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The Mediterranean realm, comprising the Mediterranean and Macaronesian regions, has long 
been recognized as one of the world’s biodiversity hotspots, owing to its remarkable species 
richness and endemism. Several hypotheses on biotic and abiotic drivers of species 
diversification in the region have been often proposed but rarely tested in an explicit phylogenetic 
framework. Here, we investigate the impact of both species-intrinsic and -extrinsic factors on 
diversification in the species-rich, cosmopolitan Limonium, an angiosperm genus with center 
of diversity in the Mediterranean. First, we infer and time-calibrate the largest Limonium 
phylogeny to date. We then estimate ancestral ranges and diversification dynamics at both 
global and regional scales. At the global scale, we test whether the identified shifts in 
diversification rates are linked to specific geological and/or climatic events in the Mediterranean 
area and/or asexual reproduction (apomixis). Our results support a late Paleogene origin in 
the proto-Mediterranean area for Limonium, followed by extensive in situ diversification in the 
Mediterranean region during the late Miocene, Pliocene, and Pleistocene. We found significant 
increases of diversification rates in the “Mediterranean lineage” associated with the Messinian 
Salinity Crisis, onset of Mediterranean climate, Plio-Pleistocene sea-level fluctuations, and 
apomixis. Additionally, the Euro-Mediterranean area acted as the major source of species 
dispersals to the surrounding areas. At the regional scale, we infer the biogeographic origins 
of insular endemics in the oceanic archipelagos of Macaronesia, and test whether woodiness 
in the Canarian Nobiles clade is a derived trait linked to insular life and a biotic driver of 
diversification. We find that Limonium species diversity on the Canary Islands and Cape Verde 
archipelagos is the product of multiple colonization events followed by in situ diversification, 
and that woodiness of the Canarian endemics is indeed a derived trait but is not associated 
with a significant shift to higher diversification rates. Our study expands knowledge on how 
the interaction between abiotic and biotic drivers shape the uneven distribution of species 
diversity across taxonomic and geographical scales.

Keywords: Messinian salinity crisis, Mediterranean climate, sea-level fluctuations, asexual reproduction, 
in situ diversification, island biogeography, Macaronesia, long-distance dispersal
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INTRODUCTION

Biodiversity on Earth is unevenly distributed. Species richness 
varies across habitats, geographic regions, and taxonomic 
groups, raising long-standing questions about the ecological 
and evolutionary mechanisms underpinning this variation. 
Factors that drive speciation and extinction (i.e., species 
diversification) have altered biodiversity in space and time. 
Drivers of diversification include abiotic factors, for example, 
tectonic processes and climatic events (Barnosky, 2001), and 
biotic factors, for example, reproductive traits, ploidy levels, 
hybridization, and habit (Soltis et al., 2019). Numerous studies 
have focused on identifying a single key trait and linking it 
to shifts in diversification rates (e.g., Mayhew et  al., 2008; 
de Vos et  al., 2014; Howard et  al., 2020). However, both 
biotic and abiotic factors can act synergistically toward changes 
in diversification (e.g., Bouchenak-Khelladi et  al., 2015; 
Donoghue and Sanderson, 2015; Condamine et  al., 2018). 
Analyses of spatio-temporal evolution and drivers of 
diversification in species-rich lineages are crucial to clarify 
the role of past biotic and abiotic changes in the origins of 
species diversity and predict how lineages will be  affected 
by ongoing environmental changes.

Flowering plant diversity is partitioned taxonomically, 
geographically, and environmentally. Angiosperms comprise 
more than 13,000 genera (Christenhusz and Byng, 2016) 
ranging in size from a single to thousands of species, yet 
only about 70 genera are characterized as species rich (with 
≥500 species; Frodin, 2004; Mabberley, 2017). Furthermore, 
plant diversity is concentrated in 36 global biodiversity hotspots 
that cover only 16% of Earth’s surface but harbor more than 
50% of endemic vascular plants and are undergoing remarkable 
loss of habitat (Myers et  al., 2000; Mittermeier et  al., 2011). 
The Mediterranean has been identified as one of the world’s 
biodiversity hotspots by Mittermeier et al. (2011) and Critical 
Ecosystem Partnership Fund (2019). These authors defined 
the Mediterranean hotspot as comprising the Mediterranean 
region (i.e., mainland areas surrounding the Mediterranean 
Sea and the islands in it) and Macaronesia (i.e., Canaries, 
Cape Verde, Azores, Madeira, and Selvagen Islands). The 
Mediterranean region and Macaronesia combined are also 
often referred to as the Mediterranean realm (e.g., Comes, 
2004; Mansion et  al., 2009). This hotspot covers only 1.6% 
of the Earth’s surface, yet accommodates 10% of its total 
plant species richness, representing the third richest hotspot 
with approximately 25,000 species, more than half of which 
are endemic (Medail and Quezel, 1997; Blondel et  al., 2010; 
Critical Ecosystem Partnership Fund, 2019). Its geographic 
location at the crossroads of three continents (Europe, Africa, 
and Asia) makes the Mediterranean a large contact zone for 
taxa of different biogeographic origins (e.g., Eurasian 
Circumboreal, Irano-Turanian, and Saharo-Arabian), which, 
together with taxa that originated and diversified in situ, 
form its remarkably diverse flora (Blondel and Aronson, 1999).

The Mediterranean region has undergone multiple geological 
and climatic upheavals (Thompson, 2005). Geologically, the 
region originated from two ancient, independent ocean basins: 

the Alpine Tethys Ocean (opened during the Middle to Late 
Jurassic and related to the opening of the Central Atlantic) 
in the Northwest and the Neotethys Ocean (opened from 
the Triassic to the Jurassic between Laurasia and Gondwana) 
in the Southeast (van Hinsbergen et  al., 2020 and references 
therein). From the Cretaceous to the early Miocene, a continuing 
convergence of tectonic plates brought Europe and Africa 
progressively closer (Rosenbaum et  al., 2002). In the late 
Miocene, uplift at the continental margins of Iberia and Africa 
triggered extensive basin desiccation (Duggen et  al., 2003; 
Gargani and Rigollet, 2007). This period, known as the 
Messinian Salinity Crisis (MSC, from ca. 5.96 to 5.33  Ma; 
Krijgsman et  al., 1999), has been described as “one of the 
most dramatic events on Earth during the Cenozoic era” 
(Hsü et  al., 1973; Duggen et  al., 2003).

The MSC and the onset of the Mediterranean climate 
(3.2–2.8 Ma; Suc, 1984) were landmark events in the evolution 
of diversity in the Mediterranean region (Fiz-Palacios and 
Valcárcel, 2013). The creation of saline deserts during the MSC 
(Hsü et  al., 1973) produced land bridges between islands and 
continental areas that potentially facilitated migrations of plants 
with the necessary dispersal properties and salt-tolerance (e.g., 
halophytes). The MSC is considered to have facilitated speciation 
in arid-adapted lineages and extinction in sub-tropical Tertiary 
lineages (Rodríguez-Sánchez et al., 2008; Jiménez-Moreno et al., 
2010; Crowl et  al., 2015). The refilling of the basin at the end 
of the MSC disrupted previously formed land bridges, thus 
promoting vicariance, and mitigated aridity (García-Castellanos 
et  al., 2009), thus possibly causing extinction of arid-adapted 
lineages (Fiz-Palacios and Valcárcel, 2013). While the effects 
of MSC on the Mediterranean flora are still debated, the positive 
effects of the emergence of the Mediterranean climatic regime 
on diversification are corroborated by multiple studies (e.g., 
Valente et  al., 2010; Fiz-Palacios and Valcárcel, 2011). 
Furthermore, several plant lineages show a temporal period 
of reduced diversification rate from the Messinian event to 
the onset of the Mediterranean climate that has been variably 
attributed to either mass extinction, rate stasis, or a combination 
of the two (Fiz-Palacios and Valcárcel, 2013).

During the late Pliocene-early Pleistocene, cooler and dryer 
conditions were implicated in several extinctions (Bessedik 
et al., 1984), while Pleistocene glacial cycles and eustatic sea-level 
changes (2.58–0.01  Ma; Lisiecki and Raymo, 2007) further 
impacted Mediterranean plant diversification and distributions. 
Pleistocene geoclimatic oscillations caused species range 
contractions and expansions as plant populations fragmented 
and merged in response to the appearance and disappearance 
of dispersal barriers through time, with contrasting effects on 
diversification of different Mediterranean plant lineages (Nieto 
Feliner, 2014). Furthermore, different types of islands (oceanic 
and continental), substrates, and microclimates provided 
opportunities for adaptation and speciation driven by both 
ecological and geographical barriers. Overall, geomorphological 
and climatic processes, coupled with a long history of human 
activities in the Mediterranean, created a mosaic of heterogeneous 
habitats, where a diversity of abiotic factors had profound 
impacts on diversification.
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In addition to extrinsic environmental factors, inherent 
biological features also play a key role in diversification. For 
example, hybridization, polyploidy, plant habit, and reproductive 
strategies have all been invoked to explain species divergence 
and eco-geographical differentiation in plants (Rieseberg et  al., 
2003; Goldberg et  al., 2010; Goldberg and Igić, 2012; Soltis 
et  al., 2013). In particular, asexual reproduction via apomixis 
(i.e., cloning through seeds; Asker and Jerling, 1992) can 
promote rapid diversification by enabling reproductively isolated 
genotypes to form rapidly, providing reproductive assurance 
in the absence of pollinators and/or mates, and offering an 
escape from sterility in newly formed polyploid hybrid individuals 
(Baker, 1955; Darlington, 1958; Majeský et al., 2017). Apomixis 
can enable the establishment of a new population from a single 
individual, an analogous effect to that of selfing as proposed 
by Baker (1955). Furthermore, in oceanic island systems, such 
as Macaronesia, the evolution of woodiness from herbaceous 
ancestors following island colonization has been proposed as 
a key driver of insular radiations (Nürk et  al., 2019). Thus, 
elucidating the timing, space, and rates of diversification of 
Mediterranean and Macaronesian lineages and attempting to 
correlate them with likely biotic and abiotic drivers is essential 
to explain the evolution of biodiversity in the Mediterranean 
hotspot (Comes, 2004).

