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During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are 
produced from misfolded nascent glycoproteins via the combination of the cytosolic 
peptide N-glycanase (cPNGase) and endo-β-N-acetylglucosaminidase (ENGase) in the 
plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc 
residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. 
In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited 
β-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein 
folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved 
in protein folding, remained unclear. On the contrary, we also reported the presence of 
plant complex type (PCT)-GN1-FNGs, which carry the Lewisa epitope at the non-reducing 
end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since 
plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry 
β1-2xylosyl and/or α1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to 
be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase 
activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting 
that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and 
processed in the Golgi apparatus through the protein secretion pathway. As the first step 
in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures 
of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man9-7GlcNAc1 
and Man9-8GlcNAc2) could be  found in microsomes, which almost consist of the 
ER compartments.

Keywords: free N-glycans, ER-associated degradation, peptide:N-glycanase, endo-β-N-acetylglucosaminidase, 
plant glycoproteins

INTRODUCTION

Free N-glycans (FNGs), which are related to asparagine-linked glycoproteins, are widely found 
in various eukaryotes, including yeast, plants, and animals. These FNGs can be  classified into 
two types, GN1 and GN2, based on the reducing terminal structure; GN1-FNGs have one 
GlcNAc residue, whereas GN2-FNGs have GlcNAcβ1-4GlcNAc (the N,N'-diacetyl chitobiosyl unit). 
Regarding the protein quality control system in the endoplasmic reticulum (ER) in both animal 
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and plant cells, it has been believed that misfolded N-glycoproteins 
that harbor high-mannose type (HMT)-N-glycans are transported 
through the dislocone complex (0s9-Sel1-HRAD1 complex) into 
the cytosol for proteasomal degradation or ER-associated 
degradation (ERAD; Suzuki and Funakoshi, 2006; Hosokawa 
et  al., 2009, 2010; Abei et  al., 2010; Hüttner and Strasser, 2012; 
Suzuki and Harada, 2014; Suzuki, 2015). Before proteolytic 
degradation, these misfolded N-glycoproteins are first de-N-
glycosylated by cytosolic PNGase (cPNGase), and the resulting 
GN2-FNGs are then further processed into GN1-FNGs by endo-
β-N-acetylglucosaminidase (ENGase), which is highly specific 
for HMT-GN2-FNGs. It has been believed that the resulting 
HMT-GN1-FNGs are further degraded by cytosolic α-mannosidase 
(α-Man’ase) and finally transported to the lysosome, where the 
FNGs are degraded to monosaccharides, in animal cells (Suzuki 
et  al., 2006; Kato et  al., 2011; Wang and Suzuki, 2013). The 
fate of HMT-GN1-FNGs formed in plant cytosol, in sharp contrast 
to those formed in mammalian cytosol, remains to be  clarified, 
since cytosolic α-Man’ase has not been found and no orthologous 
gene of the animal cytosolic α-Man’ase has been identified to 
date. This indicates that the HMT-FNGs produced during ERAD 
may be metabolized via a slightly different pathway in animal cells.

As for complex type FNGs (CT-FNGs), both GN1-FNGs 
and GN2-FNGs have been found in both mammalian and 
plant cells or in their extracellular spaces (Priem et  al., 1993; 
Faugeron et  al., 1997a,b; Kimura et  al., 1997, 2000; Ohashi 
et al., 1999; Ishizuka et al., 2008; Nakamura et al., 2008; Maeda 
et  al., 2010, 2017; Iwatsukasa et al., 2013; Wang et  al., 2015; 
Seino et al., 2016), and the structural features of these FNGs 
clearly suggest that these N-glycans had been modified or 
processed in the Golgi apparatus. It has been proposed that 
animal complex type (ACT)-GN2-FNGs are formed from 
HMT-GN2-FNGs, which are produced from dolichol-linked 
oligosaccharides as byproducts of the reaction involving the 
transfer of the glycan moiety (GlcNAcMan9GlcNAc2) to specific 
Asn residues in nascent polypeptides in the ER by 
oligosaccharyltransferase (OST) in mammalian cells (Harada 
et al., 2015). They have postulated that these HMT-GN2-FNGs, 
along with well-folded glycoproteins, are possibly transported 
and modified in the Golgi apparatus. Interestingly, extracellular 
ACT-FNGs are almost exclusively of the GN2 type, and this 
observation suggests that the mechanism of GN1-FNG generation 
may be  slightly different from that of GN2-FNG generation.

