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The term microalga refers to various unicellular and photosynthetic organisms
representing a polyphyletic group. It gathers numerous species, which can be found
in cyanobacteria (i.e., Arthrospira) as well as in distinct eukaryotic groups, such as
Chlorophytes (i.e., Chlamydomonas or Chlorella) and Heterokonts (i.e., diatoms). This
phylogenetic diversity results in an extraordinary variety of metabolic pathways, offering
large possibilities for the production of natural compounds like pigments or lipids that
can explain the ever-growing interest of industrials for these organisms since the middle
of the last century. More recently, several species have received particular attention as
biofactories for the production of recombinant proteins. Indeed, microalgae are easy to
grow, safe and cheap making them attractive alternatives as heterologous expression
systems. In this last scope of applications, the glycosylation capacity of these organisms
must be considered as this post-translational modification of proteins impacts their
structural and biological features. Although these mechanisms are well known in
various Eukaryotes like mammals, plants or insects, only a few studies have been
undertaken for the investigation of the protein glycosylation in microalgae. Recently,
significant progresses have been made especially regarding protein N-glycosylation,
while O-glycosylation remain poorly known. This review aims at summarizing the recent
data in order to assess the state-of-the art knowledge in glycosylation processing
in microalgae.

Keywords: microalgae, post-translational modification, N-glycosylation, O-glycosylation, protein,
biopharmaceuticals, endoplasmic reticulum, Golgi apparatus

INTRODUCTION

All microalgae share two common features: they are unicellular and photosynthetic organisms.
According to the literature, more than thirty thousand organisms fall into this definition (Guiry,
2012; Rumin et al., 2020). Beside these common features, microalgae species exhibit a broad
diversity of morphology, size (ranging from a few to one hundred micrometers), physiology and
metabolism. This diversity results from various adaptation strategies allowing them to colonize
very different habitats going from freshwaters and oceans to terrestrial environments (Brodie et al.,
2017). Microalgae represent a polyphyletic group meaning that they spread in distinct phyla ranging
from Cyanobacteria to Eukaryotes (Burki et al., 2020). As far as eukaryotic species are concerned,
most of them are distributed in two supergroups: the Archaeplastida and the Chromalveolata
lineages arising from series of endosymbiotic events leading to various photosynthetic organisms
(Gould et al., 2008). The first endosymbiosis is thought to have arisen between 1 and 1.5 billion
years ago. During this event, a cyanobacterium was engulfed by an eukaryotic host cell that gave
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birth to three photosynthetic lineages: the Chlorophytes,
the Rhodophytes and the Glaucophytes, in which cells are
characterized by the presence of primary plastids corresponding
to the ancestral cyanobacterium. These three photosynthetic
lineages form together the Archaeplastida supergroup, also
named the “green lineage” (Rodríguez-Ezpeleta et al., 2005).
Then, during secondary endosymbiotic events, some of these
eukaryotic cells containing a primary plastid were engulfed by
another eukaryotic cell, leading to new photosynthetic cells in
which photosynthesis occurs in secondary plastids. Organisms
that derived from a secondary endosymbiosis involving a
rhodophyte as a host cell belongs to the Chromalveolata
lineage (Cavalier-Smith, 1999; Keeling, 2009). In addition, a
few photosynthetic unicellular organisms are belonging to other
Eukaryotic supergroups. For example, the Euglenid group,
belonging to the Excavate supergroup, encompasses several
freshwater and marine or brackish phototrophic species that are
spread out in Euglenales and Eutreptiales, respectively (Vesteg
et al., 2019). These phototrophic species are thought to have
emerged recently (about 600 million years ago) as the result of
a secondary endosymbiosis between an Euglenid host cell and a
prasinophyte green alga (Jackson et al., 2018).

Taking advantage of this huge diversity, industrials used
microalgae since the 1950’s in various applications ranging from
food industry (e.g., pigments extraction; Novoveská et al., 2019)
to biofuel production or wastewaters treatments (Oey et al.,
2016; Gilmour, 2019; Li et al., 2019). However, the diversity of
microalgae metabolisms and the remaining number of unknown
species, still represent an untapped potential. This is illustrated
through the exponential increase of publications regarding
microalgae during the last 10 years: more than 5,700 papers
dealing with microalgae have been published in 2018 worldwide
representing twice the number of publications in 2010 (Rumin
et al., 2020). Furthermore, the advances in genome sequencing
technologies allow now access to numerous microalgae genomes
(Fu et al., 2019), that facilitate the development of molecular
tools for studying metabolic processes in these organisms.
Currently, DNA recombinant technology and transgenesis
have been successfully implemented in some microalgae. In
this context, microalgae have been investigated as emerging
industrial platforms for the production of high value-added
biopharmaceuticals (Barolo et al., 2020; Dehghani et al., 2020;
Rosales-Mendoza et al., 2020). Indeed, microalgae are easy and
fast to grow, safe and cheap making them attractive expression
systems for the production of therapeutic proteins (Hempel
and Maier, 2016; Rosales-Mendoza et al., 2020). Nowadays, the
most biological expression systems used for the production of
recombinant proteins are bacteria, yeast and mammalian cells
(Walsh, 2014). One of the critical issues for the choice of an
heterologous system is its capacity of protein glycosylation that is
required for the biopharmaceutical biological activity. Apart from
efforts to engineer and humanize the N-glycosylation pathway
in plants, mammalian cells are currently the only system able
to synthesize proteins bearing glycan structures close to the
human ones, even if differences might subsist. For example, the
sialic acids present in the terminal position of CHO N-glycan
structures are linked in α(2, 3) whereas they are linked in

α(2, 6) in human N-glycans (Bragonzi et al., 2000). Despite
this difference, most of the glycosylated biopharmaceuticals
are to date produced in Chinese Hamster Ovary (CHO) cells
(O’Flaherty et al., 2017).