To achieve a deeper understanding of diversification dynamics 
in the Mediterranean realm, it is necessary to focus on widely 
distributed plant groups with high species diversity in this 
region and biotic traits that could act as triggers of diversification 
given the unique geo-climatic history of the area. Limonium 
Mill. (sea lavender; Plumbaginaceae) qualifies as such a group. 
It is a species-rich genus (ca. 600 species; Koutroumpa et  al., 
2018) in the top 0.005% of angiosperm genera for size (according 
to Frodin’s, 2004 criteria) and has a cosmopolitan distribution 
with center of diversity in the Mediterranean (ca. 70% of the 
species, mostly endemics, occur in the region). Limonium 
species, characterized as facultative halophytes (i.e., salt tolerant), 
grow predominantly on saline and metal-rich soils of mainland 
and coastal areas (Erben, 1978). They represent an important 
component of coastal vegetation in Mediterranean ecosystems 
and contribute the dominant species in several vegetation types 
(e.g., Crithmo-Limonietea class; Brullo et  al., 2017). Limonium 
displays marked variation of chromosome numbers, ranging 
from 12 to 18  in diploids and from 24 to 72  in polyploids 
(Erben, 1979; Brullo and Erben, 2016). Sea lavenders can 
reproduce both sexually and asexually via apomixis, with most 
sexual species characterized by pollen-stigma dimorphism and 
sporophytic self-incompatibility (Baker, 1966). Apomixis occurs 
exclusively in polyploid taxa, some of presumed hybrid origin 
(Erben, 1979). The combined effects of polyploidy, hybridization, 
and apomixis have been suggested as having shaped Limonium 
diversity in the Mediterranean region (e.g., Ingrouille, 1984; 
Palacios et  al., 2000; Lledó et  al., 2005). Previous phylogenetic 
and taxonomic analyses concluded that all described apomictic 
species of Limonium, together with some sexual species, belong 
to a single large clade formed by the vast majority of 
Mediterranean endemics, named the “Mediterranean lineage” 
by Koutroumpa et  al. (2018). The same study placed the 

Macaronesian endemics in four clades of the Limonium tree, 
with the majority of them included in the Nobiles and Jovibarba-
Ctenostachys clades. The Nobiles clade consists entirely of 
Canarian endemics with a woody (suffruticose) habit. The 
Jovibarba-Ctenostachys clade comprises endemics of the Canaries 
and Cape Verde archipelagos together with endemics in Morocco 
and Hispaniola (Malekmohammadi et  al., 2017; Koutroumpa 
et  al., 2018). A previous phylogenetic study, limited to ca. 8% 
of Limonium species and based on a single biogeographic 
calibration, inferred a late Miocene (ca. 6–7  Ma) origin for 
the Mediterranean clade of Limonium with most diversification 
during the Messinian and Pliocene (Lledó et  al., 2005). The 
same study inferred the diversification of Macaronesian clades 
between the late Miocene and Pliocene. Owing to its large 
size, worldwide distribution, and uneven diversity among 
regions, Limonium is an ideal group to elucidate the factors 
shaping the partitioning of biodiversity through space and 
time, warranting a new study with enhanced sampling 
and methodology.

Here, we  generate and time calibrate the largest phylogeny 
to date of Limonium and Plumbaginaceae. By reconstructing 
ancestral areas of distribution, inferring the tempo of 
diversification, and estimating diversification rate dynamics, 
we  address the following questions. At the global scale we  ask: 
(1) When and where did the genus originate and diversify? 
(2) Can we  detect significant shifts of diversification rates and 
link them to specific abiotic (major geological and/or climatic 
events) and/or biotic factors (apomixis)? More specifically, 
we test whether diversification rates are constant or heterogeneous 
in Limonium, and whether potential rate changes are concomitant 
with changes in extrinsic and intrinsic variables. At the regional 
scale, we  focus on island biogeography, trait evolution, and 
diversification of Macaronesian Limonium by asking: (1) What 
are the biogeographic origins of island endemics in Macaronesia? 
(2) Did the transition from herbaceousness to woodiness 
precede or follow island colonization in the Canarian Nobiles 
clade? Specifically, we hypothesize that woodiness is a derived 
state linked to insular life, as suggested by several studies 
(e.g., Carine et  al., 2010; Lens et  al., 2013), rather than an 
ancestral state preserved in islands, as proposed by the 
“islands-as-museums” hypothesis (Cronk, 1997). (3) Did the 
transition to woodiness trigger an increase in diversification 
rate in the Canarian Nobiles clade, as found in other insular 
clades (Nürk et al., 2019)? Our findings highlight the importance 
of both extrinsic and intrinsic factors in generating the 
remarkable plant diversity of a global biodiversity hotspot, 
the Mediterranean realm.

MATERIALS AND METHODS

Taxon and Molecular Sampling
We sampled more than one-third of all Limonium species 
(i.e., 216 taxa representing 214 species: 212 species were identified 
at the species level, one species was identified at the subspecies 
level, and one species was represented by three varieties) together 
with 66 species of 20 other Plumbaginaceae genera. 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Koutroumpa et al. Drivers of Diversification in Limonium

Frontiers in Plant Science | www.frontiersin.org 4 January 2021 | Volume 11 | Article 612258

Additionally, 20 species from the sister family of Polygonaceae 
(both subfamilies sampled) were used as outgroup taxa for 
phylogenetic inference (Supplementary Table S1). Our sampling 
of Limonium includes representatives from all taxonomic 
subdivisions and phylogenetic clades (Malekmohammadi et al., 
2017; Koutroumpa et  al., 2018) and spans its cosmopolitan 
distribution. Sampling of Plumbaginaceae and Polygonaceae 
provided appropriate nodes for fossil and secondary calibrations. 
Overall, our molecular dataset comprised 302 taxa and a 
total of 1,039 sequences from one nuclear (261 ITS sequences) 
and three chloroplast (291 trnL-F, 243 rbcL, and 244 matK 
sequences) markers. Here, we  increase taxon sampling by 15 
taxa compared to the previously published phylogeny of 
Limonium and Plumbaginaceae of Koutroumpa et  al. (2018). 
Molecular methods for 70 newly generated sequences and 
alignments followed Koutroumpa et  al. (2018).

Phylogenetic and Dating Analyses
Phylogenies were estimated using maximum likelihood (ML) 
and Bayesian inference (BI) as implemented in RAxML 8.2.10 
(Stamatakis, 2014) and MrBayes 3.2.6 (Ronquist et  al., 2012), 
respectively, following conditions described in Koutroumpa et al. 
(2018; except for BI of supermatrices for which chains ran for 
30 million generations). Trees were inferred for each locus 
separately and in concatenation (concatenated datasets: 3-loci 
cpDNA matrix and 4-loci “Supermatrix”). We  inspected the 
resulting cpDNA and ITS trees to detect incongruences between 
well-supported clades (as defined in Koutroumpa et  al., 2018) 
and identify “rogue taxa” (i.e., taxa placed in different well-
supported clades in the cpDNA vs. the ITS tree). Given the 
small number of conflicts thus identified, we additionally inferred 
phylogenies for a Supermatrix from which we  excluded ITS 
sequences of “rogue clades and taxa” (hereafter “Supermatrix-
cpDNA-like”) and a Supermatrix from which we excluded cpDNA 
sequences of “rogue clades and taxa” (hereafter “Supermatrix-
ITS-like”). Trees from these two trimmed supermatrices have 
higher resolution than those from the three-loci cpDNA matrix 
and ITS matrix.

Divergence time estimates were performed in BEAST 2.5.1 
(Bouckaert et  al., 2019) for ITS, cpDNA, “Supermatrix,” 
“Supermatrix-ITS-like,” and “Supermatrix-cpDNA-like” datasets, 
using five calibration points. Following a comprehensive review 
of literature for the Plumbaginaceae-Polygonaceae fossil record 
and dated angiosperm phylogenies, and following guidelines 
for nodal assignment of fossils (Magallon and Sanderson, 2001; 
Rutschmann et al., 2007), we calibrated four nodes (two within 
Plumbaginaceae and two within Polygonaceae), and the stem 
node of Plumbaginaceae, forming a total of five calibration 
points (see Supplementary Figures S1, S2); the details of the 
calibration process are described below. Although fossils for 
Plumbaginaceae are sparse, two internal nodes could 
be calibrated: an Armeria-type pollen fossil from upper Miocene 
(Van Campo, 1976; Muller, 1981) was used as a minimum 
age constraint (5.333  Ma) for the Limonieae crown-node (the 
origin of Armeria-type pollen according to Costa et  al.’s, 2019 
ancestral state estimates), and a pollen fossil of Ceratolimon 
cf. feei (former Limoniastrum; Beucher, 1975; Muller, 1981) 

from the Pliocene was used as minimum age constraint (2.58 Ma) 
for the Ceratolimon stem-node. We  also used two fossils from 
Polygonaceae: a Coccoloba pollen fossil from the upper Miocene 
(Graham, 1976; Muller, 1981) was used to assign a minimum 
age (5.333 Ma) to the Coccoloba stem-node and Muehlenbeckia-
type pollen (†Rhoipites muehlenbeckiaformis; Macphail, 1999) 
from the upper Eocene was used as minimum age constraint 
(33.9  Ma) for the Muehlenbeckia stem-node. Finally, we  used 
a secondary calibration for the stem of Plumbaginaceae based 
on age estimates from the dated angiosperm phylogeny of 
Magallón et  al. (2015) [mean: 67.9  Ma and 95% Highest 
Posterior Density (HPD): 65.63–78.21  Ma]. We  employed 
uniform priors for fossil calibrations with a hard maximum 
bound of 78.21  Ma (Magallón et  al.’s, 2015 HPD max age for 
Plumbaginaceae-Polygonaceae split) and minimum bounds 
mentioned above. Employing the conservative approach of 
uniform priors, we  consider that fossils can provide only 
minimum ages and that paucity of fossil records hinders the 
use of more informative priors (similar to other angiosperm 
studies, e.g., Bouchenak-Khelladi et  al., 2014; Boucher et  al., 
2016). For the secondary calibration, we  ran analyses using 
either a normal (mean age of 67.9  Ma and SD of 5.25 Myr) 
or a uniform prior (65.63–78.21  Ma), which produced very 
similar age estimates (Supplementary Table S2). Thus, we present 
results from analyses with uniform priors following Schenk 
(2016), who demonstrated reduced error in uniform vs. normal 
priors for secondary calibrations.

Divergence times were inferred using a relaxed uncorrelated 
lognormal clock and a nucleotide substitution model-averaging 
method (bModelTest tool; Bouckaert and Drummond, 2017) 
for each of the two partitions (ITS vs. cpDNA). bModelTest 
integrates over 203 time-reversible models while simultaneously 
estimating other parameters (estimates weighted by the support 
of each model). Independent runs of 200 million generations 
were combined (after removing up to 22.5% as burn-in) 
using LogCombiner 2.5.1, and maximum clade credibility 
(MCC) trees were constructed in TreeAnnotator 2.5.1 
(Drummond et  al., 2012). Chain convergence was verified 
in Tracer 1.7.1 [Effective Sample Size (ESS) >200 for all 
parameters; Rambaut et  al., 2018]. The 95% HPD intervals 
of inferred ages for the five datasets overlapped with each 
other (Supplementary Table S2). Thus, we  performed all 
subsequent analyses on the Limonium clade pruned from 
the “Supermatrix-ITS-like” and “Supermatrix-cpDNA-like” 
MCC trees (see also justification above), unless otherwise 
specified. BEAST and MrBayes analyses were performed using 
the CIPRES Science Gateway (Miller et  al., 2010).