In previous reports (Maeda et  al., 2010, 2017), the plant 
complex type (PCT)-GN1-FNGs, which carry the Lea epitope 
[Galβ1-3(Fucα1-4)GlcNAc], were found in the culture broth 
of rice cells or the crude extract of a freshwater plant, Egeria 
densa. Since it has already been confirmed that plant ENGase 
is almost inactive toward typical plant-specific N-glycans, such 
as M3FX, GN2M3FX, and GN2M3X (Kimura et  al., 1998, 
2002; Maeda et al., 2017), these PCT-GN1-FNGs did not appear 
to be  generated from N-glycopeptides or N-glycoproteins that 
harbored PCT-N-glycans by ENGase activity during turnover 
of the function-lost glycoproteins. Therefore, we  proposed that 
these PCT-GN1-FNGs might have originated from HMT-GN1-
FNGs produced from misfolded glycoproteins via the 
combination of cPNGase and ENGase in the cytosol during 

ERAD (Maeda et  al., 2010; Maeda and Kimura, 2014). 
We proposed the following hypothesis regarding the formation 
of PCT-GN1-FNGs from HMT-GN1-FNGs: during the first 
stage, HMT-GN1-FNGs produced from misfolded glycoproteins 
might be  transported back to the ER through an unidentified 
transporter; then, these HMT-FNGs, along with well-formed 
glycoproteins, might be  transported to the Golgi apparatus. 
During the second stage, these HMT-GN1-FNGs might 
be  processed into PCT-GN1-FNGs via concerted reactions 
mediated by Golgi-glycosidases and transferases, along with 
the N-glycans of secreted-type glycoproteins. Finally, the resulting 
PCT-GN1-FNGs might be secreted into the extracellular space. 
The fact that these PCT-GN1-FNGs have been found in the 
culture broth, but not in rice cells (Maeda et al., 2010), appears 
to support this hypothesis. Furthermore, we  found that 
HMT-FNGs assisted in protein folding and inhibited β-amyloid 
fibril formation, suggesting a possible biofunction of FNGs in 
the protein folding system (Tanaka et  al., 2015). However, 
whether these HMT-FNGs occurred in the ER, an organelle 
involved in the folding of secreted-type glycoproteins, 
remained unclear.

As the first step to prove that HMT-FNGs (GN1 and/or 
GN2) occur in the ER, we  prepared plant microsomes from 
pumpkin hypocotyls (Kimura et  al., 2002) and analyzed the 
structural features of free oligosaccharides in the microsomes 
in this study. We  found that HMT-FNGs (GN1 and GN2) 
occurred in the microsomes that were mainly contained in 
the ER compartments. These results suggested that GN1-FNGs 
generated from misfolded glycoproteins via the combination 
of cPNGase and ENGase were retro-transported from the 
cytosol to the ER by a putative transporter specific for FNGs.

MATERIALS AND METHODS

Materials
A Cosmosil 5C18-AR column (0.60 × 25 cm) was purchased 
from NacalaiTesque, Inc. (Kyoto, Japan), and a Shodex 
Asahipak NH2P-50 column (0.46  ×  25  cm) was purchased 
from Showa Denko Co. (Tokyo, Japan). Man9-5GlcNAc1-PA 
and Man9-5GlcNAc1-PA were prepared as described in previous 
reports (Kimura et  al., 2000; Kimura and Matsuo, 2000). 
α-1,2-Man’ase from Aspergillus saitoi was purchased from 
ProZyme, Inc. (Hayward, CA, United  States). Swainsonine, 
deoxymannojirimycin, deoxynojirimycin, and Jack bean 
β-GlcNAc’ase were purchased from Sigma-Aldrich (St. Louis, 
MO, United States), and Endo-H was purchased from Promega 
(Madison, WI, United  States). Glc3Man9GlcNAc2-PA and 
Glc2Man9GlcNAc2-PA were purchased from Masuda Chemical 
Industries Co. (Kagawa, Japan).

