale free topology value > 0.8 and mean
connectivity < 50 and (B) power 6 of susceptible-S4 samples showed scale free
topology value close to 0.6 and mean connectivity < 50.

Supplementary Figure 3 | Two-factor ASCA (ANOVA simultaneous component
analysis) analysis for genotype, time-point and genotype vs. time-point interaction.
(A) Distribution of metabolite features in which square predict error (SPE) < 0.05
and leverage > 0.9 for genotype for effects of time-point or genotype vs.
time-point interactions. Outlier features are present in the upper quadrants (blue
sections) and prominently regulated features are shown in the pink quadrant at the
bottom right. (B) ASCA model validation. Distribution of sums of squares (SSQ)
using 100x permutation of groups (genotype and time-points) is shown. Gray

columns indicate SSQ distribution of data permutation and red arrows highlight
the SSQ of original dataset format, which confirms the model.

Supplementary Figure 4 | WGCNA (weighted gene co-expression network
analysis) cluster dendrogram of protein modules represented by color bars
at the bottom. (A) Resistant-R3 genotype had 5 modules from 871 proteins.
(B) Susceptible-S4 genotype has 6 modules from 852 proteins.

Supplementary Table 1 | Top 50 metabolites (m/z) identified by multivariate
empirical bayes analysis.

Supplementary Table 2 | Resistant_0H_R-turquoise.

Supplementary Table 3 | Resistant_6H_R-blue.

Supplementary Table 4 | Resistant_12H_R-yellow.

Supplementary Table 5 | Resistant_18H_R-green.

Supplementary Table 6 | Resistant_24H_R-brown.

Supplementary Table 7 | Susceptible_0H_S-red.

Supplementary Table 8 | Susceptible_0H_S-Turquoise.

Supplementary Table 9 | Susceptible_6H_S-brown.

Supplementary Table 10 | Susceptible_12H_S-blue.

Supplementary Table 11 | Susceptible_18H_S-yellow.

Supplementary Table 12 | Susceptible_24H_S-green.
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