Biogeographic Analyses
We estimated ancestral ranges for Limonium on “Supermatrix-
ITS-like” and “Supermatrix-cpDNA-like” MCC trees using the 
R package BioGeoBEARS 1.1.2 (Matzke, 2013; R Core Team, 
2018). Considering current species distributions, patterns of 
endemism, and the floristic regions occupied by the species, 
we identify nine major biogeographic areas: South Africa, Euro-
Mediterranean, North Africa, Irano-Turanian, Macaronesia, East 
Asia-Australia, Circumboreal, America, and Arabia-NE Africa. 
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Taxa were coded as present or absent in these areas (Figure  1 
and Supplementary Table S3). We  tested DEC (Dispersal-
Extinction-Cladogenesis, Ree and Smith, 2008) and DIVA-like 
models (Dispersal-Vicariance Analysis, Ronquist, 1997). 
We  chose not to use the BayArea-like model (Landis et  al., 
2013) since it does not allow for vicariance or “subset-within-
area” speciation (allowed in DIVA-like and/or DEC models), 
which are both plausible considering species distributions and 
the broad areas defined in our study.

Time-stratified analyses with dispersal multiplier matrices were 
also employed to account for differences in dispersal probabilities 
due to changes in distances and connectivities between areas 
over time (Supplementary Table S4). In all biogeographic analyses, 
Macaronesia was allowed as an ancestral range only after 27 Ma, 
corresponding to the age of the oldest extant volcanic islands, 
i.e., the Selvagen Islands (Borges et  al., 2008; Carine et  al., 2010; 
Triantis et al., 2010; Fernández-Palacios et al., 2011). Considering 
the uncertainty surrounding the reconstruction of past sea levels 
(Miller et  al., 2005; Rohling et  al., 2014), we  chose the age of 
27  Ma as the most widely accepted, hence conservative estimate 
for the oldest emerged island in Macaronesia. Unlikely disjunct 
ranges (i.e., non-neighboring, geographically unconnected areas 
over the inferred existence of Limonium, starting ca. 40  Ma) 
were removed from the list of possible states. All models were 
also run with j parameter, which accounts for founder-event 
speciation. However, due to criticism by Ree and Sanmartín 
(2018) concerning “degenerate” inferences of +j models and 
inappropriate statistical comparisons of models with and without 
j, and considering that our inferences with and without j parameter 
closely match each other, we  present only results of models 
without j and compare their likelihoods using AIC and AICc. 
We additionally estimated the type and number of biogeographical 
events using Biogeographical Stochastic Mapping (BSM; Matzke, 
2016; Dupin et  al., 2017) in BioGeoBEARS 1.1.2, providing the 
best-fitting model for each MCC tree and summarizing event 
frequencies over 200 discrete stochastic maps.

At a finer biogeographic scale, we  investigated the origins 
of island endemics in Macaronesia and analyzed a clade 
(Jovibarba-Ctenostachys clade) comprising endemics in the 
Canaries, Cape Verde, Morocco, and Hispaniola in the Caribbean 
(four coded areas). Since the Jovibarba-Ctenostachys clade shows 
topological differences between datasets, we  pruned it from 
cpDNA, ITS and “Supermatrix” MCC trees, ran DEC, DIVA-
like, and BayArea-like models and compared results for all 
three trees. In contrast to the genus-wide biogeographic analyses, 
we  included also the BayArea-like model for the biogeographic 
analyses of the Jovibarba-Ctenostachys clade because the absence 
of vicariance and “subset-within-area” speciation of this model 
was not considered a limitation for a lineage consisting exclusively 
of endemics, most of which are insular. Their biogeographic 
history could only be  explained by dispersal, extinction, and 
sympatric speciation, all of which are accounted for in the 
BayArea-like model.

Diversification Analyses
We estimated speciation and extinction rate dynamics of 
Limonium applying recently developed methods to both 

“Supermatrix-ITS-like” and “Supermatrix-cpDNA-like” MCC 
trees. First, we  tested for shifts in diversification rates along 
tree branches and through time, using Bayesian Analysis of 
Macroevolutionary Mixture (BAMM 2.5; Rabosky et al., 2014). 
Sampling fractions per Limonium clade/section (following the 
classification of Koutroumpa et al., 2018: Supplementary Table S3) 
were provided in order to account for missing species 
(Supplementary Table S5). The R package BAMMtools 2.1.6 
(Rabosky et  al., 2014) was used to choose appropriate priors 
for BAMM analyses, analyze, and visualize results. BAMM 
was run with four independent chains of 100 million generations 
each and convergence was confirmed with ESS >200 for all 
parameters. The absence of recent, comprehensive monographic 
treatments for Limonium prevents us from performing analyses 
that account for potential discrepancies among different 
taxonomic treatments (e.g., Faurby et  al., 2016). Moreover, 
taxonomic uncertainties could especially affect the apomictic 
species of the “Mediterranean lineage” (Haveman, 2013; Majeský 
et al., 2017). Acknowledging that taxonomic uncertainties could 
affect estimates of diversification rate dynamics (Faurby et  al., 
2016; Fernández-Mazuecos et  al., 2019), we  ran preliminary 
sensitivity analyses in BAMM, where we  arbitrarily assumed 
that the number of species for the “Mediterranean lineage” is 
only half of the currently accepted number of “Mediterranean 
lineage” species (i.e., ca. 200 vs. 400 species), and thus assigned 
a higher sampling fraction to this lineage to account for missing 
species in analyses of both MCC trees (i.e., ½ instead of ¼; 
the former being the fraction used in the preliminary analyses). 
The signal in our data was so strong that even in these 
preliminary analyses that underestimated the number of species 
in the “Mediterranean lineage,” a shift in rates was recovered 
for this lineage in both MCC trees, despite the extreme and 
rather unrealistic taxonomic scenario.

Second, we  tested for episodic tree-wide rate shifts caused, 
for example, by a mass extinction event, such as the one 
hypothesized for the temporal gap of diversification from the 
MSC to the onset of the Mediterranean climate in other 
Mediterranean plant lineages. We  used the CoMET algorithm 
implemented in the R package TESS 2.1 (Höhna et  al., 2015) 
to test for signals of mass extinction events and for shifts in 
speciation and extinction rates over time. Changes in speciation 
and extinction are modeled to occur at discrete time points 
and affect all clades in a tree simultaneously (episodic birth-
death). We  ran models assuming one or two rate shifts and 
allowing mass extinction events. A global sampling fraction 
of Limonium was provided to account for sampling probability 
of extant taxa (“Supermatrix-ITS-like”: 0.35 and “Supermatrix-
cpDNA-like”: 0.36). We  also used the automatic stopping 
functionality and specified a minimum ESS of 1,000 to allow 
MCMC simulations to reach convergence.

Third, we fitted different diversification models with constant 
or varying speciation and/or extinction rates through time and 
in relation to paleoenvironmental variables (Morlon et al., 2010; 
Condamine et  al., 2013) using the R package RPANDA 1.6 
(Morlon et  al., 2016). Analyses were repeated using different 
initial parameters and choosing the solution with the highest 
likelihood for each model. Models were compared using AICc 
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and a multimodel inference approach was employed for parameter 
estimates of time-dependent analyses (Burnham and Anderson, 
2002). According to Morlon et  al. (2011), rate heterogeneity 
can affect diversification rate estimates if such heterogeneity 
is not accounted for. Thus, apart from fitting models to the 
entire tree, RPANDA allowed us to test and account for rate 
heterogeneity by fitting models to subclades for which shifts 
were inferred in BAMM analyses (see section Results) and to 
the remaining phylogeny after removing these subclades. Models 
with or without rate shifts were then compared using the 
AICc. Global or clade-specific sampling fractions were assigned 
in analyses of either the entire phylogeny or the subclades 
defined above (in heterogeneity analyses), respectively, to account 
for incomplete taxon sampling. Paleoenvironmental variables 
used in RPANDA analyses as potential correlates of diversification 
rates were (i) global temperature throughout the Cenozoic 
(Zachos et  al., 2008), fitted to the entire tree or all parts of 
the tree in heterogeneity analyses and (ii) past sea-level estimates 
(Miller et al., 2005; Rohling et al., 2014), fitted to Mediterranean 
subclade(s) that comprise coastal species (heterogeneity analyses; 
see environmental curves in Supplementary Figure S3). 
Specifically, the recent sea-level reconstructions of Rohling et al. 
(2014) in the Mediterranean are limited to the past 5.3 Myr 
and thus were fitted to the temporally corresponding part of 
the Mediterranean subclade, requiring that a few early-diverging 
taxa were removed from the subclade.

State-Dependent Diversification
We tested for the effect of reproductive system on diversification 
rates using several state-dependent speciation and extinction 
(SSE) models. We  assembled available information on 
reproductive strategies, coding 175 Limonium taxa (out of the 
216 taxa included in the trees) as sexual or apomictic based 
on the literature (see Supplementary Table S6). Tips with 
missing reproductive information were dropped from 
“Supermatrix-ITS-like” and “Supermatrix-cpDNA-like” MCC 
trees before analyses.

First, we  used BiSSE (Maddison et  al., 2007) implemented 
in the R package diversitree 0.9–11 (FitzJohn et  al., 2009; 
FitzJohn, 2012) to evaluate 10 models in which speciation, 
extinction, and transition rates varied or remained equal between 
states; two of these models had zero extinction (pure-birth 
models). Since we  lack information on reproductive system 
for many Limonium species, we  conducted three analyses with 
three different sampling fractions for each state (sexual vs. 
apomictic) to account for missing species in the phylogeny 
and tested the robustness of the results. In the first analysis, 
we  assumed that the same proportion of sexuals vs. apomicts 
sampled in the entire Limonium phylogeny also applies to 

unsampled taxa (i.e., global sampling fraction). In the other 
two analyses, we incorporated prior knowledge that all described 
apomicts are included in the “Mediterranean lineage” (while 
species in all other lineages are sexual) and assumed either 
50–50 or 40–60% of sexuals vs. apomicts in this lineage; we also 
accounted for uneven sampling in major lineages of Limonium 
by using the “make.bisse.uneven” function. We  consider the 
latter sampling scenario as more realistic, since the predominance 
of apomicts over sexuals in the Mediterranean has been 
documented by Brullo and Erben (2016). Finally, we accounted 
for confidence intervals of parameter estimates by running a 
Bayesian MCMC with 50,000 steps using an exponential prior 
(following FitzJohn, 2012) and the best-fitting model for each 
analysis. Chain convergence was checked using the R package 
coda (Plummer et  al., 2006) and results were plotted after 
removing 5,000 steps as burn-in.