Reverse-Phase-High Performance Liquid 
Chromatography and Size 
Fractionation-HPLC
Fluorescence-labeled oligosaccharides were separated by high 
performance liquid chromatography (HPLC) using a Jasco 
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2080-PU HPLC system equipped with a Jasco 920-FP Intelligent 
Spectrofluorometer (excitation 310  nm and emission 380  nm; 
Jasco, Tokyo, Japan). For reverse-phase (RP)-HPLC using a 
Cosmosil 5C18-AR-II (4.6  ×  250  mm), the PA-sugar chains 
were eluted by increasing the acetonitrile concentration in 
0.02% trifluoroacetic acid (TFA) linearly from 0 to 7% at a 
flow rate of 1.2  ml/min. For size fractionation (SF)-HPLC 
using a Shodex Asahipak NH2P-50 4E (4.6  ×  250  mm), the 
PA-sugar chains were eluted by increasing the water content 
of the water-acetonitrile mixture from 26 to 50% linearly at 
a flow rate of 0.7  ml/min.

ENGase Assay
ENGase activity was assayed using M6B as a substrate and M3FX 
[Manα1-6(Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)
GlcNAc-PA] as an internal standard, as described in our previous 
paper (Kimura et  al., 2011). Briefly, an enzyme solution (100  μl) 
was mixed with M6B and M3FX (approximately 100  pmol) in 
0.1  M MES buffer (44 μl, pH 6.5) containing 5  mM swainsonine 
(3  μl) and 5  mM deoxymannojirimycin (3  μl). After incubation 
at 37°C overnight, the reaction was stopped by heating at 100°C 
for 3 min. After centrifugation, an aliquot (50 μl) of the resulting 
supernatant was analyzed by RP-HPLC using the Cosmosil 5C18-AR 
column. The PA-sugar chains (M6B, M3FX, and PA-GlcNAc) 
were eluted as described above. The substrate specificity of pumpkin 
ENGase has been reported using various pyridylaminated N-glycans 
in our previous report (Kimura et  al., 2002).

ER α-Glucosidase I and II Assay
Endoplasmic reticulum α-glucosidase I  and II activities were 
assayed using Glc3Man9GlcNAc1-PA (G3M9’) and Glc2Man9 
GlcNAc1-PA (G2M9’) as substrates, respectively. G3M9’ and 
G2M9’ were prepared from Glc3Man9GlcNAc2-PA and Glc2 
Man9GlcNAc2-PA, respectively, by Endo-H digestion followed 
by pyridylamination, as described below. An enzyme solution 
(100  μl) was mixed with G3M9’ and G2M9’ (approximately 
50  pmol) in 0.1  M MES buffer (44  μl, pH 6.5) containing 
5  mM swainsonine (3  μl), 5  mM deoxymannojirimycin (3  μl), 
and 5  mM deoxynojirimycin (3  μl). After incubation at 37°C 
overnight, the reaction was stopped by heating at 100°C for 
3  min. The digested substrates were analyzed by SF-HPLC 
using the Shodex NH2P-50 4E column.

α-1,2-Mannosidase Digestion
PA-sugar chains obtained from the pumpkin microsomal fraction 
were incubated with Aspergillus α-1,2-Man’ase (100  μU) in 
0.1  M Na-acetate buffer (pH 5.0) at 37°C overnight. The 
reactions were stopped by boiling the mixtures for 3  min, 
and a part of each digested substrates were analyzed by SF-HPLC 
using the Shodex Asahipak NH2P-50 4E column.

Preparation of Microsomes From Pumpkin 
Hypocotyls
Pumpkin (Cucurubita sp. cv. Kurokawa Amakuri) seeds (17.7 g) 
were soaked overnight, planted in moist rock fiber, and allowed 