The term glycosylation refers to the processes leading to the
synthesis of oligosaccharides that are then attached to another
molecule like a protein. Glycosylation pathways comprise
numerous distinct steps, starting with the cytosolic synthesis
of nucleotide-sugars that are used in the Golgi apparatus as
donor substrates by specific glycosyltransferases involved in
the synthesis of the oligosaccharide moiety. In Eukaryotes,
glycoproteins can be distinguished according to the site of glycan
attachment on the protein. The attachment of oligosaccharide
occurs either on the amide group of an asparagine (Asn) residue
(N-glycosylation) or on the hydroxyl group of a serine (Ser), a
threonine (Thr), or an hydroxyproline residue (O-glycosylation).
Glycans attached to proteins regulate fundamental biological
functions such as cell adhesion, molecular trafficking, control
of growth, morphogenesis, adaptation to biotic and abiotic
stresses and receptor activation (Schjoldager and Clausen, 2012;
Varki, 2017). Moreover, glycosylation of proteins is crucial for
their half-life, stability, immunogenicity, secretion and biological
activity (Lingg et al., 2012; Van Beers and Bardor, 2012;
Zhang et al., 2013).

Although these mechanisms are well described in various
Eukaryotes like vertebrates (Moremen et al., 2012; Stanley
et al., 2017), plants (Nguema-Ona et al., 2014; Strasser,
2016; Schoberer and Strasser, 2018) or insects (Walski et al.,
2017), only few studies have been undertaken to investigate
the protein glycosylation pathways in microalgae. Recently,
significant progresses have been made regarding especially the
N-glycosylation in microalgae, while O-glycosylation remain
poorly known. This review reports on recent findings and
summarizes the current knowledge in the N- and O-glycosylation
pathways in microalgae.

N-GLYCOSYLATION

General Features of Eukaryotic
N-Glycosylation
In Eukaryotes, protein N-glycosylation process can be divided in
three major steps: the synthesis of the oligosaccharide moiety on
a lipid carrier, called the lipid-linked oligosaccharide (LLO), the
transfer of this oligosaccharide precursor on the target protein
and the maturation of the protein N-linked glycans. The two
first steps occur in the Endoplasmic Reticulum (ER) while the
maturation and further elongation of the protein N-glycans take
place in the Golgi apparatus.

The assembly of the oligosaccharide moiety requires several
enzymes called Asparagine-linked glycosylation (ALG) that
act according to well-established sequential steps. It starts
on the cytosolic side of the ER with the addition of
two N-acetylglucosamine (GlcNAc) residues on a dolichol
pyrophosphate (PP-Dol) lipid carrier that is embedded in the
ER membrane. A first GlcNAc residue is transferred from UDP-
GlcNAc to the PP-Dol by the GlcNAc-1-phosphotransferase
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ALG7 (also called DPAGT1 in mammals) (Bretthauer, 2009)
and then the ALG13/ALG14 complex adds the second GlcNAc
residue to form GlcNAc2-PP-Dol (Bickel et al., 2005; Gao
et al., 2005) in which the two GlcNAc linked in β(1,4)
correspond to the chitobiose core unit (Figure 1). Thereafter,
the oligosaccharide is extended sequentially under the activity
of several enzymes which add overall five mannose (Man)
residues on the chitobiose to form Man5GlcNAc2-PP-Dol. This
intermediate structure is translocated across the ER membrane
by a flip-flop mechanism involving flippases like RFT1 (Frank
et al., 2008). Then, the synthesis continues within the ER luminal
compartment with the addition of four other Man residues
leading to an oligosaccharide lipid precursor Man9GlcNAc2-
PP-Dol thanks to the respective action of ALG3, ALG9, and
ALG12. Finally, the glucosyltransferases ALG6, ALG8, and
ALG10 transfer three glucose (Glc) residues to build the final
structure Glc3Man9GlcNAc2-PP-Dol (Burda and Aebi, 1998;
Farid et al., 2011; Bloch et al., 2020; Figure 1A). Afterward,
the oligosaccharide moiety is transferred “en bloc” from the
precursor onto a specific asparagine residue belonging to the
N-glycosylation consensus site Asn-X-Ser/Thr/Cys (where X
cannot be a proline) of a newly synthesized protein (Matsui et al.,
2011; Schwarz and Aebi, 2011). The transfer occurs either co- or
post-translationally.

Once the oligosaccharide has been transferred on the
target protein, the two terminal Glc residues are trimmed by
the α-glucosidases I and II. The resulting Glc1Man9GlcNAc2
structure is then involved in the quality control by interacting
with calnexin or calreticulin chaperone that contribute to
glycoprotein folding (for recent reviews please refer to Strasser,
2018; Adams et al., 2019). Thus, the involvement of this N-glycan
precursor in the protein quality control cycle justifies that
ER processing steps of protein N-linked glycans are highly
conserved in most of the Eukaryotes. However, exceptions have
been described, especially in parasitic species that lack some
ER luminal ALG (Samuelson et al., 2005). For example, in

Toxoplasma gondii, Cryptosporidium parvum, and Tetrahymena
pyriformis, the luminal ALG responsible for the addition of
the four last Man residues are absent. Thus, the synthesis
of the oligosaccharide precursor stops prematurely leading to
a structure harboring only five mannose residues (Yagodnik
et al., 1987; Garénaux et al., 2008; Haserick et al., 2017).
Moreover, in Cryptococcus neoformans, Trypanosoma brucei,
and Trypanosoma cruzi, ALG6, ALG8 and ALG10 are missing,
resulting in a non-glucosylated precursor Man9GlcNAc2-PP-Dol
(De La Canal and Parodi, 1987; Parodi, 1993).