Second, due to criticism of BiSSE concerning incorrect 
assignments of rate differences for neutral observed states in 
phylogenies, where rate heterogeneity is caused by other factors 
(Maddison and FitzJohn, 2015; Rabosky and Goldberg, 2015), 
we  applied the Hidden SSE (HiSSE; Beaulieu and O’Meara, 
2016) model to specifically account for other unmeasured 
factors impacting diversification rates. We  tested seven models 
(model details in Beaulieu and O’Meara, 2016): a full BiSSE-
like model, two HiSSE models with equal or varying transition 
rates (one rate for transitions among hidden states and two 
rates for transitions between sexual reproduction and apomixis), 
and four character-independent diversification (CID) models 
assuming that diversification is trait-independent but not constant 
across the tree (CID-2 and CID-4 models match complexity 
of BiSSE and HiSSE models, respectively). We  also used the 
same three sampling scenarios for sexuals vs. apomictic states 
explained above, but without assigning uneven lineage-specific 
sampling probabilities (not implemented in HiSSE). Furthermore, 
we  inferred the model-averaged rate estimates for all tips in 
both MCC trees and for all analyses to examine whether 
diversification rates varied between sexuals and apomicts. In 
BiSSE and HiSSE analyses, the tested models were compared 
with AIC.

Third, we  used FiSSE (Rabosky and Goldberg, 2017) as a 
nonparametric test for reproductive system-dependent 
diversification in Limonium. This test is used for additional 
validation of results obtained from the other two state-dependent 
models (Rabosky and Goldberg, 2017). FiSSE shows the lowest 
“false positive” rates compared to BiSSE and HiSSE, but its 
power in detecting state-dependent diversification is much lower 
than BiSSE for trees with <300 tips (Rabosky and Goldberg, 2017). 
Although our trees are relatively small for the power limits 
of FiSSE, we  expect that a significant state-dependent 

FIGURE 1 | Time calibrated phylogeny and biogeography of Limonium based on “Supermatrix-ITS-like” dataset. The nine areas used for biogeographic inference are 
color coded as in the world map and corresponding list in the upper left inset. Colored squares on nodes indicate the most likely ancestral areas; due to space 
limitations, some nodes have no colored squares: in these cases, ranges are the same as in their respective ancestral nodes. Triangles and X’s along branches indicate 
range expansions and contractions, respectively, that occurred when geological events significantly impacted Limonium’s distribution and diversification (i.e., in the early 
Oligocene, early to middle Miocene and during the Messinian). These periods are marked by vertical color bands. In two of these periods, namely in the early Oligocene 
and the early to middle Miocene, paleomaps show the Mediterranean geographic configuration in each time frame (paleomaps are from the article of Rögl, 1999 
published in Geologica Carpathica journal under the CC BY-NC-ND 4.0 license). Uncertainties in ancestral range estimates are in Supplementary Figure S4.
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diversification, if detected, would show that the signal of our 
data is strong enough to overcome FiSSE’s power limitations. 
Conversely, finding non-significant state-dependent diversification 
does not allow the possibility that this result is due to FiSSE’s 
power limitations to be  excluded, especially when the other 
two methods support state-dependent diversification. Here, 
we  did not account for incomplete taxon sampling because 
this is not implemented in FiSSE.

Since most Limonium species occur in the Euro-Mediterranean 
area, we  also tested the effect of this range on diversification 
rates using the fast Hidden Geographical SSE model (fGeoHiSSE; 
Caetano et  al., 2018). Limonium species were coded as present 
only in the Euro-Mediterranean area or only in other areas 
or widespread in both the Euro-Mediterranean and other areas. 
Missing species were accommodated by providing sampling 
fractions for each of these three range categories. We  fitted 
four models: two range-independent and two range-dependent 
diversification models, each either with or without a hidden 
area. Models were compared via AIC.

At shallower phylogenetic levels, we  pruned the Limonium 
subgen. Pteroclados s.l. lineage (clade A in Figure  1; see also 
Koutroumpa et  al., 2018) from “Supermatrix-ITS-like” and 
“Supermatrix-cpDNA-like” MCC trees, and tested whether 
woodiness (i.e., suffruticose habit) of Canarian Limonium 
endemics in Nobiles clade (Bramwell and Bramwell, 1974, 1990; 
Mesa et  al., 2001; Marrero and Almeida, 2003; Kunkel, 2012; 
Jiménez et  al., 2017) had an impact on diversification rates. 
In this fully sampled Pteroclados s.l. lineage, all other clades 
apart from Nobiles consist of herbaceous species. We  used 
BiSSE and HiSSE analyses, with models described above, to 
test for habit-dependent diversification in the Pteroclados s.l. 
lineage. Simulation studies have suggested that while it is 
feasible to use SSE methods for analyses of small-size clades 
such as Pteroclados s.l. (e.g., Gamisch, 2016), their power in 
detecting state-dependent diversification depends on the strength 
of speciation rate asymmetry in the tree. If state-dependent 
diversification were detected, this would mean that speciation 
rate asymmetry between woody and herbaceous taxa is sufficiently 
high (i.e., >2.5-fold) to be  detected despite small clade size, 
as demonstrated by simulations (Gamisch, 2016; Kodandaramaiah 
and Murali, 2018). Conversely, if state-independent diversification 
were supported, this would not automatically exclude the 
existence of moderate levels of speciation rate asymmetry (i.e., 
<2.5-fold), but might simply mean that such levels are insufficient 
to be  recovered by the SSE methods in small clades. We  also 
tested whether woodiness is a derived state for the Pteroclados 
s.l. lineage employing model-averaged ancestral state estimations 
implemented in HiSSE package.

RESULTS

Molecular Phylogenies, Divergence Time, 
and Biogeographic Estimates
Phylogenies inferred with ML and BI for each dataset recovered 
very similar topologies. Only a small number of conflicts were 
found between cpDNA and ITS trees, all located within Limonium 

(i.e., “rogue clades”: subclades within “Mediterranean lineage,” 
Circinaria clade and Jovibarba-Ctenostachys clade, and six “rogue 
taxa”; see Supplementary Figures S1, S2 and Malekmohammadi 
et  al., 2017; Koutroumpa et  al., 2018). The 50% majority-rule 
BI trees for all three Supermatrices showed better resolution 
(“Supermatrix”: 181/300, “Supermatrix-ITS-like”: 177/293, and 
“Supermatrix-cpDNA-like”: 176/300 nodes resolved, i.e., have 
posterior probabilities ≥0.5) than ITS and cpDNA trees (154/259 
and 142/298 nodes resolved, respectively). Our results  
strongly support monophyly for Plumbaginaceae subfamilies 
(Plumbaginoideae and Limonioideae), tribes (Aegialitideae and 
Limonieae) and genera (except for Plumbago and Acantholimon; 
both non-monophyletic), and for major clades of Limonium 
corresponding to infrageneric subdivisions (except for section 
Schizhymenium). Hereafter, results for “Supermatrix-ITS-like” 
tree and “Supermatrix-cpDNA-like” tree will be  reported first 
and second, respectively, separated by a vertical bar, unless 
otherwise specified.

Divergence time estimates were almost identical between 
“Supermatrix-ITS-like” and “Supermatrix-cpDNA-like” MCC trees 
(detailed age estimates and HPDs in Table  1; 
Supplementary Table S2 and Supplementary Figures S1, S2). 
The origin of Plumbaginaceae is placed between the Upper 
Cretaceous and the early Eocene (95% HPD: 52–77  Ma), with 
a median age at early Paleocene (ca. 65.7 Ma). The median crown 
ages for Plumbaginoideae and Limonioideae are ca. 29.5 Ma (95% 
HPD: ca. 18–43  Ma) and ca. 57  Ma (95% HPD: ca. 43–71  Ma), 
respectively. Combining divergence time and biogeographic estimates 
for Limonium (DEC without dispersal-multiplier matrices selected 
as best-fitting model; Figure  1; Supplementary Table S7 and 
Supplementary Figures S4, S5), we  infer a late Paleogene origin 
(ca. 33  Ma median crown age; 95% HPD: ca. 24–44  Ma) in the 
proto-Mediterranean region (i.e., Euro-Mediterranean and North-
Africa|North Africa: most likely states, yet with low probability) 
for the genus. The two subgenera Pteroclados s.l. and Limonium 
originated during Miocene, ca. 12  Ma (95% HPD: ca. 6–20  Ma) 
and ca. 21  Ma (95% HPD: ca. 15–29  Ma), respectively, within 
widespread regions. A widespread range was also inferred (with 
low to moderate probabilities) for the most recent common ancestor 
(MRCA) of clades B2 (comprising mostly non-Mediterranean 
species) and B3 (“Mediterranean lineage”) in the middle Miocene 
(ca. 15.5  Ma; 95% HPD: ca. 11–21  Ma). This widespread 
ancestor gave rise to an endemic Euro-Mediterranean MRCA 
of the “Mediterranean lineage” (B3 crown-node; ca. 12  Ma) 
and either an endemic Irano-Turanian MRCA for the mostly 
non-Mediterranean B2 clade according to “Supermatrix-ITS-like” 
tree (ca. 14.4  Ma; Figure  1; Supplementary Figure S4) or a 
widespread MRCA for the B2 clade in the same ancestral widespread 
range according to “Supermatrix-cpDNA-like” tree (ca. 14  Ma; 
Supplementary Figure S5). In clade B2, dispersals, vicariance 
events and/or range contractions from middle Miocene through 
Plio-Pleistocene produced ancestors with endemic ranges in the 
Irano-Turanian, Arabia-NE Africa, East Asia-Australia, South Africa, 
America, and Macaronesia. Early divergence events of the 
“Mediterranean lineage” (clade B3) in late Miocene-early Pliocene 
were accompanied by dispersal from Euro-Mediterranean to North 
Africa, while the origin of the larger subclade of B3 (ca. 6  Ma 
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median crown age) coincides with the MSC. Extensive speciation 
within the Euro-Mediterranean area during the Pleistocene was 
inferred for clade B3, with only little dispersal from Euro-
Mediterranean to Macaronesia, North-Africa, Circumboreal and 
South  Africa. Some of these biogeographic results should 
be interpreted with caution given the limited phylogenetic resolution 
within the “Mediterranean lineage.” Detailed nodal biogeographic 
reconstructions and uncertainties in ancestral range estimates for 
both trees are in Supplementary Figures S4, S5.