to germinate at 25°C in the dark. The seedlings were grown 
for 6  days in the dark, and the etiolated hypocotyls were used 
for subcellular fractionation. Hypocotyls (41.5 g) were chopped 
using a razor and 0.15  M tricine buffer (50  ml, pH 7.5) 
containing 13% sucrose and 2  mM MgCl2 (buffer A). The 
chopped materials were squeezed through a nylon mesh. The 
resulting filtrate (10  ml each from 60  ml) was layered on the 
same tricine buffer, which consisted of two layers, a 20% sucrose 
layer (15 ml) and a 60% sucrose layer (10 ml), and centrifuged 
at 100,000  ×  g for 3  h (HITACHI 55P-72, Tokyo, Japan). After 
centrifugation, four fractions, from top to bottom (F-1, 10  ml; 
F-2, 10  ml; F-3, 10  ml; and F-IV, 5  ml), were collected, as 
shown in Supplementary Figure 1-I. Significant ENGase activity 
was detected in F-1 and F-2, indicating that these fractions 
contained cytosolic components (Supplementary Figure  1-II). 
On the contrary, α-Glc’ase I  activities were detected in F-3 
(Supplementary Figure 1-III); therefore, we used F-3 for further 
preparation of microsomes, which contained mainly ER. F-3 
was diluted with Buffer A (35 ml) and centrifuged at 100,000 × g 
for 3  h. After centrifugation, the resulting precipitates were 
resuspended and washed in the 13% sucrose-containing buffer 
(25  ml), and the suspended sample was centrifuged again at 
100,000  ×  g for 3  h. A part of the resulting precipitates were 
solubilized with 25  mM HEPES-NaOH buffer (1  ml, pH 7.5) 
containing 0.1% Triton X-100 by ultrasonication. As shown 
in Figure 1, the solubilized F-3 precipitates contained α-Glc’ase 
I  and II but not ENGase, suggesting that F-3 contained the 
ER compartment.

Preparation and Pyridylamination of FNGs
The microsome fraction was heated in boiling water for 3 min 
and then solubilized with 25  mM Tris-HCl buffer (pH 7.5) 
containing 0.2% SDS by ultrasonication for 15  min. The 
solubilized samples were desalted using Dowex 1  ×  2 resins, 
and the run-through fraction was pooled and concentrated 
to approximately 10  ml. The run-though fraction was applied 
onto a Sephadex G-25 superfine column (2.7  ×  33  cm) 
equilibrated with 0.1 N ammonium water. The oligosaccharide 
fractions (elution volumes from 61 to 115  ml) were pooled 
and concentrated to dryness using a rotary evaporator. The 
residue was suspended in distilled water (approximately 1 ml) 
and lyophilized. The lyophilized oligosaccharides were 
pyridylaminated (Natsuka and Hase, 1998). An excess amount 
of 2-aminopyridine was removed by gel filtration using a 
Sephadex G-25 Fine (1.8  ×  40  cm) in 0.1  M NH4OH. The 
pyridylaminated oligosaccharides were monitored using a 
JASCO FP-8200 Fluorescence Spectrometer.

Electrospray Ionization Mass 
Spectrometry
LC/MS and MS/MS analyses of PA-oligosaccharides were 
performed using an Agilent 6,500 series HPLC-Chip/QTOF-MS 
system equipped with a microwell-plate auto sampler 
(maintained at 10°C), capillary sample loading pump, 
nanopump, HPLC-Chip interface, and an Agilent 6,520 Q-TOF 
LC/MS, as described in our previous report (Maeda et al., 2017). 
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A porous graphitized carbon (PGC)-Chip (Agilent Technologies) 
was used for separation of the PA-sugar chains.

RESULTS AND DISCUSSION

Structural Analysis of FNGs in the 
Pumpkin Microsomes
Since we confirmed that the microsomal fraction obtained from 
the pumpkin hypocotyls showed α-Glc’ase I  and II activities, 
but not ENGase activity, as shown in Figure  1, we  prepared 
pyridylaminated oligosaccharides from the 0.1% SDS-extract of 
the microsomes (mainly ER). First, the pyridylaminated 
oligosaccharides obtained from the microsomes were partially 
purified by RP-HPLC, as shown in Figure  2-I. As described 
in our previous reports (Kimura and Matsuo, 2000; Maeda 
et  al., 2010, 2017), GN1-FNGs were eluted in the run-through 
or slightly retained fraction (F1, in this RP-HPLC system before 
20  min), and GN2-FNGs were eluted in the bound fraction 
(F2, after 20 min). The PA-oligosaccharides in these two fractions 
were further analyzed by SF-HPLC. As shown in Figure  2-II, 
the elution positions of peaks a, b, and c obtained from F1 
coincided with those of authentic M7’, M8’, and M9’, respectively, 
whereas the elution positions of peaks d and e from F2 coincided 
with those of authentic M8 and M9, respectively. Peaks c and 
e could be analyzed by electrospray ionization mass spectrometry 