Subsequently, correctly folded glycoproteins leave the ER and
transit through the Golgi apparatus where α(1,2)-Man residues
are first removed (Benyair et al., 2015). This process involves
several isoforms of α-mannosidases I and leads to glycoproteins
bearing Man5GlcNAc2 structures (Figure 1B). Whereas these
early Golgi steps are common in most Eukaryotes, following
maturation steps greatly differ according to the Golgi enzyme
repertoire, giving rise to various distinct structures between
species (Wang et al., 2017). The synthesis of the complex
N-glycan structures depends especially on the activity of the
β(1,2)-N-acetylglucosaminyltransferase I (GnT I), a key enzyme
that transfers a GlcNAc residue on the α(1,3)-Man attached
to the chitobiose core. In organisms where N-glycosylation
is GnT I-dependent (i.e., plants, insects or mammals), the
attachment of the GlcNAc residue is followed by the removing
of two outer terminal Man residues by the α-mannosidase
II (Rose, 2012). Then, a β(1,2)-N-acetylglucosaminyltransferase
II (GnT II) adds another GlcNAc residue on the α(1,6)-
Man attached to the N-glycan chitobiose core. The resulting
GlcNAc2Man3GlcNAc2 structures can be further “decorated”
by diverse glycosyltransferases such as fucosyltransferases,
xylosyltransferases, galactosyltransferases, or sialyltransferases.
In mammals, supplemental N-acetylglucosaminyltransferases
add a third, a fourth and sometimes a fifth GlcNAc leading to
the formation of tri- and tetra-antennary N-glycan structures
(Wang et al., 2017).

FIGURE 1 | Schemes depicting the structure of the dolichol pyrophosphate oligosaccharide precursor (A), the canonical Man5GlcNAc2 structure (B) and the
non-canonical Man5GlcNAc2 structure (C). Structures are drawn according to the Symbol Nomenclature For Glycans (SNFG) (Neelamegham et al., 2019). Blue
squares: N-acetylglucosamine residues; green circles: mannose and blue circles: glucose residues.
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N-Glycosylation Pathways in Microalgae
In microalgae, current knowledge regarding the N-glycosylation
processes is available essentially in species belonging to the
Chlorophytes (Table 1). Among these, the Chlorophyceae
Chlamydomonas reinhardtii and the Trebouxiophycea Chlorella
vulgaris have been the most investigated microalgae so far
(Mathieu-Rivet et al., 2013; Vanier et al., 2017; Lucas et al., 2018,
2020; Schulze et al., 2018; Mócsai et al., 2019, 2020a,b; Oltmanns
et al., 2020). Concerning microalgae with secondary plastids,
the structural data available regarding N-glycans have been
obtained from the diatom Phaeodactylum tricornutum (Baïet
et al., 2011; Vanier et al., 2015; Lucas et al., 2018) and from
the Euglenoid Euglena gracilis (De La Canal and Parodi, 1985;
O’Neill et al., 2017).

Synthesis of the Precursor in the ER
In C. reinhardtii, the synthesis of the LLO in the ER
stops prematurely as this organism lacks the luminal
mannosyltransferases ALG9 and ALG12, as well as
the glucosyltransferase ALG10 (Mathieu-Rivet et al.,
2013; Vanier et al., 2017). In addition, a LLO-released
oligosaccharide Glc3Man5GlcNAc2 moiety has been identified by
multistage tandem mass spectrometry (Lucas et al., 2018).
This oligosaccharide is transferred on proteins via the
oligosaccharyltranferase (OST) complex for which seven
homolog subunits have been predicted based on the genome
analysis (Mathieu-Rivet et al., 2013). Then, glycosylated
proteins are submitted to the control quality cycle that involves
α-glucosidases I and II as well as the calnexin and calreticulin
chaperones. As a consequence, glycoproteins that exit the ER
harbor a non-canonical Man5GlcNAc2 N-glycan exhibiting
a linear trimannosyl sequence linked to the β-Man residue
(Figure 1C) instead of the canonical Man5GlcNAc2 (Figure 1B).
A first study carried out previously in the colonial microalgae
Volvox carteri, which is phylogenetically closely related to
C. reinhardtii, also highlighted the absence of ER luminal
mannosylation steps (Müller et al., 1984). Thus, regarding these
features, ER steps in both C. reinhardtii and V. carteri appear
to be similar to those described in T. gondii (Garénaux et al.,
2008), C. parvum (Haserick et al., 2017) and T. pyriformis
(Yagodnik et al., 1987; Table 1).

In contrast, data reported in other microalgae species suggest
that the oligosaccharide precursor is synthesized according to
a more conventional process. Thus, ER pathways in C. vulgaris
and Botryococcus braunii appears to be similar to those described
in plants since these microalgae synthesizes oligomannosides
ranging from Man5GlcNAc2 to Man9GlcNAc2 (Schulze et al.,
2017; Mócsai et al., 2019). In addition, the structural analysis of
a cell wall glycoprotein from the red microalgae Porphyridium
sp. has revealed the presence of N-glycans containing eight to
nine Man residues (Levy-Ontman et al., 2011). These results are
consistent with the bioinformatic prediction of genes encoding
for ER enzymes (Levy-Ontman et al., 2014). In E. gracilis, labeling
assays of protein-linked oligosaccharides have demonstrated that
Glc3Man9GlcNAc2-PP-Dol is synthesized before transfer of the
carbohydrate moiety on proteins (De La Canal and Parodi, 1985).
More recently, O’Neill et al. (2017) have shown using mass

spectrometry that major N-glycans in this specie correspond to
oligomannoside structures. Proteins from P. tricornutum also
carry oligomannoside N-glycans having five to nine Man residues
(Baïet et al., 2011). In agreement with this N-glycan profile,
P. tricornutum LLO oligosaccharide has been identified as being
Glc2Man9GlcNAc2 that is missing the terminal α(1,2)Glc residue
(Lucas et al., 2018).