BSM analyses estimated 191|196 (SD: ±8|  ±  7.79) within-
area speciation events, 67|63 (±2.71| ± 2.06) range expansion 
events and 16|18 (±2.18|  ±  1.71) vicariance events. The 
large number of sympatric speciation events (ca. 70% of 
all biogeographic events) was expected, given the large size 
of the defined areas. Most dispersal events occurred from 
Euro-Mediterranean to North Africa (ca. 14) and from Euro-
Mediterranean to Circumboreal (ca. 5), while all other 
combinations of areas had <3.5 events (Figure  2; 
Supplementary Table S8). Overall, the major source area 
for dispersals was the Euro-Mediterranean (ca. 40% of 
estimated dispersal events), followed by North Africa (ca. 
15%) and Irano-Turanian (ca. 14%), while the most common 
sink was North Africa (ca. 28%), followed by Circumboreal 
(16%). The longest-distance dispersals occurred from 

Macaronesia to the Americas, and from Arabia-NE Africa 
and North Africa (or Euro-Mediterranean region) to 
South Africa (Supplementary Table S8). Movements between 
areas were largely asymmetrical for most pairs of areas. For 
example, dispersals from Euro-Mediterranean to North Africa 
were ca. eight times more common than those in the 
opposite direction.

Focusing on island biogeography in Macaronesia, origins 
of island endemics included both neighboring continents and 
archipelagos (Supplementary Figures S4, S5; Figure  3). 
Macaronesian endemics were placed in five distinct clades, 
indicating at least five independent long distance dispersal 
(LDD) events (Supplementary Figures S4, S5). The Nobiles 
clade, comprising 16 Canarian endemics, originated ca. 2.3 Ma, 
while colonization of the Macaronesian area predated the origin 
of this clade and occurred from a widespread ancestor (Euro-
Mediterranean and North Africa|Euro-Mediterranean, North 
and South Africa, Circumboreal and Arabia-NE Africa) between 
late Oligocene and early Pliocene. The Canarian endemic 
L. dendroides (clade B1) represents an early diverged lineage 
(ca. 21  Ma) that originated via dispersal from neighboring 
areas (i.e., North Africa or Euro-Mediterranean). The same 
dispersal pattern holds true for the closely related L. bollei 
and L. lowei (nested within “Mediterranean lineage”) endemic 
to Canaries and Madeira, respectively, which diversified in the 
late Pleistocene. The Azorean endemic (L. eduardi-diasii) 
originated in the late Pleistocene in a clade comprising American 
endemics, either via a recent colonization from the Americas 
(“Supermatrix-cpDNA-like”) or an earlier colonization (late 
Miocene-Pliocene) following range expansion from Irano-Turanian 
toward Euro-Mediterranean, Circumboreal, Macaronesia, and 
the Americas (“Supermatrix-ITS-like”). Fine-scale biogeographic 
estimations for the Jovibarba-Ctenostachys clade (DIVA-like 
selected as best-fitting model; Figure 3; Supplementary Table S9) 
that diversified during Plio-Pleistocene revealed two independent 
colonizations of Cape Verde (one probably from North Africa 
and the other from Canaries) and a LDD event from Cape 
Verde to Hispaniola. In this clade, the biogeographic origin 
of Canarian endemics is either from North Africa or Cape 
Verde and for Moroccan endemics either from Canaries or 
Cape Verde (inferences varied due to unresolved relationships). 
BSM reconstructs an overall total of seven dispersal events to 
Macaronesia (giving rise to native Macaronesian species as 
well as endemics) including two from North Africa and two 
from the Euro-Mediterranean. Furthermore, Macaronesia is 
inferred to be the source pool for four colonizations of continental 
areas, including one to the Americas and one to North Africa 
(Figure  2; Supplementary Table S8).

Diversification Dynamics
BAMM analyses strongly reject constant diversification along 
clades and through time for Limonium (Supplementary Figure S6). 
Instead, they reveal significant shift(s) toward higher net 
diversification rates within the “Mediterranean lineage” (Figure 4; 
Supplementary Figure S7). In both trees, there is a shift close 
to the origin of the larger subclade of this lineage (crown age 
of subclade: ca. 6  Ma), while an additional shift within the 

TABLE 1 | Divergence time estimates for major clades in the “Supermatrix-ITS-
like” and “Supermatrix-cpDNA-like” maximum clade credibility (MCC) trees.

Crown-nodes Median ages (95% HPD)

“Supermatrix-ITS-like” “Supermatrix-cpDNA-
like”

Plumbaginaceae-
Polygonaceae split (Root)

75.69 (69.03–78.21) 75.78 (69.18–78.21)

Plumbaginaceae 65.68 (52.01–77.03) 65.68 (52.07–77.2)
Plumbaginoideae 29.42 (18.71–42.76) 29.6 (18.36–43.23)
Limonioideae 56.92 (42.83–70.6) 57.2 (42.56–70.65)
Limonieae 40.35 (29.88–51.58) 40.1 (29.65–51.22)
Limonium 33.07 (23.68–44.23) 33.18 (23.39–43.76)
Limonium subg. 
Pteroclados s.l.

11.89 (6.25–19.97) 11.82 (6.2–19.45)

Limonium sect. 
Pteroclados

3.74 (2.11–5.86) 3.71 (2.11–5.82)

Limonium sect. 
Pteroclados subsect. 
Nobiles

2.32 (1.31–362) 2.29 (1.29–3.54)

Limonium subg. 
Limonium

21.46 (14.79–29.74) 21.12 (14.69–28.96)

Limonium clades B2-B3 
split* 15.87 (11.11–21.52) 15.56 (11.12–21.12)

Limonium clade B2* 14.41 (10.03–19.57) 14.12 (9.89–19.05)
Limonium clade B3: 
“Mediterranean lineage”* 12.39 (8.09–17.33) 12.23 (8.05–16.93)

Larger subclade of 
“Mediterranean lineage”** 6 (3.72–8.99) 5.68 (3.41–8.46)

Median ages and 95% Highest Posterior Density (HPD) intervals (in parentheses) for the 
crown-nodes of clades are in million years (Ma). Dating results are from analyses with 
uniform priors assigned to Plumbaginaceae stem-node (secondary calibration).
*Coding of clades within Limonium follow Koutroumpa et al. (2018).
**The subclade has slightly different species composition between the two 
Supermatrices, due to the incongruent position of some Aegean species (for details see 
Koutroumpa et al., 2018).
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FIGURE 2 | Summary of dispersal events from Biogeographical Stochastic Mapping (BSM) analyses. Arrows and their thickness represent the direction and 
frequency of dispersals between areas, respectively. Only event counts with a mean of ≥0.9 in both trees (“Supermatrix-ITS-like” and “Supermatrix-cpDNA-
like”) are depicted as arrows (detailed results of BSM analyses in Supplementary Table S8). Gray arrows represent dispersal events with a mean ≥0.9 in 
only one of the two trees. The nine areas used in BSM analyses are color coded as in the world map in the upper left inset (same color coding of areas as in 
Figure 1). AM, America; AR, Arabia-NE Africa; CB, Circumboreal; EA, East Asia-Australia; EM, Euro-Mediterranean; IT, Irano-Turanian; MA, Macaronesia; 
NA, North Africa; SA, South Africa.

FIGURE 3 | Ancestral range estimates for the Jovibarba – Ctenostachys clade of Limonium cropped from the ITS, cpDNA and “Supermatrix” MCC trees. The four 
areas used for biogeographic analyses and their combined ranges are color coded as in the left and right column, respectively, of the inset at the bottom. Pie charts 
on the nodes of trees represent relative probabilities of the inferred ancestral ranges. Triangles along branches indicate range expansions and their colors indicate 
the colonized area.
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smaller subclade for “Supermatrix-cpDNA-like” tree is explained 
by the conflicting topologies obtained from plastid and nuclear 
genomes for some Aegean species. Further evidence supports 
an 18–20-fold increase in net diversification rate for Mediterranean 
subclades compared to background rate (1.07 vs. 0.06|1.18 vs. 
0.06). The rate-through-time plots show an increase in net 
diversification rates starting ca. 6  Ma that intensifies during the 
past 2–3 Myr (Figure  4).

TESS analyses found no significant mass extinction event or 
episodic change of speciation or extinction rates that could 
concurrently affect all clades of Limonium (Bayes Factors: 2lnBF<6; 
Supplementary Figure S8). RPANDA analyses of rate heterogeneity 
further corroborated results from BAMM. Models with rate 
shift(s), allowing distinct patterns of rate variation for the 
“Mediterranean lineage” subclade(s), were strongly supported over 
models assuming no rate shift for Limonium (ΔAICc>30; Table 2). 

FIGURE 4 | Diversification dynamics of Limonium across clades and through time. Results of BAMM analyses for “Supermatrix-ITS-like” and “Supermatrix-cpDNA-
like” trees are presented in the top and bottom row, respectively. The first figure at the left of each row shows rate heterogeneity across clades for Limonium 
(phylorate plot) and the other three figures show the net diversification rates through time (rate-through-time plots). In the phylorate plots, branches are colored from 
blue to red to indicate low to high speciation rates, respectively, and the best rate-shift configuration is denoted by a red circle (the 95% credible set of rate shift 
configurations are in Supplementary Figure S7). The rate-through-time plots show the net diversification rates for the entire Limonium phylogeny (“Entire tree”), the 
Mediterranean clade(s) for which a shift was detected by BAMM (“Med clade(s)”), and the remaining Limonium phylogeny after removing the Mediterranean clade(s) 
(“Non-Med tree”). Significant shift(s) in diversification rates were found within the “Mediterranean lineage” of Limonium, while the steep increase in net diversification 
rates over the past 2–3 Myr is concomitant with the Plio-Pleistocene climatic oscillations and the establishment of the Mediterranean climate. MSC, Messinian 
Salinity Crisis.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Koutroumpa et al. Drivers of Diversification in Limonium

Frontiers in Plant Science | www.frontiersin.org 12 January 2021 | Volume 11 | Article 612258

We  inferred a ca. 30-fold higher net diversification rate for the 
larger “Mediterranean lineage” subclade compared to the 
background rate (1.21 vs. 0.04|1.11 vs. 0.04; Table  2). For this 
subclade, a model of constant speciation and exponentially 
decreasing extinction over time (“Supermatrix-ITS-like”) or a 
pure-birth model with exponentially increasing speciation over 
time (“Supermatrix-cpDNA-like”) had the lowest AICc values 
(Supplementary Table S10). In the slightly reduced version of 
this subclade (with Rohling et  al.’s, 2014 sea-level data fitted), the 
highest support was assigned to a model with constant speciation 
and extinction positively correlated to past sea-level for “Supermatrix-
ITS-like,” while for “Supermatrix-cpDNA-like” that the model was 
the second best-fitting after a pure-birth model 
(Supplementary Table S10). For the backbone tree [i.e., remaining 
tree after removing “Mediterranean lineage” subclade(s)], a constant 
birth-death model received the lowest AICc values, while for the 
entire tree a model with exponentially varying speciation and 
extinction, both positively correlated to paleo-temperature, was 
best-fitting. In all analyses, we observed model uncertainty, with 
several alternative models explaining diversification dynamics (i.e., 
ΔAICc<2; Supplementary Table S10). Paleoenvironment-dependent 
models always received some support, with past temperature and 
sea-level having similar impacts on speciation and extinction rates.