(ESI-MS), as shown in Supplementary Figures  2, 3. For peak 
c, a parent ion was observed at m/z 879.8 as a double-charged 
ion, indicating that this signal was obtained from M9’ 
(Man9GlcNAc1-PA). All signals obtained from peak c by MS/MS 
analysis could be  assigned to fragment ions from 
Man9GlcNAc1-PA. For peak e, a parent ion was observed at 
m/z 981.38 as a double-charged ion, indicating that this signal 
was obtained from M9 (Man9GlcNAc2-PA). All signals obtained 
from peak e by MS/MS analysis could be  assigned to fragment 
ions from Man9GlcNAc2-PA. The structures of GN1- and 
GN2-FNGs in the pumpkin microsomes were further analyzed 
by exoglycosidase digestion. As shown in Figure  3-I, when the 
PA-oligosaccharides obtained from F1 and F2, as shown in 
Figure  2-II, were treated with Endo-H, peaks a, b, and c were 
not digested, but peaks d and e were digested as shown in 
Figure 3-II, indicating that peaks d and e represented HMT-GN2-
FNGs. However, peaks a, b, and c were converted to M5’ 
(Man5GlcNAc1-PA) upon α-1,2-Man’ase digestion, indicating that 
peaks a, b, and c represent Man7GlcNAc1-PA, Man8GlcNAc1-PA, 
and Man9GlcNAc1-PA, respectively. The positions of peaks d 
and e were converted to M5 (Man5GlcNAc2-PA) upon α-1,2-
Man’ase digestion, indicating that peaks d and e represented 
Ma8GlcNAc2-PA and Ma9GlcNAc2-PA, respectively. These results 
indicated that in addition to HMT-GN2-FNGs, HMT-GN1-
FNGs (cytosolic ENGase products) occurred in the ER 
compartments. The yield of these pyridylaminated GN1-FNGs 

FIGURE 1 | High performance liquid chromatography (HPLC) analyses of α-glucosidase I (I) and II (II) and endo-β-N-acetylglucosaminidase (ENGase; III) activities 
of the microsomes obtained from pumpkin hypocotyls α-Glc’ase I and II activities were assayed using Glc3Man9GlcNAc1-PA (G3M9’) and Glc2Man9GlcNAc1-PA 
(G2M9’), respectively, as substrates. The reaction mixtures were analyzed by size fractionation (SF)-HPLC, using a Shodex Asahipak NH2P-50 4E column. The 
ENGase activity was assayed using Man6GlcNAc2-PA (M6B) as a substrate and Man3Xyl1Fuc1GlcNAc2-PA (M3FX) as an internal standard. The reaction mixture was 
analyzed by reversed-phase (RP)-HPLC, using a Cosmosil 5C18-AR-II column.
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(M7’, M8’, and M9’) was approximately 40  pmol/g hypocotyls, 
whereas that of GN2-FNGs (M8 and M9) was approximately 
30  pmol/g hypocotyls. The total amount of the HMT-GN1/
GN2-FNGs obtained by the Con-A affinity chromatography 
from the soluble fraction (F-1 and F-2) was about 2.7  nmol/g 
hypocotyl, indicating that the amount of HMT-FNGs obtained 
from the microsomes was 1/40 of those in the soluble fraction. 
However, it seems that the amount maybe not reflect the real 
amount of FNGs occurring in the ER, since it is unlikely that 
total ERs have been collected during the fractionation process 
(some part of ERs maybe have been broken). At this moment, 
therefore, the real amount of FNGs occurring in the ER is obscure.

Since the microsomes prepared from the pumpkin hypocotyls 
showed α-Glc’ase I (a soluble enzyme) and α-Glc’ase II (a membrane-
bound enzyme) activities, the microsomes probably contained 
intact ER compartments. The presence of HMT-GN1-FNGs (Man9-

7GlcNAc1) in the ER compartments suggested that these HMT-GN1-
FNGs produced in the cytosol were retro-transported to the ER 
from the cytosol through unidentified transporter(s) specific for 
these free oligosaccharides. If this was true, these HMT-GN1-
FNGs, together with well-folded N-glycoproteins, might have been 
transported to the Golgi apparatus and processed into PCT-GN1-
FNGs, as observed in previous reports (Maeda et al., 2010, 2017). 
Finally, PCT-GN1-FNGs were secreted into the extracellular space, 
as shown in Figure  4. It appeared that this hypothetical scheme 