GnT I: To Have or Not to Have
In most Eukaryotes, the Golgi maturation steps depends on
the transfer by GnT I of a GlcNAc residue on the arm (a)
of the canonical Man5GlcNAc2 (Figure 1B), thus opening the
door to the formation of complex-type N-glycans. This key
step does not seem to be a general rule on the microalgae
that have been studied so far. In P. tricornutum, although
no structure harboring terminal GlcNAc residues has been
detected in PNGase-released N-glycans, a genomic sequence
encoding for a GnT I has been shown to efficiently restore the
CHO Lec1 cell line that is deficient for this enzyme activity.
This result demonstrated that the paucimannosidic fucosylated
structures Man3FucGlcNAc2 identified in the protein N-glycan
profiles of P. tricornutum likely results from a GnT I-dependent
process (Baïet et al., 2011). In contrast, glycoproteins from
C. reinhardtii are processed through a GnT I-independent
pathway (Mathieu-Rivet et al., 2013; Vanier et al., 2017). No
gene candidate has been identified in the genome by search for
sequence homology using functional GnT I from others species
as queries. Furthermore, the heterologous expression of GnT I
from Arabidopsis thaliana or P. tricornutum did not impact the
N-glycan profile of C. reinhardtii proteins. This is consistent with
the fact that this green microalga synthesized a non-canonical
Man5GlcNAc2 (Figure 1C) that is not an acceptor substrate
for GnT I (Vanier et al., 2017). Thus, glycoproteins harboring
the non-canonical Man5GlcNAc2 are submitted in the Golgi
apparatus to the action of glycosyltransferases responsible for
the addition of decorations. Mass spectrometry analyses carried
out on C. reinhardtii secreted and membrane-bound proteins
have shown that mature N-glycans are partially O-methylated
Man3GlcNAc2 to Man5GlcNAc2 substituted by one or two
Xyl residues (Mathieu-Rivet et al., 2013), and for a minor
part by one fucose residue (Oltmanns et al., 2020). Recently,
Schulze et al. (2018) and Lucas et al. (2020) have showed
that the first Xyl is linked in β(1,2) to the β-Man via the
action of the xylosyltransferase A (XylTA) similarly to the
plant xylosylation process. In contrast, the xylosyltransferase B
(XylTB) is responsible for the transfer of a second residue on
the linear trimannosyl branch of the Man5GlcNAc2 structure.
However, although it is clearly established that these two XylT
play a major role in the N-glycan xylosylation processing, the
remaining presence of structures containing Xyl residues in
a double knockdown mutant XylTA × XylTB has suggested
that other uncharacterized enzymes could also contribute to
the N-glycan xylosylation in C. reinhardtii. The fucosylation
mechanism remains uncleared as the analysis of an insertional
mutant in which the candidate gene encoding for a putative FucT
was disrupted, did not affect N-glycans harboring Fuc residues
(Oltmanns et al., 2020). In addition, a bioinformatic analysis
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TABLE 1 | Table summarizing published results regarding the N- and O-glycosylation processes in microalgae species.

Microalgae species References New insights about

N-glycosylation

Chlorophyta

Chlorella sp. Mócsai et al., 2019 First insights regarding N-glycosylation pathway in Chlorella vulgaris. Identification of O-methylated
oligomannoside N-glycans.

Mócsai et al., 2020a,b Analysis of N-glycans in a strain collection and commercial products derived from C. vulgaris and
C. sorokiniana highlighted for the first time a huge heterogeneity of N-glycan structures and the presence of
arabinose residues in N-glycans that has never been reported before.

Chlamydomonas reinhardtii Mathieu-Rivet et al., 2013 First glycomic and glycoproteomic analysis carried out on total and membrane-bound proteins
demonstrated that the N-glycosylation results from a GnT I-independent process.

Vanier et al., 2017 Revision of the ER N-glycosylation pathway based on the demonstration that C. reinhardtii synthesizes a
non-canonical Man5GNAc2. Heterologous expression of functional GnT I was shown to have no impact on
C. reinhardtii N-glycosylation process, although physiology of the transformant cells was impaired.

Lucas et al., 2018 First Structural analysis of the LLO confirming the absence of luminal ER mannosylation steps.

Schulze et al., 2018 First functional analysis of the xylosyltransferase XylTA. The regulation of N-glycans trimming by ManIA
isoform depends on the presence of the core β(1,2)-xylose residue.

Lucas et al., 2020 Analysis of the respective roles of the two xylosyltransferases, XylTA and XylTB, in the maturation of the
N-glycans. Identification of additional XylT putative candidates.

Oltmanns et al., 2020 The knockdown of a fucosyltransferase candidate did not impair the fucosylation of the N-glycans.

Botryococcus braunii Schulze et al., 2017 A N-glycoproteomic analysis performed on total cell extract revealed N-glycan structures synthesized via a
GnT I-dependent pathway. Mature N-glycans harbor O-methylated hexoses.

Scherffelia dubia Grunow et al., 1993 Analysis of proteins from Golgi membrane fractions by Eastern blot suggests the presence of complex and
oligomannoside N-glycans.

Tetraselmis striata Gödel et al., 2000 Glycosidase treatments of flagellar proteins, followed by Eastern blot analysis showed the presence of
complex and oligomannoside N-glycans.

Volvox carteri Müller et al., 1984 First evidence of a truncated LLO synthesis pathway in a microalgae specie.

Balshüsemann and
Jaenicke, 1990

Enzyme sequencing experiments suggested that secreted proteins carry complex N-glycans bearing a core
β(1,2)-xylose residue.

Rhodophyta

Porphyridium sp. Levy-Ontman et al., 2011 N-glycans isolated from a cell wall glycoprotein are O-methylated oligomannosides carrying xylose residues.

Levy-Ontman et al., 2014 Identification of genes encoding enzymes related to the ER N-glycosylation pathway.

Levy-Ontman et al., 2015 Identification and functional characterization of the α(1,3)-Glucosidase II acting within the ER.

Diatoms

Phaeodactylum tricornutum Baïet et al., 2011 First report of the N-glycan structures in the diatom P. tricornutum
Functional characterization of GnT I, which was the first glycosyltransferase from microalgae to have been
characterized.