BiSSE, HiSSE, and FiSSE analyses consistently supported the 
reproductive strategy-dependent diversification for Limonium, with 
apomixis leading to higher speciation and net diversification rates. 
In BiSSE, a model with varying speciation and transition rates 
and equal extinction rates between sexual reproduction and apomixis 
received the highest support in all analyses (i.e., for both MCC 
trees and different sampling scenarios), except for one analysis 
that supported a full BiSSE model (Supplementary Table S11). 

In most BiSSE analyses, up to two additional models received 
some statistical support (i.e., ΔAIC<2), yet all these alternative 
models supported the state-dependent diversification. Bayesian 
parameter estimations revealed higher speciation and net 
diversification rates for apomixis, and higher transition rates from 
apomixis to sexual reproduction than in the opposite direction 
(Figure  5). Additionally, higher extinction rate for apomixis was 
observed in the analysis supporting a full BiSSE model (Figure 5; 
Supplementary Table S11). In HiSSE, either a BiSSE-like model 
or a HiSSE model with three varying transition rates (see Section 
Materials and Methods) was supported in all analyses 
(Supplementary Table S12). Model-averaged parameter estimates 
for species in our trees recovered higher mean speciation, extinction, 
and net diversification rates for apomicts across all trees and 
analyses (Table  3). Given that a precise estimation of extinction 
from phylogenies of extant taxa is challenging (Pyron and Burbrink, 
2013; but see Morlon et  al., 2011 showing inference of realistic 
extinction rates), we  focus our discussion on the general patterns 
rather than the estimates of extinction rates per se that need to 
be  taken with caution. Complementary FiSSE analyses reported 
a ca. 2-fold higher speciation rate for apomixis (2.2|1.9 vs. 1.2|1.3), 
with the difference in rates being either significant (p  =  0.016; 
“Supermatrix-ITS-like” tree) or only marginally non-significant 
(p  =  0.0599; “Supermatrix-ITS-like” tree). Conversely, range-
dependent diversification analysis (fGeoHiSSE) found no effect 
of presence in the Euro-Mediterranean area on diversification 
rates. Instead, analyses supported a model with diversification 
rate shifts across the tree, yet independent of the ranges 
(Supplementary Table S13).

State-dependent diversification analyses in Pteroclados s.l. 
clade showed no effect of habit (herbaceous habit vs. woodiness) 

TABLE 2 | Diversification rate heterogeneity analyses in Limonium for both “Supermatrix-ITS-like” and “Supermatrix-cpDNA-like” trees (RPANDA analyses).

A

“Supermatrix-ITS-like” tree No rate shift Heterogeneity analysis One rate shift 
(Med subclade)

ΔAICc

Log-likelihood −257.734 −241.163
AICc 523.664 492.679 30.985

“Supermatrix-cpDNA-like” tree No rate shift
Heterogeneity analysis Two rate shifts 

(Med subclades)
ΔAICc

Log-likelihood −247.652 −227.627
AICc 503.493 468.141 35.352
B

“Supermatrix-ITS-like” tree
Entire tree Med subclade Non-Med tree

Speciation rate 4.86 6.91 3.07
Extinction rate 4.75 5.70 3.03
Net diversification rate 0.11 1.21 0.04

“Supermatrix-cpDNA-like” tree
Entire tree Med1 subclade Med2 subclade Non-Med tree

Speciation rate 5.17 5.46 9.18 3.27
Extinction rate 5.08 4.35 3.23 3.23
Net diversification rate 0.09 1.11 5.95 0.04

(A) Likelihoods and AIC comparisons between a model assuming no shifts across the tree (“No rate shift”) and a model assuming one and two rate shifts for “Supermatrix-ITS-like” 
and “Supermatrix-cpDNA-like” tree, respectively (“Heterogeneity analysis”); (B) Multimodel averaged speciation, extinction and net diversification rate estimates of time-dependent 
diversification analyses on the entire tree, the Mediterranean subclade(s) (“Med subclade” and “Med1 subclade”: the larger Mediterranean subclade in “Supermatrix-ITS-like” and 
“Supermatrix-cpDNA-like” trees, respectively, for which a shift was detected by BAMM; “Med2 subclade”: the small Mediterranean subclade for which a shift was detected by 
BAMM in “Supermatrix-cpDNA-like” tree) and the tree after removing the Mediterranean subclade(s) (“Non-Med tree”).
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on diversification rates (Supplementary Tables S14, S15). BiSSE 
analyses reported the lowest AIC for the constant rates model, 
although some state-dependent models with varying rates 
between woodiness and herbaceousness received partial support 
(i.e., ΔAIC<2). This result could be attributed to state-independent 
rate heterogeneity within Pteroclados s.l. clade, which BiSSE 
cannot test/account for, as revealed by HiSSE (i.e., the highest 
support for the CID-2 model with equal transition rates; 
Figure 6). However, caution should be taken when interpreting 
these results due to known limitations of SSE models in analyses 
of small-size clades such as the Pteroclados s.l. (see sections 
Materials and Methods and Discussion). Model-averaged ancestral 
state estimations combined with biogeographic results inferred 
woodiness as a derived state linked to insular life (Figure  6).

DISCUSSION

Identifying biotic and abiotic factors that drive the 
compartmentalization of biodiversity is central to biology (Benton, 
2009, 2015). With its large size (ca. 600 species), wide geographic 
range (six continents), and species richness concentrated in the 
Mediterranean region (ca. 70% of all species), Limonium is a 
paramount example of uneven taxonomic and geographic plant 

diversity. Our macroevolutionary study on sea lavenders is one 
of the few to test the impact of both species-extrinsic and -intrinsic 
factors on diversification by using carefully selected methods of 
biogeographic and diversification-rate analyses (Lagomarsino et al., 
2016; Condamine et al., 2018; Letsch et al., 2018), thus expanding 
the knowledge of the tempo and mode of plant diversification. 
We  found significant increases of diversification rates associated 
with both geo-climatic events (namely, the MSC, onset of 
Mediterranean climate, and Pleistocene sea-level fluctuations) and 
intrinsic species traits, such as apomixis. The significant role of 
apomixis in shaping the Mediterranean radiation of Limonium 
had been previously proposed and is here explicitly tested for 
the first time. Our study provides new insights into the origins 
of Mediterranean biodiversity and highlights a significant role 
and interplay of both biotic and abiotic factors in promoting 
species diversification.

Geological and Climatic Processes 
Shaping Species Distributions and 
Diversification
Our biogeographic and dating analyses of the largest Limonium 
phylogeny to date, combined with paleo-geological, paleo-climatic, 
and paleo-vegetational evidence (e.g., Rögl, 1999; Böhme, 2003; 

A

A

B

B

FIGURE 5 | Diversification rate analyses in Limonium dependent upon apomictic vs. sexual reproduction. Results for “Supermatrix-ITS-like” and “Supermatrix-
cpDNA-like” trees are presented in the top and bottom rows, respectively. (A) Phylogenetic distribution of sexual reproduction and apomixis. (B) Bayesian parameter 
inferences from BiSSE analyses employing the best fitting model under the sampling scenario that assumes a 40–60% of sexuals vs. apomicts in the “Mediterranean 
lineage.” For “Supermatrix-ITS-like” tree, a model with equal extinction rates was the best (see the single parameter estimate for both reproductive modes in the 
Extinction Rate graph in the top row) and for “Supermatrix-cpDNA-like” tree, a model with all rates varying was the best (Supplementary Table S11). The results 
show that speciation and net diversification rates are higher for apomictic than sexual taxa in both trees, extinction rates are also higher for apomicts but only in 
“Supermatrix-cpDNA-like” tree, while transitions from apomixis to sexual reproduction were more common that in the opposite direction.
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Thompson, 2005; Pound and Salzmann, 2017), allow us to 
propose likely processes that shaped the spatio-temporal evolution 
of the genus. Our analyses support the origin of Limonium in 
the late Paleogene (ca. 33  Ma) most probably in the proto-
Mediterranean region (Figure  1; Table  1; 
Supplementary Figures S4, S5). During this period, major 
tectonic activities changed the configuration of Eurasia. Europe, 
formerly an archipelago during the Eocene, became more 
continental, and the Mediterranean Sea separated from the newly 
formed intercontinental Paratethys Sea (Rögl, 1999; Figure  1). 
The newly created land corridors may have facilitated the initial 
range expansion of Limonium from the Euro-Mediterranean 
into the Irano-Turanian region (Figure  1). Furthermore, the 
origin of Limonium in the early Oligocene is marked by a 
climatic transition from sub-tropical to more seasonal conditions 
along the Euro-Mediterranean coasts. At that time, vegetation 

representatives of seasonal climates (i.e., warm temperate conifer 
forests and sclerophyll woodland) spread from the Iberian 
Peninsula to the coasts of France, and xerophytic shrubland 
occurred for the first time in the central Mediterranean coasts 
partially replacing subtropical paleo-biomes formerly dominating 
the Mediterranean area (Pound and Salzmann, 2017).