could explain why PCT-GN1-FNGs, which contained the Lewisa 
epitope [Galβ1-3(Fucα1-4)GlcNAcβ1-], were found in the culture 
broth, but not in the rice cells (Maeda et  al., 2010). Additionally, 
it is possible that the microsomes prepared in this study contained 
the Golgi apparatus as a minor component and the HMT-FNGs 
were obtained from the Golgi apparatus. However, since the Golgi 
apparatus contains several kinds of α-Man’ases (Liebminger et  al., 
2009; Kajiura et  al., 2010), the HMT-FNGs that occurred in the 
Golgi apparatus might have been trimmed into smaller N-glycans, 
such as Man6-4GlcNAc1, but not Man9GlcNAc1. In this study, such 
smaller size HMT-FNGs (Man6-4GlcNAc1) were not found, but 
in our previous study (Kimura et al., 2002), the very small amount 
of M5’ and M6’ in the ER-rich microsome fraction were found, 
which probably corresponded to F-3 in this study, and contamination 
of Golgi apparatus in F-3 cannot be completely excluded. Therefore, 
it seems to be  necessary to assay the activities of Golgi-marker 
enzyme(s) to prove the complete absence or negligible amount 
of the Golgi apparatus in F3. This result will provide more solid 
evidence that the predominant occurrences of HMT-GN1-FNGs 
in the ER. In this study, we  focused on HMT-FNGs in the ER, 
and at this moment it is obscure whether PCT-GN1-FNGs occur 
in the microsome fraction (F-3), although the amount might 
be  very small if any. The structural analysis of FNGs in F-1 and 
F-2 is necessary for the next step to confirm whether the Golgi 
apparatus were mainly fractionated in F-2 but not F-3.

FIGURE 2 | HPLC profiles of PA-oligosaccharides obtained from pumpkin microsomes. (I) The RP-HPLC profile of crude PA-oligosaccharides obtained from 
pumpkin microsomes is shown. The PA-oligosaccharides were separated by RP-HPLC using a Cosmosil 5C18-AR-II column. F1 contained GN1-FNGs, whereas  
F2 contained GN2-FNGs. (II) The SF-HPLC profiles of F1 and F2 obtained in (I). M9’, M8’, and M7’ indicate the elution positions of authentic PA-oligosaccharides 
(Man9GlcNAc1-PA, Man8GlcNAc1-PA, and Man7GlcNAc1-PA, respectively). M9 and M8 indicate the elution positions of authentic PA-oligosaccharides 
(Man9GlcNAc2-PA and Man8GlcNAc2-PA, respectively).
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The HMT-GN2-FNGs, Man9-8GlcNAc2, were also found in 
the pumpkin microsomes (or the ER compartment) in this 
study, suggesting that two putative mechanisms could be considered. 

One is that these GN2-FNGs were formed as byproducts during 
the transfer of Glc1Man9GlcNAc2 from the dolichol-
oligosaccharide intermediates to the nascent polypeptides by 

FIGURE 3 | Structural analysis of free N-glycans (FNGs) in pumpkin microsomes. (I) SF-HPLC of glycosidase-digested F1. 1, F1 obtained in Figure 1. 2, End-H-
digested F1. 3, α-1,2-Man’ase-digested F1. M5’ indicates the elution position of authentic Man5GlcNAc1-PA. (II) SF-HPLC of glycosidase-digested F2. 1, F2 
obtained in Figure 1. 2, End-H-digested F1. 3, α-1,2-Man’ase-digested F1. M5 indicates the elution position of authentic Man5GlcNAc2-PA.

FIGURE 4 | Schematic representation of the putative processing and secretion pathway of plant complex type (PCT)-GN1-FNGs based on the structural features 
of high-mannose type (HMT)-GN1-FNGs found in pumpkin microsomes is shown. The putative transporter for the HMT-GN1-FNGs produced from the HMT-GN2-
FNGs in the cytosol by ENGase has not yet been found.
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OST (Harada et  al., 2015), and the other is that, along with 
HMT-GN1-FNGs (ENGase products), the HMT-GN2-FNGs 
produced by cPNGase from misfolded glycoproteins were 
transported back to the ER. However, considering that the 
reaction rate of ENGase for HMT-GN2-FNG generation is very 
fast and the GN1-FNG concentration is greater than the GN2-FNG 
concentration (Kimura et  al., 2002), the former mechanism 
appears to be  more likely in plant cells, as shown in Figure  5. 
Furthermore, we  recently confirmed that HMT-FNGs and 
PCT-FNGs occurred in a mutant line of Arabidopsis thaliana, 
in which one cPNGase and two ENGase genes were completely 
knocked out, indicating that HMT-GN2-FNGs were generated 
without cPNGase activity and converted into PCT-FNGs through 
the Golgi apparatus via a certain pathway (Shirai et  al., 2019).