Vanier et al., 2015 Characterization of the N-glycans harbored by a recombinant monoclonal antibody directed against the
Hepatitis B virus surface antigen produced in P. tricornutum.

Lucas et al., 2018 Elucidation of the LLO structure.

Zhang et al., 2019 Functional characterization of a core fucosyltransferase (FucT) and demonstration of the existence of a
sub-compartmentation of Golgi enzymes (GnT I and FucT) as reported in plants and mammals.

Euglenozoa

Euglena gracilis De La Canal and Parodi,
1985

First evidence of the synthesis of the Glc3Man9GlcNAc2-PP-Dol precursor.

O’Neill et al., 2017 Mass spectrometry analysis carried out on PNGase F released N-glycans showed that the major part of the
N-glycans are oligomannosides. Minor part of the N-glycan population possesses a non-reducing extremity
modified by the addition of a 2-aminoethylphosphonate group.

O-glycosylation

Chlorophyta

Chlorella vulgaris Lamport and Miller, 1971 First report of hydroxyproline-linked arabinosides in the cell wall.

Chlamydomonas reinhardtii Miller et al., 1972 The alkaline hydrolysis of a crude cell wall fraction released a striking variety of hydroxyproline-O-glycosides,
including mostly hydroxyproline-linked arabinosides with one or two Ara residues, as well as
hydroxyproline-O-galactose.

Bollig et al., 2007 First elucidation of the O-glycosylation pathway in C. reinhardtii. O-glycoprotein from chaotrope-soluble cell
wall shows extensins like structure with a core Hyp-O-Ara-Ara. Two arabinosyltransferases, one
galactofuranosyltransferase and methyltransferases might be involved in the O-glycan biosynthesis.

(Continued)
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TABLE 1 | Continued

Microalgae species References New insights about

O-glycosylation

Keskiaho et al., 2007 Characterization of the prolyl-4-hydroxylase, which efficiently hydroxylates the proline residues of synthetic
peptides. It’s down-regulation in C. reinhardtii affect the assembly of its cell wall.

Saito et al., 2014 Characterization of the peptidyl-serine α-galactosyltransferase (SERGT1) from the GT96 CAZy family. This
enzyme is responsible for the transfer of a single α-galactopyranose residue to each Ser residue in
Ser-(Hyp)4.

Volvox carteri Balshüsemann and
Jaenicke, 1990

Enzyme sequencing experiments suggest that O-glycans are exclusively bound to threonine residues and
correspond to short oligosaccharides (up to three sugar residues) composed of Ara, Gal and Xyl.

Scenedesmus obliquus Voigt et al., 2014 Cell wall of S. obliquus contains a glycoprotein homolog to the C. reinhardtii cell wall GP3B.

Charophyta

Micrasterias denticulata Eder et al., 2008 Biochemical analyses of cell wall constituents revealed various plant-like AGPs epitopes.

Euglenozoa

Euglena gracilis O’Neill et al., 2017 No O-glycan specific signature has been observed in E. gracilis after PNGase F and β-elimination
treatments.

Nucleotide-sugars and transporters

Chlamydomonas reinhardtii Mathieu-Rivet et al., 2017 Bioinformatic analysis of nucleotide-sugar transporters.

Phaeodactylum tricornutum Zhang et al., 2019 Functional characterization of a GDP-fucose transporter, first nucleotide-sugar transporter from microalgae
to have been characterized.

of other microalgae genomes showed that other Chlorophyta
species like Ostreococcus lucimarinus, Ostreococcus tauri, or
V. carteri would lack GnT I enzymatic activity (Mathieu-Rivet
et al., 2014), which suggest that the GnT I-independent process
described in C. reinhardtii would not be an exception. However,
recent structural data obtained in other species indicate that
the absence of GnT I is not a common feature in Chlorophyta
(Table 1). Indeed, in B. braunii, traces amount of Man5GlcNAc2
bearing a terminal GlcNAc at the non-reducing end has been
detected, in addition to the presence of a genomic sequence
sharing a strong homology with A. thaliana GnT I (Schulze
et al., 2017). In C. vulgaris, an in vitro GlcNAc-transferase
assay on N-glycans showed that Man5GlcNAc2 was converted
into GlcNAcMan5GlcNAc2 (Mócsai et al., 2019). Moreover,
it was shown that the GlcNAcMan5GlcNAc2 synthesized by
C. vulgaris was substrate for core 6-fucosyltransferase, which
depends on the presence of terminal GlcNAc (Mócsai et al.,
2020b). Altogether, this favors the existence of a GnT I-dependent
processing of the N-glycans in the Golgi apparatus of these
species. In addition, the study of two strain collections
from C. vulgaris and Chlorella sorokiniana also revealed
heterogeneous N-glycan structures with both arabinose and
galactose occurring as furanose as well as pyranose forms (Mócsai
et al., 2020a,b), that constitute an unprecedented discovery
among the Eukaryotes.

O-GLYCOSYLATION

General Features of Eukaryotic
O-Glycosylation
As for N-glycosylation, several families of enzymes orchestrate
O-glycosylation pathways. Unlike N-glycosylation in which
the first ER steps are conserved in most Eukaryotes, the
O-glycosylation of proteins encompasses various distinct

processes. Some of them start in the ER and continue in the Golgi
apparatus, while others occur exclusively in the Golgi apparatus.