The divergence of the “Mediterranean lineage” (clade B3) of 
Limonium from its mostly non-Mediterranean sister lineage (clade 
B2) during the Miocene (Table  1; Figure  1) follows a temporal 
pattern of divergence found in many other Mediterranean 
angiosperm lineages (Vargas et  al., 2018) and is concomitant 
with paleo-geological and -climatic changes. These two largest 
lineages of Limonium, clades B2 and B3, diverged during the 
middle Miocene (ca. 15.5 Ma) from an ancestor that was widespread 
in the Euro-Mediterranean, Irano-Turanian, and other regions 
(Figure  1; Supplementary Figure S5). Prior to this split, in the 
early Miocene and specifically late Burdigalian, the Arabian plate 
that was connected to Africa collided with the Anatolian plate 
for the first time, cutting off the seaway between the Mediterranean 
Sea and the Indian Ocean (Figure  1). In the early Langhian 
and concomitant with the divergence between B2 and B3 clades, 
a marine transgression flooded the entire Mediterranean and 
Paratethys causing the re-opening of the seaway between South 
Anatolia and Arabia and the formation of other seaways in 
Eastern Anatolia and probably also in the Aegean or Western 
Anatolian regions (Rögl, 1999; Figure 1). These short-lived seaways 
may have enabled vicariant speciation followed by range contraction 
giving origin to a Euro-Mediterranean ancestor for clade B3 
and an Irano-Turanian ancestor for clade B2 (“Supermatrix-ITS-
like” tree; Figure  1), or peripatric speciation (i.e., temporary 
peripheral isolate in Euro-Mediterranean) giving origin to a 
Euro-Mediterranean ancestor for clade B3 and a widespread 
ancestor in the same ancestral range for clade B2 (“Supermatrix-
cpDNA-like” tree; Supplementary Figure S5). Moreover, the early 
Langhian split between B2 and B3 clades occurred during the 
Mid-Miocene Climatic Optimum (i.e., a global warming event 
at ca. 17–15  Ma; Böhme, 2003) and specifically in a period of 
increased seasonality in Central Europe and the Mediterranean 
area (up to 6 dry months; Böhme, 2003; Thompson, 2005). At 
that time, the Mediterranean flora began to resemble the current 
vegetation due to the extinction of several tropical and subtropical 
elements in the region (Thompson, 2005).

The diverse Mediterranean flora is composed of a combination 
of elements that immigrated to the region from other areas, and 
those that arose in situ (Thompson, 2005). Elucidating the relative 
roles of repeated colonization vs. in situ speciation is necessary 
to understand the processes that shaped Mediterranean diversity. 
Our results show that the great majority of Euro-Mediterranean 
Limonium species have an autochthonous origin (ca. 100 sympatric 
speciation vs. ca. 7 dispersal events; see BSM results above), 
supporting Thompson’s (2005) hypothesis that in situ diversification 
contributed the main component of the heterogeneous 
Mediterranean flora. Additionally, the Euro-Mediterranean area 
received a few Limonium species, mostly from the neighboring 
Irano-Turanian, North African, and Circumboreal regions, consistent 
with previous studies on other taxa (e.g., Mansion et  al., 2008, 
2009; Salvo et  al., 2010; Manafzadeh et  al., 2014). The 

TABLE 3 | Mean speciation, extinction, and net diversification rate values 
from model-averaged estimates at the tips of each tree (“Supermatrix-ITS-
like” and “Supermatrix-cpDNA-like”), as inferred from ancestral state 
reconstructions in HiSSE for the two MCC trees and under three different 
sampling scenarios of apomicts and sexuals.

“Supermatrix-ITS-like” tree

Global Sampling Fraction

Sexuals Apomicts

Speciation 4.18 7.57
Extinction 4.34 7.09
Net diversification −0.16 0.47

Sampling Fractions with 50–50% sexuals vs. apomicts in 
“Mediterranean lineage”

Sexuals Apomicts
Speciation 3.68 10.40
Extinction 4.22 9.87
Net diversification −0.53 0.53

Sampling Fractions with 40–60% sexuals vs. apomicts in 
“Mediterranean lineage”

Sexuals Apomicts
Speciation 2.96 9.88
Extinction 3.41 9.45
Net diversification −0.46 0.43

“Supermatrix-cpDNA-like” tree

Global Sampling Fraction
Sexuals Apomicts

Speciation 4.27 7.99
Extinction 4.65 6.98
Net diversification −0.38 1.01

Sampling Fractions with 50–50% sexuals vs. apomicts in 
“Mediterranean lineage”

Sexuals Apomicts
Speciation 4.26 7.99
Extinction 4.65 6.97
Net diversification −0.39 1.02

Sampling Fractions with 40–60% sexuals vs. apomicts in 
“Mediterranean lineage”

Sexuals Apomicts
Speciation 3.40 12.27
Extinction 4.03 11.65
Net diversification −0.63 0.62

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Koutroumpa et al. Drivers of Diversification in Limonium

Frontiers in Plant Science | www.frontiersin.org 15 January 2021 | Volume 11 | Article 612258

Euro-Mediterranean area also served as a major source of dispersals 
to other areas (see also tribe Antirrhineae: Gorospe et  al., 2020), 
especially North Africa (Figure  2). Accordingly, diversity in this 
latter region was shaped mostly by dispersals (ca. 18 events, of 
which 14 from the Euro-Mediterranean area) and less by in situ 
speciation (ca. 3 events). Strong dispersal directionalities between 
areas (Figure  2) were also documented in Solanaceae by Dupin 
et  al. (2017), who found a close relationship between species 
richness of an area and the number of dispersals from this area, 
a pattern congruent with our results. The inferred higher number 
of species dispersals from the Euro-Mediterranean “source” to 
the North African “sink” than to any other area could be explained 
by geoclimatic events that connected these two areas in the past, 
and by the availability of suitable habitats on their coastlines. 
Overall, the directional asymmetry of dispersals between the 
Euro-Mediterranean and other areas, consisting in more emigration 
than immigration to the region, suggests that extensive in situ 
speciation is the pump that promotes species movement from 
one main area (here the Euro-Mediterranean) to many others.

Proposed abiotic landmarks in the evolution of Mediterranean 
biodiversity include the Messinian Salinity Crisis (ca. 6–5.33 Ma), 
the onset of the Mediterranean climate (3.2–2.8 Ma), and Pleistocene 
geo-climatic fluctuations (Fiz-Palacios and Valcárcel, 2013). Indeed, 
we found that these events played a key role in the diversification 
of the “Mediterranean lineage” of Limonium. Although 
Mediterranean sea lavenders originated already in the middle 
Miocene (ca. 12 Ma; Figure 1; Table 1), all major extant lineages 
started to diversify only about 6  Ma concomitantly with the 
onset of the MSC, as a product of a significant, clade-specific 
shift toward higher diversification rates in the largest subclade 
of the “Mediterranean lineage” (phylorate plots; Figure  4). Thus, 

the salinity crisis that massively increased the availability of saline 
habitats across the Mediterranean represented an ecological 
opportunity for a salt tolerant genus like Limonium to experience 
a major episode of increased diversification rates. Conversely, the 
MSC apparently caused the extinction of other genera in the 
region, including the subtropical mangrove Avicennia (Thompson, 
2005). Furthermore, the land corridors available across the 
Mediterranean at that time (see Mediterranean Paleogeographic 
Reconstruction During the MSC in Anzidei et  al., 2014) might 
have provided venues for the colonization of North Africa from 
the Euro-Mediterranean (Figures 1, 2), or vice versa, as documented 
for Borago (Mansion et al., 2009). The refilling of the Mediterranean 
Sea at the end of the MSC may have promoted further vicariant 
speciation of Limonium in the Euro-Mediterranean and North 
Africa (Figure  1; see also Romeiras et  al., 2016).

Diversification continued to increase exponentially also in the 
past 2–3 Myr, after the establishment of the Mediterranean climate 
and during the Pleistocene climatic oscillations (rate-through-time 
plots; Figure  4), corroborating results from other Mediterranean 
plant taxa (e.g., Valente et  al., 2010; Fiz-Palacios and Valcárcel, 
2011). Here, we  explicitly tested the impact of paleo-temperature 
and past sea-level on diversification rates for the larger Mediterranean 
subclade. A pattern supported in all analyses was that extinction 
rates were higher when sea-level and temperature were higher 
(Supplementary Table S10). Additionally, our results supported 
heterogeneous, yet range-independent diversification of Limonium 
(Supplementary Table S13), demonstrating that occurrence in 
the Euro-Mediterranean region per se cannot explain the burst 
of diversification rates. Rather, we  conclude that it was the 
combination of environmental changes experienced by Limonium 
in this region and intrinsic biotic traits (i.e., apomixis) that triggered 

FIGURE 6 | Evolution of habit in relation to island colonization for Pteroclados s.l. clade of Limonium from “Supermatrix-ITS-like” and “Supermatrix-cpDNA-
like” MCC trees (model-averaged HiSSE analyses). Yellow at the tips and nodes denotes herbaceous habit and blue denotes woody habit. The pies at the 
nodes represent the relative probabilities of the inferred ancestral states. Net-diversification rates increase from black to red along the branches. Shift to 
woodiness followed island colonization but did not drive a significant increase of diversification rates. Photos of the herbaceous L. lobatum (top photo) and 
the woody-suffruticose L. arboreum (bottom photo) from Ares Jiménez.
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the increase in diversification rates of the Mediterranean lineage, 
giving rise to its current high diversity of more than 400 species 
(see below).

Apomixis as a Biotic Driver of 
Diversification and the Interplay Between 
Biotic and Abiotic Factors in Bolstering 
Diversification Rates
In explaining the origins of the Mediterranean flora, questions 
have been raised about the relative role of geological and 
climatic history, and intrinsic biological processes such as 
polyploidization and hybridization (Thompson, 2005). In 
Limonium, as in other angiosperms (Hörandl and Hojsgaard, 
2012), polyploidy and hybridization are usually associated with 
apomixis (Erben, 1978, 1979), and the combined effects of 
these three biotic factors were proposed to have shaped the 
Mediterranean radiation species (e.g., Palacios et  al., 2000; 
Lledó et  al., 2005, 2011). While several apomictic Limonium 
species are characterized as obligate apomicts (e.g., Palacios 
and González-Candelas, 1997; Arrigoni and Diana, 1999; Palacios 
et  al., 1999; Khan et  al., 2012; Róis et  al., 2016), facultative 
apomixis (i.e., occasional sexual reproduction in apomicts) has 
also been documented for some species (e.g., D’Amato, 1949; 
Hjelmqvist and Grazi, 1964; Artelari, 1989; Artelari and Georgiou, 
2002; Georgakopoulou et  al., 2006). At the macroevolutionary 
level, our analyses show for the first time that apomixis is 
associated with an acceleration of diversification rates. Speciation 
rates are consistently higher in apomictic than sexual taxa, 
while extinction rates are either equal or higher in apomicts 
(Figure  5; Table  3; Supplementary Table S11).