The putative transporter(s) responsible for the retro-
transportation of HMT-GN1-FNGs from the cytosol to the 
ER have not yet been identified, and the identification of such 
glycan-specific transporter(s) is a prerequisite to evaluate our 
hypothesis or reveal the degradation mechanism of GN1-FNGs 
formed during plant ERAD.
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Supplementary Figure 1 | Preparation of microsomes mainly containing the ER 
compartments from pumpkin hypocotyls. (I) Composition of the sucrose-
containing separation buffer used for microsome preparation by 
ultracentrifugation is shown. After ultracentrifugation (100,000 × g for 3 h), the 
samples were fractionated, as shown in the right figure. (II) HPLC analyses of the 
ENGase and α-Glc’ase I activities of the pumpkin microsomes obtained by the 
first ultracentrifugation were performed. α-Glc’ase I activity was assayed using 
Glc3Man9GlcNAc1-PA (G3M9’) as a substrate. The reaction mixtures were 
analyzed by SF-HPLC using a Shodex Asahipak NH2P-50 4E column. The 
ENGase activity was assayed using Man6GlcNAc2-PA (M6B) as a substrate and 
Man3Xyl1Fuc1GlcNAc2-PA (M3FX) as an internal standard. The reaction mixture 
was analyzed by RP-HPLC using a Cosmosil 5C18-AR-II column. Significant 
ENGase activity was found in F-1 in I, whereas significant α-Glc’ase I activity was 
found in F-3 in I.

FIGURE 5 | Schematic representation of the putative processing and secretion pathway of PCT-GN2-FNGs based on the structural features of HMT-GN2-FNGs 
found in pumpkin microsomes is shown. These PCT-GN2-FNGs have been found in soybean seedlings (Kimura and Kitahara, 2000), a freshwater plant (Egeria 
densa; Maeda et al., 2017), and the culture broth of rice cells (Maeda et al., 2010).
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Supplementary Figure 2 | ESI-MS analysis of peak c obtained from F1 (as 
obtained in Figure 2-II). (I) ESI-MS analysis of peak c obtained in Figure 2-II. (II) 
MS/MS analysis of a signal at m/z 879.8 [M + 2H]2+.

Supplementary Figure 3 | ESI-MS analysis of peak e obtained from F2 (as 
obtained in Figure 2-II). (I) ESI-MS analysis of peak e, as obtained in Figure 2-II. 
(II) MS/MS analysis of a signal at m/z 981.3 [M + 2H]2+.
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GLOSSARY

TERM Definition

ER Endoplasmic reticulum

ERAD ER-associated degradation
ENGase Endo-β-N-acetylglucosaminidase
cPNGase Cytosolic peptide:N-glycanase
OST Oligosaccharyltransferase
α-Glc’ase I α-Glucosidase I (ER α-1,2-glucosidase)
α-Glc’ase II α-Glucosidase II (ER α-1,3-glucosidase)
α-1,2-Man’ase α-1,2-Mannosidase
FNG Free N-glycan
GN1-FNG Free N-glycan bearing one GlcNAc residue at the reducing end
GN2-FNG Free N-glycan bearing two GlcNAc residues at the reducing end
HMT-FNG High-mannose type FNG
PCT-FNG Plant complex type FNG
Lea Lewis a
PA- Pyridylamino
RP-HPLC Reversed-phase HPLC
SF-HPLC Size-fractionation HPLC
ESI-MS Electrospray ionization mass spectrometry
Glc D-Glucose
Man D-Mannose
GlcNAc N-acetyl-D-glucosamine
Xyl D-Xylose
Fuc L-Fucose
M6B Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-PA
M3FX Manα1-6(Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA
G3M9’ Manα1-2Manα1-6(Manα1-2Manα1-3)Manα1-6(Glcα1-2Glcα1-3Glcα1-3Manα1-2Manα1-2Manα1-3)Manβ1-4GlcNAc-PA
G2M9’ Manα1-2Manα1-6(Manα1-2Manα1-3)Manα1-6(Glcα1-3Glcα1-3Manα1-2Manα1-2Manα1-3)Manβ1-4GlcNAc-PA
Mn’ MannGlcNAc1-PA
Mn MannGlcNAc2-PA
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