O-glycosylation involves an oxygen-carbon bond between
the hydroxyl group of a Ser or a Thr residue of the protein
and the oligosaccharide chain in mammals (Bennett et al.,
2012) while in plants, O-glycosylation occurs essentially in
hydroxyproline residue (Hyp; Nguema-Ona et al., 2014; Seifert,
2020). In most eukaryotes including humans, O-glycans do
not present a common structure or a consensus sequence.
For example, O-glycans in yeasts are composed of multiple
Man residues attached to a Ser or a Thr (Schoberer and
Strasser, 2018; Barolo et al., 2020). In mammals, most of
O-glycans were found on mucins. Mucins represent large
glycoproteins with three domains: (i) a cytoplasmic tail; (ii) a
single transmembrane spanning region and (iii) an extracellular
domain. The extracellular domain contains a repeating peptide
motif with numerous proline (Pro), Ser and Thr residues.
The first monosaccharide attached to the mucin is usually
β-GalNAc but can also be β-GlcNAc, α-GalNAc, α-Man
or other monosaccharides (Bennett et al., 2012; Schoberer
and Strasser, 2018). More than 20 different UDP-GalNAc
polypeptide N-acetylgalactosaminyltransferases can be involved
in the GalNAc attachment. This GalNAc is further modified
by the stepwise attachment of different monosaccharides such
as galactose (Gal), GlcNAc, sialic acid and fucose giving rise
to diverse mucin-type core O-glycans that play crucial roles
in many biological processes (Schjoldager and Clausen, 2012;
Mewono et al., 2015).

In plants, the main O-glycosylated proteins belong to
a large group of glycoproteins known as Hydroxyproline-
rich-glycoproteins (HRGPs). HRGPs are involved in many
aspects of plant growth and development. They consist in
a superfamily of plant cell wall proteins that are divided
into three major multigene families: the highly glycosylated
arabinogalactan proteins (AGPs), the moderately glycosylated
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extensins (EXTs) and the low glycosylated proline-rich proteins.
The O-glycosylation of HRGPs results from two consecutive
post-translational modifications involving the hydroxylation
of Pro (Hyp) residues by prolyl 4-hydroxylases in the ER
and the subsequent O-glycosylation in the Golgi apparatus of
some, but not all, Hyp residues by glycosyltransferases before
being transported to their final location within or outside
the cell (Nguema-Ona et al., 2014; Seifert, 2020). Overall,
O-glycan cores in plants present a Gal residue attached to
a Ser or an unique arabinose (Ara) residue attached to an
Hyp. The monosaccharide being incorporated and the level
of glycosylation depends on the glycoproteins families (AGPs,
EXTs or proline-rich proteins). The O-glycans of AGPs are
composed of short oligoarabinoside chains containing up to four
residues and of a larger β(1,3)-linked galactan backbone with
β(1,6)-linked side chains containing galactose, arabinose and,
sometime fucose, rhamnose, or glucuronic acid. The structure
of arabinogalactan chains varies between plant species (Nguema-
Ona et al., 2014). EXTs contain several Ser-(Hyp)4 repeats
usually O-glycosylated with oligosaccharide chains of up to five
arabinose units on each Hyp (Velasquez et al., 2011, 2015;
Ogawa-Ohnishi et al., 2013) and a unique galactose on the Ser
residue (Saito et al., 2014). O-glycosylated Ser-(Hyp)4 repeat
sequences have also been identified in several other EXT-like
chimeras and hybrid EXT glycoproteins, such as arabinogalactan
protein-EXTs, Pro-rich protein-EXTs, Leu-rich repeat-EXTs, Pro-
rich kinases and formins with an extracellular EXT domain
(Velasquez et al., 2015). Moreover, Hyp-O-arabinosylation also
occurs in single Hyp units in small secreted glycopeptide
hormones with up to three arabinose units (Ohyama et al., 2009;
Shinohara and Matsubayashi, 2010).

Concerning the enzyme machinery involved in the HRGP
synthesis, three groups of arabinosyltransferases (AraTs) have
been identified: hydroxyproline O-arabinosyltransferase 1
(HPAT1 to HPAT3), reduced residual arabinose (RRA1 to RRA3)
and xyloglucanase 113 (XEG113). These transferases have been
demonstrated to be responsible for the sequential addition of
the innermost three arabinose residues (Egelund et al., 2007;
Ogawa-Ohnishi et al., 2013).

O-Glycosylation in Microalgae
Very few articles related to the O-glycosylation pathways in
microalgae are available to date. So far, C. reinhardtii is the
main microalga that has been investigated regarding protein
O-glycosylation.

Extensin-Like O-Glycoproteins
Bollig et al. (2007) have investigated the structure of linear glycans
O-linked to Hyp residues of C. reinhardtii proteins, showing
some similarities with plant O-glycans. Indeed, they identified a
O-glycan core Hyp-O-Ara-Ara, which is consistent with previous
results reported by Miller and coworkers (Miller et al., 1972). This
suggests a certain level of conservation of the extensin structures
within the green lineage.

O-glycosylated Hyp residues have been identified in
chaotrope-soluble glycoproteins, which constitute the vegetative
outer cell wall in C. reinhardtii (Bollig et al., 2007). Mass

spectrometry and NMR analyses have indicated the presence
of mainly Ara and Gal, followed by Glc, Xyl and Man residues
(Bollig et al., 2007). Bollig et al. (2007) have demonstrated that
glycans O-linked to Hyp residue are composed of a β(1-2)-linked
L-Ara disaccharide substituted with galactofuranose (Galf )
residues and O-methylation, two modifications not reported in
plants (Bollig et al., 2007; Mathieu-Rivet et al., 2017; Barolo et al.,
2020; Figure 2). Little information is available concerning the
enzymes involved in this process in C. reinhardtii. However, a
prolyl-4-hydroxylase has been characterized (Keskiaho et al.,
2007). This enzyme efficiently hydroxylates the Pro residues of
synthetic peptides and its down-regulation affect the assembly
of a proper cell wall, which is consistent with the role of
hydroxyproline residues in the attachment of the oligosaccharide
moiety (Keskiaho et al., 2007).