The higher extinction rate inferred for apomicts than sexuals 
is congruent with the labile nature of apomicts proposed by 
Darlington (1958) and Holsinger (2000), who regarded apomixis 
as a “blind alley of evolution” due to reduced recombination, 
hence lower genetic variation in apomicts, eventually driving 
them to extinction. This view was based on the assumption 
that apomixis is an irreversible, derived trait. However, our 
results suggest that transitions from apomixis to sexuality are 
very common in Limonium (Figure  5) and corroborate recent 
studies that support apomixis-to-sex reversals enabled by the 
usually facultative nature of apomixis in angiosperms (Hörandl 
et al., 2007; Hörandl and Hojsgaard, 2012; Hand and Koltunow, 
2014; Hojsgaard et  al., 2014; Hojsgaard and Hörandl, 2015; 
Carman et  al., 2019; Sharma and Bhat, 2020). While the result 
that transitions from apomixis to sexuality are more common 
than vice versa is strongly supported for both MCC trees in 
Limonium, it should be  interpreted with caution because the 
limited phylogenetic resolution in the “Mediterranean lineage” 
could affect the inferred transition rates. The molecular genetic 
basis of apomixis is unknown in Limonium. However, in some 
plant genera, the molecular pathway of apomixis seems to 
be  superimposed onto the pathway of sexual reproduction, 
rather than being completely independent, thus apomixis can 
revert to sexuality relatively easily (e.g., Hand and Koltunow, 
2014 and references therein). This explanation for the molecular 
basis of apomixis is consistent with the occurrence of both 

apomictic and sexually developed seeds in facultative apomicts, 
suggesting that, if an ovule fails to initiate the apomictic 
pathway, sexual reproduction is activated, since the sexual 
pathway remains available. Importantly, in addition to enabling 
apomixis-to-sex reversals, the occurrence of “a little bit of sex” 
in apomicts can prevent the genomic decay caused by the 
absence of meiotic recombination, which can lead to extinction 
(Hörandl and Hojsgaard, 2012; Hojsgaard and Hörandl, 2015; 
Hodač et  al., 2019).

Our results point toward a synergistic relationship between 
apomixis and sea-level fluctuations in driving the diversification 
of Mediterranean sea lavenders. In the Euro-Mediterranean region, 
the majority of Limonium species occur in coastal areas (which 
are vast, including many islands). Geo-climatic changes caused 
intense sea-level oscillations that had the highest frequency during 
the Plio-Pleistocene (Supplementary Figure S3), directly impacting 
coastal habitats. High sea levels triggered inundation and loss 
of available coastal habitats for Limonium, thus increasing extinction 
(see positive correlation of extinction rates with past sea levels 
for the “Mediterranean lineage” in Supplementary Table S10). 
Additionally, when sea levels are high, some populations may 
split and diversify allopatrically. Conversely, low sea levels create 
new areas that allow populations to expand, occasionally coming 
in contact and hybridizing. The newly created polyploid hybrids 
can establish new populations by single individuals through 
apomixis, and further diversify (see Negative Correlation of 
Speciation Rates With Past Sea Levels for the “Mediterranean 
lineage” in Supplementary Table S10). Apomixis provides both 
the required escape from sterility for hybrid polyploids and 
reproductive assurance in the absence of pollinators or mates 
in newly colonized habitats (Baker, 1955; Darlington, 1958). 
Thus, sea-level fluctuations cause repeated events of species-range 
contraction and fragmentation when sea level is high, and 
expansion and reconnection when sea level is low, promoting 
the origin of incipient species that can become established through 
apomixis. Long-term survival of apomictic species can be enhanced 
through occasional sex enabling the filtering of deleterious 
mutations via purging selection (Hojsgaard and Hörandl, 2015; 
Hodač et  al., 2019).

Island Biogeography of Macaronesian 
Endemics and Insular Woodiness
Oceanic islands emerge from the sea empty of life. Their 
biodiversity is attributed to a combination of dispersals across 
the sea of species from neighboring areas and local diversification, 
producing high levels of endemicity (Cowie and Holland, 2006; 
Warren et  al., 2015). Limonium endemics in Macaronesian 
archipelagos are of recent Plio-Pleistocene origin, except for 
L. dendroides, which diverged much earlier during the early 
Miocene (Supplementary Figures S4, S5). Limonium dendroides 
is an endangered Canarian endemic that is morphologically 
and taxonomically unique. It is characterized by at least two 
striking autapomorphies, i.e., arborescent habit and salt-glands 
in spikelet, and is the sole species of L. sect. Limoniodendron 
(Figure  1). The phylogenetic distinctiveness of L. dendroides, 
indicated by its isolated long branch sister to the large clade 
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comprising all other species of subgenus Limonium, suggests 
that L. dendroides is either an old species or it is the only 
surviving species of a once larger clade that has undergone 
extensive extinction (Warren et  al., 2018). Many plant taxa in 
Macaronesia comprise multiple endemic species that stemmed 
from a single long-distance dispersal followed by in situ 
diversification (e.g., Böhle et  al., 1996; Francisco-Ortega et  al., 
1996; Barber et  al., 2007; Kim et  al., 2008; Caujapé-Castells, 
2011). In Limonium, however, Macaronesian diversity was shaped 
by multiple LDD events (ca. 7), mostly from the neighboring 
Euro-Mediterranean and North African areas, followed by 
in situ speciation (ca. 22 events; BSM results). The Canarian 
and Cape Verde archipelagos were colonized repeatedly (at 
least four times and twice, respectively), as found in several 
studies of other Macaronesian taxa (Carine et al., 2004; Sanmartín 
et  al., 2008 and references therein; Navarro-Pérez et  al., 2015; 
Jaén-Molina et al., 2020). The availability of different ecological 
niches in oceanic islands may facilitate independent colonization 
by different species, possibly via reducing competition. For 
example, the two Limonium endemic lineages stemming from 
independent dispersals to Cape Verde occupy distinct habitats, 
namely wet mountainous cliffs and coasts (Romeiras et  al., 
2015). Thus, habitat heterogeneity of oceanic island systems 
favors colonization by a diversity of species pre-adapted to 
contrasting ecological niches.

While oceanic islands have been traditionally regarded as 
major sinks of biodiversity (Carlquist, 1974), their role as 
sources of biodiversity for neighboring continents or archipelagos 
has been rarely documented (e.g., Mort et  al., 2002; Carine 
et al., 2004). Our results support four LDD events for Limonium 
from Macaronesia including at least one to North Africa, but 
also Trans-Atlantic LDD to the Americas (Figure  2; 
Supplementary Table S8). Fine-scale analysis of Jovibarba-
Ctenostachys clade reveals a dispersal event from Macaronesia 
to Hispaniola and another to Morocco, and one or two inter-
archipelago dispersals between Canaries and Cape Verde 
(Figure  3). These results highlight the significance of oceanic 
archipelagos in Macaronesia as a source flora for LDD to 
archipelagos within and outside the region, and to neighboring 
continents (see also Gruenstaeudl et  al., 2017; Jaén-Molina 
et al., 2020). Furthermore, the noteworthy long-distance dispersal 
from Cape Verde across the Atlantic Ocean to Hispaniola 
(Caribbean) was probably facilitated by both the light diaspores 
of these species and sea currents, such as the North Equatorial 
Current, as suggested for other angiosperms (Renner, 2004). 
Our results further suggest that different dispersal properties 
in Macaronesian lineages may explain the geographically broad 
range of the Jovibarba-Ctenostachys clade vs. the within-
archipelago range of the Canarian Nobiles clade. Indeed, reduced 
dispersal abilities have been documented for the latter clade 
(Jiménez et  al., 2017), supporting the hypothesis of post-
colonization loss of dispersal ability in colonists of oceanic 
islands followed by extensive in situ diversification (Carlquist, 1966; 
MacArthur and Wilson, 1967).

Woodiness is very common in oceanic islands (Darwin, 
1859; Wallace, 1878; Carlquist, 1965, 1974; Lens et  al., 2013; 
Burns, 2019). Two competing hypotheses about the origin of 

insular woodiness have been proposed, which differ in whether 
woodiness evolved before or after island colonization. The 
“islands-as-museums” hypothesis views woodiness as a relictual 
trait already present in continental taxa that colonized islands 
and later went extinct from the continent (Cronk, 1992, 1997). 
Alternatively, woodiness has been interpreted as a derived trait 
that evolved in situ from herbaceous colonists subsequent to 
island colonization (e.g., Nürk et  al., 2019). Our results in 
Limonium support the latter hypothesis by showing that 
woodiness is a derived trait in Pteroclados s.l. that emerged 
after colonization of the Canaries (woody Nobiles clade; Figure 6). 
The derived nature of woodiness is also supported by most 
studies on woody insular plants (e.g., Echium: Böhle et  al., 
1996; Lavatera: Fuertes-Aguilar et  al., 2002; Sideritis: Barber 
et al., 2002; Sanctambrosia: Kool and Thulin, 2017), while fewer 
studies support its relictual nature (e.g., Tolpis: Moore et al., 2002; 
Descurainia: Goodson et  al., 2006).

Woodiness on oceanic islands has been regarded as a key 
innovation linked to higher diversification rates when it is 
associated with disparity in growth forms (e.g., arborescent 
shrubs, subshrubs, trees, cushion forms, woody lianas, and 
giant rosette plants), because it enables the exploration of a 
broader niche space (Nürk et  al., 2019). However, our results 
suggest that insular woodiness in the Canarian Nobiles clade 
of Limonium is either not linked to accelerated diversification 
(Figure  6; Supplementary Tables S14, S5) or a shift in rates 
for woody vs. herbaceous taxa is too moderate for the SSE 
methods to detect it, considering their limited power in analyses 
of small-size clades (Gamisch, 2016; Kodandaramaiah and 
Murali, 2018). A possible explanation for the result that the 
evolution of woodiness on the Canary Islands did not trigger 
a significant shift to much higher diversification rates may 
be  that, in Canarian Limonium, woodiness is not associated 
with a diversity of woody growth forms (as found by Nürk 
et  al., 2019), since all species in Nobiles clade have similar 
subshrub suffruticose habit. The lack of diversity in woody 
forms observed in species of the Nobiles clade may have limited 
their ability to radiate in a way that can be  detected as a 
significant shift of diversification rates.

CONCLUSION

At the global scale, our study shows that the evolution of 
Limonium in space and time was shaped by major geologic 
and climatic processes that resulted in its cosmopolitan 
distribution and extensive diversification in the Mediterranean 
area. The increased diversification of Mediterranean sea lavenders 
was enabled by the ability of these taxa to reproduce asexually, 
via apomixis, which allowed them to survive and diversify 
during climatic oscillations. Our results show that the joint 
effect of biotic and abiotic factors is responsible for the current 
diversity of Limonium. At the regional scale, focusing on the 
insular endemics of Macaronesia, diversity on oceanic islands 
was shaped by multiple colonization events from neighboring 
continents and archipelagos, and in situ speciation. The 
Macaronesian islands have also served as sources for dispersals 
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to other archipelagos (Caribbean) and continents (North Africa 
and America). In addition, woodiness in the Canarian sea 
lavenders (Nobiles clade) is a derived trait linked to insularity 
but not too much higher diversification rates. Our study 
highlights the importance of analyzing multiple abiotic and 
biotic factors, and their interactions, to achieve an in-depth 
understanding of evolution in hotspots of biodiversity.
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