In addition, few papers have reported data regarding the
composition of cell wall glycoproteins of others microalgae.
Hyp-linked arabinosides have been reported in the green
alga C. vulgaris (Lamport and Miller, 1971). Balshüsemann
and Jaenicke (1990) have described O-linked oligosaccharides
in the glycoprotein pheromones of V. carteri. These short
oligosaccharide chains (up to three residues) are composed of
Ara, Gal and Xyl bound to Thr residues (Balshüsemann and
Jaenicke, 1990). Eder et al. (2008) have detected in the cell
wall of the green alga Micrasterias denticulata various plant-like
AGPs epitopes by combination of cell imaging and biochemical
approaches. Cell-wall glycoprotein number 1, 2, and 3 (GP1, GP2,
and GP3, respectively) are hydroxyproline-rich glycoproteins
that co-polymerize to form the W6 layer of C. reinhardtii cell
wall. W6 layer is one of the three major outer layers of the
C. reinhardtii cell wall that can be solubilized from living cells
with chaotropes (Monk, 1988). Voigt and collaborators have
studied the ultrastructure of cell wall glycoproteins of V. carteri
and the green alga Scenedesmus obliquus. A multi-layered cell wall
similar to the GP3 of C. reinhardtii has been reported although
its proportion in Hyp is considerably lower (Voigt et al., 2014).
Glycoproteins similar to GP1 have also been found in other
Chlamydomonas species (eugametos and incerta) (Goodenough
et al., 1986) but are absent in Volvovaceae Gonium pectoral and
V. carteri (Voigt et al., 2014). The chaotrope-soluble cell wall
glycoprotein GP1 is the only polypeptide with an even higher
proportion of Hyp (35%) occurring in vegetative C. reinhardtii
cells (Voigt et al., 2009). In contrast, GP2 and GP3 have been
found in all studied Volvovaceae species. Putative homologs
of GP3 have also been detected on the cell walls of some
Zygnematales using a polyclonal antibody raised against the
glycosylated GP3B isoform of C. reinhardtii (Voigt et al., 2014).

Arabinosylation of O-Glycans in Microalgae
Bollig et al. (2007) have proposed that two arabinosyltransferases
are responsible for the addition of the first two Ara residues
onto Hyp followed by the action of a galactofuranosyltransferase
(Galf T) in C. reinhardtii (Figure 2 and Table 1). These
two arabinoses are arabinofuranosyl (Araf) rather than
arabinopyranosyl (Arap) residues. UDP-L-Arap is first
synthesized in the cytosol from UDP-Xyl and is then converted
into UDP-L-Araf through the action of a specific mutase
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FIGURE 2 | Scheme of O-glycan motif harbored by proteins in C. reinhardtii. According to Bollig et al. (2007), O-glycans attached to C. reinhardtii proteins are
composed of a Hyp-O-Ara-Ara core substituted with methylated galactofuranose residues. Hyp: hydroxyproline; orange pentagon: arabinofuranose; yellow circle:
galactofuranose, Me: methyl group.

(Bollig et al., 2007). An UDP-L-Arap mutase sharing 78% of
identity with AtRGP1 that catalyzes the conversion of UDP-L-
Arap into UDP-L-Araf in A. thaliana (Rautengarten et al., 2011)
has been purified from the cytosol of C. reinhardtii. UDP-L-Arap
mutase activity has also been detected in microsomal fraction of
C. reinhardtii (Kotani et al., 2013).

Three putative arabinosyltransferases have been predicted in
C. reinhardtii’s genome. The Hyp O-arabinosyltransferase HPAT,
belonging to the CAZy GT95 family, performs the transfer of a
β-linked L-Ara to Hyp. Genes encoding homologous transferases
have also been found in the genomes of V. carteri (Ogawa-
Ohnishi et al., 2013), B. braunii and C. vulgaris (Barolo et al.,
2020). The second arabinosyltransferase, RRA (CAZy GT77),
transfers L-Ara residues linked in β(1-2) to the Hyp-linked
Ara (Velasquez et al., 2015). Based on the recent in silico
analysis reported by Barolo et al. (2020), this putative enzyme
is predicted in the genomes of Porphyridium purpureum and
C. vulgaris. The third one is XEG113, a xyloglucanase that
acts as an arabinosyltransferase. XEG113 homolog sequences
have been identified in O. lucimarinus and O. tauri, suggesting
the synthesis of closely related extensins in these microalgae
(Roycewicz and Malamy, 2014).

Galactosylation of O-Glycans in Microalgae
UDP-Gal is synthesized from UDP-Glc via the epimerization
of the C4 hydroxyl group. Whereas several isoforms of UDP-
Gal-4-epimerase (UGE) have been found in plants, only one
single sequence encoding for a putative GME has been identified
in C. reinhardtii (Cre04.g214502, CrGME; Rösti et al., 2007).
Moreover, it has been shown that the Gal residues present
in C. reinhardtii O-glycans exhibits the unusual furanose
conformation (Galf ) (Bollig et al., 2007). Bollig et al. (2007) have
proposed that the UDP-Galf residues result from the activity of
an UDP-galactopyranose mutase (UGM), which is able to convert

UDP-galactopyranose (UDP-Galp) into UDP-Galf. UGMs were
found in prokaryotes and a few eukaryotes such as C. neoformans
or T. cruzi. One gene sequence encoding for a putative UGM
is predicted in the genome of C. reinhardtii (Cre06.g272900).
This putative C. reinhardtii UGM shares 60% of identity with the
UGM from C. neoformans (Beverley et al., 2005). In addition, a
gene sequence encoding for a putative Galf T (Cre02.g108200)
is predicted in C. reinhardtii genome (Hung et al., 2016). The
presence of Galf has also been reported in the glycosylated toxin
“prymnesium” extracted from a red tide microalga Prymnesium
parvum (Binzer et al., 2019). Genes encoding putative UGM
are predicted in JGI phytozome 13 in other microalgae, such as
V. carteri, B. braunii (Chlorococcales), Coccomyxa subellipsoidea
(Chlorophytes), Chromochloris zofingiensis, and Dunaliella
salina, suggesting the presence of Galf residues on the glycans of
these microalgae (unpublished data, personal communication).

One the other hand, a peptidyl-serine α-galactosyltransferase,
named SERGT1, has been characterized in C. reinhardtii by Saito
et al. (2014). This enzyme has been purified from an endosomal
fraction and its galactosyltransferase activity has been confirmed
by an in vitro assay. These results revealed that SERGT1 transfer
the single α-galactopyranose residue to Ser residues in Ser-(Hyp)4
motifs of EXT, suggesting that O-glycosylation of Ser residues can
occur in C. reinhardtii.

Other O-Glycosylation Types in Microalgae
Other O-glycosylation types might exist in microalgae. Recently,
using computational analysis of available microalgae genomes,
Barolo and collaborators have searched for putative candidates
involved in protein O-glycosylation by comparison with genes
encoding enzymes of O-glycan pathways in both humans
(Homo sapiens) and plants (A. thaliana) (Barolo et al., 2020).
Through this work, it was shown that C. reinhardtii exhibits an
enzyme repertoire that possess a putative O-fucosyltransferase
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(POFUT 1) that could be involved in protein O-fucosylation.
This enzyme is also predicted in other microalgae such
as P. tricornutum, P. purpureum, Nannochloropsis gaditana,
B. braunii, and C. vulgaris (Barolo et al., 2020). These
authors have also highlighted the presence of two putative
O-mannosyltransferase 1 and 2 (POMT1 and POMT2) activities
in P. purpureum genome suggesting that O-mannosylation of
proteins occurs in this microalga as reported in humans and
in the yeast, Saccharomyces cerevisiae (Barolo et al., 2020). In
addition, a putative xylosyltransferase 1 (XylT 1) was found
in the genomes of P. tricornutum and N. gaditana, although
the enzymatic activity was not confirmed experimentally. This
suggests a possible O-xylosylation in these two microalgae
(Barolo et al., 2020).

METHYLATION OF GLYCANS IN
MICROALGAE

Methylation of glycans has been found in the animal kingdom
only in worms and mollusks, whereas it is more frequently
present in some species of bacteria, fungi and algae (Staudacher,
2012). Methylation has been reported in both N- and O-glycans
in microalgae. Indeed, O-methylation of N-glycans appears to be
a common feature in microalgae species from Archaeplastidae,
although it has never been reported in plants. Indeed, Mócsai
et al. (2019) have shown that oligomannosidic structures are
O-methylated in C. vulgaris (Mócsai et al., 2019). In addition,
O-methylated N-glycans have also been detected in B. braunii
(Schulze et al., 2017) and C. reinhardtii (Mathieu-Rivet et al.,
2013; Vanier et al., 2017; Lucas et al., 2020). Moreover, the
biochemical analysis of the 66 kDa cell wall glycoprotein of
the Rhodophyta Porphyridium sp. revealed the presence of
methylated N-glycans (Levy-Ontman et al., 2011).

As far as O-glycans in microalgae are concerned, Bollig
et al. (2007) proposed that two methytransferases specific to
C. reinhardtii perform methylation of some Gal and Ara residues,
which corresponds to the final modification of the protein
O-glycans in this organism. To the best of our knowledge,
none of the enzymes involved in the methylation process has
been characterized and the role of the methylation in both
N- and O-glycans remains unknown. In this context, authors
have suggested that methylation can confer a protective role
to the mature glycans. For example, Wohlschlager et al. (2014)
have suggested that O-methylated glycans constitute a conserved
epitope for the fungal and animal innate immune system. As
glycans carrying this modification are present in bacteria, worms,
and mollusks, this epitope represents a hitherto unknown target
that is recognized by the immune system. Recently, Mócsai et al.
(2019) also highlighted that O-methylated N-glycans are possibly
immunogenic. Therefore, this has to be taken into account if
pharmaceutical glycoproteins are produced using chlorophytes
such as C. vulgaris as a cell biofactory. To solve this issue, the
authors proposed to identify the O-methyltransferase acting on
terminal mannose residues and to knockout this enzyme in the
future (Mócsai et al., 2019). Such knockout lines could also be
used to answer the scientific question of the biological purpose of
N-glycan methylation.

CONCLUSION AND PERSPECTIVES

To date, little information is available regarding the N- and
O-glycosylation pathways and their regulation in microalgae.
Even if the knowledge regarding these protein post-translational
modifications has been extended recently, significant efforts
remain to be done to characterize these processes in microalgae,
especially in the context of using microalgae as cell biofactories
where N- and O-glycosylation pathways remain essential for
the biological activities and stability of recombinant proteins
(Lingg et al., 2012; Zhang et al., 2013).

In the context of using microalgae as a biopharmaceutical
platform for the production of recombinant proteins dedicated
to therapeutic applications in humans, it will be crucial to
unravel the protein glycosylation pathways and then optimize
them in order to mimic human-type N- and O-glycans through
metabolic engineering (Dumontier et al., 2018; Barolo et al., 2020;
Rosales-Mendoza et al., 2020). This represents an important
challenge for the next decades. However, it would benefit from
the recent development of genome-editing tools in microalgae
(Daboussi et al., 2014; Mussgnug, 2015; Baek et al., 2016; Nymark
et al., 2016; Shin et al., 2016; Wang et al., 2016; Huang and
Daboussi, 2017; Dumontier et al., 2018; Slattery et al., 2018;
Guzmán-Zapata et al., 2019; Fabris et al., 2020; Moosburner
et al., 2020; Park et al., 2020). Moreover, several recent studies
carried out in plants have highlighted the feasibility of N- and
O-glycosylation metabolic engineering for the production of
humanized recombinant N- and O-glycoproteins in transgenic
plants including for example the production of recombinant IgA1
with defined human-type N- and O-linked glycans (Bakker et al.,
2001; Paccalet et al., 2007; Vézina et al., 2009; Castilho et al., 2010;
Castilho and Steinkellner, 2012; Yang et al., 2012; Dicker et al.,
2016; Kallolimath et al., 2016).
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