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IQ67-domain (IQD) proteins, first identified in Arabidopsis and rice, are plant-specific
calmodulin-binding proteins containing highly conserved motifs. They play a critical
role in plant defenses, organ development and shape, and drought tolerance. Driven
by comprehensive genome identification and analysis efforts, IQDs have now been
characterized in several species and have been shown to act as microtubule-associated
proteins, participating in microtubule-related signaling pathways. However, the precise
molecular mechanisms underpinning their biological functions remain incompletely
understood. Here we review current knowledge on how IQD family members are
thought to regulate plant growth and development by affecting microtubule dynamics
or participating in microtubule-related signaling pathways in different plant species and
propose some new insights.
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INTRODUCTION

IQ67-domain (IQD) proteins, originally identified in Arabidopsis thaliana and rice (Abel et al.,
2005), are a class of calmodulin-binding proteins unique to plants (Levy et al., 2005). They are
common in a wide variety of land plants from moss to vascular plants, and they play a critical
role in basic host defenses (Abel et al., 2005; Levy et al., 2005), cell shaping (Huang et al., 2013;
Liu et al., 2020), and drought resistance (Ma et al., 2014; Wu et al., 2016; Yuan et al., 2019). The
proteins locate to various compartments including the nucleus, cytoplasm, plasma membrane, and
microtubules in Arabidopsis (Burstenbinder et al., 2017b), but their subcellular localization patterns
vary (Tables 1, 2).

IQD proteins have a central region of 67 conserved amino acids, the eponymous IQ67
domain, which is responsible for recruiting calmodulin, which acts as a Ca2+ sensor (Abel
et al., 2013). There are two types of IQ67 domain: (1) the Ca2+-independent IQ motif, the IQ
motif (IQxxxRGxxxR or I/L/VQxxxRxxxxR/K); and (2) the Ca2+-dependent IQ motifs, the 1-
5-10 and 1-8-14 motifs. The IQ motif includes 1-3 IQ xxxRGxxxR/[ILV]QxxxRxxxx[RK], the
1-5-10 motif contains 1-4 [FILVW]x3[FILV]x4[FILVW], while the 1-8-14 motif contains 1-4
[FILVW]x6[FAILVW]x5[FILVW](Abel et al., 2005; Wu et al., 2011). The IQD protein family has
now been comprehensively annotated in several plants (Table 2). Even though their functions differ
in some plants studied, for example, SUN/IQD regulates cell division to elongate tomatoes (Wu
et al., 2011); IQD1 acts as a defense against herbivores such as aphids in Arabidopsis (Abel et al.,
2005; Levy et al., 2005); while ZmIQDs and PtIQDs respond to drought stress (Ma et al., 2014; Cai
et al., 2016), the underlying molecular basis or the function of other undefined IQDs in different
plants may share same mechanisms, but this has not been confirmed.
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IQD PROTEINS, THE SCAFFOLD
PROTEINS ASSOCIATED
MICROTUBULES

Scaffolding proteins interact or bind with several proteins to form
an anchoring complex in specific intracellular niches such as the
cell membrane, cytoplasmic matrix, or nucleus, and they play an
important role in signal transduction. As scaffolding proteins,
IQDs play an important role in plant growth and development
(Abel et al., 2013; Burstenbinder et al., 2013, 2017a) and link
Ca2+ signals with some organelles (Burstenbinder et al., 2017b).
Yeast two-hybrid and pulldown experiments have verified that
Arabidopsis IQD1 and IQD20 interact with CaM/CaML both
in vivo and in vitro.

Kinesin light chain is generally located at the end of
kinesin and participates in cargo transport (Saez et al., 2020).
Therefore, IQD may co-localize with microtubules in addition
to its classic nuclear localization, a finding subsequently
confirmed using high-resolution fluorescence microscopy. IQD1
interacted with KLCR1 and CaM, thereby linking kinesin
to Ca2+ second messenger signaling (Steinhorst and Kudla,
2013; Bi et al., 2018). Other IQD family proteins may also
mediate different kinesin-dependent cargo transport signaling
pathways such as protein sorting or cell wall formation
(Kong et al., 2015), and these proteins and interactions
require further study.

ABNORMAL SHOOT 6 AND CORTICAL
MICROTUBULES

Microtubules in plant cells are non-centrosome microtubule
organized (Paradez et al., 2006; Wasteneys and Ambrose,
2009). Cortical microtubules (CMTs) in the interphase,
preprophase band (PPB), spindle and the membrane forming
body (phragmoplast) in the mitosis cell form the plant-specific
microtubule arrays (Hamada, 2014). Cortical microtubules
(CMTs) determine the shape of plant cells (Wasteneys and
Ambrose, 2009). Usually MT-associated proteins (MAPs)
interact with cortical microtubules to regulate cell shape,
such as Augmin complex, Katanin, SPR2, MOR1 and so
on (Chen et al., 2016). However, the dynamic regulation
of cortical microtubule arrays is complex, which need
further studied.

Li et al., 2020 first identified two previously unknown plant-
specific positive regulators of cMT severing and ordering,
ABNORMAL SHOOT 6 (ABS6) and SHADE AVOIDANCE
4 (SAV4). ABS6 binds to MT through its C-terminal and
it is a kind of plant-specific IQD protein (Li et al., 2020).
KATANIN 1 (KTN1), the p60 catalytic subunit of the classical
MT-severing enzyme katanin, positively regulate ABS6-mediated
cMT severing (Li et al., 2020). Augmin complexes and SPR2
located to the cMT crossover sites suppress KTN1-mediated
cMT severing (Wightman et al., 2013; Wang et al., 2018;
Tian and Kong, 2019). However, it is not known whether
SPR2 inhibit the microtubule cleavage function of ABS6 TA
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TABLE 2 | List of IQD genes identified in virous plant species.

Species Name Mem Chra Length (aa) pI Orthologous relationships References

Arabidopsis thaliana AtIQD 33 5/5 103-794 8.5-11.3 (10.3) OsIQD Abel et al., 2005

Oryza sativa OsIQD 29 Mainly 1,5,3 303-893 8.3-11.5 (10.04) AtIQD Abel et al., 2005

Solanum lycopersicum SUN 34 12/12 128-862 AtIQD Huang et al., 2013

Brachypodium distachyon BdIQD 23 12/12 340-585 6.44-11.52 22↑ ≥ 7 OsIQD;OsIQD Filiz et al., 2013

Populus trichocarpa PtIQD 40 18/19 135-819(464) 10.3 ± 0.6 AtIQD Ma et al., 2014

Glycine max GmIQD 67 20/20 141-904 5.4-11.1 SUN Feng et al., 2014

Phyllostachys edulis PeIQD 29 190-940 5.02-11.12 OsIQD Wu et al., 2016

Zea mays ZmIQD 26 8/10 326-582 9.78-11.4 OsIQD;BdIQD Cai et al., 2016

Cucumis sativus CsIQD 28 7/7 261-1558 Ge et al., 2019

Brassica rapa BrIQD 35 9/10 290-744 5.42-11.46 (10.05) AtIQD(13 pairs) Yuan et al., 2019

Vitis vinifera VvIQD 49 19/19 137-1558 (732.76) 4.72-11.02 AtIQD Liu et al., 2020

aChromosomal locations of various species IQD genes.

FIGURE 1 | The role of microtubule-associated proteins in cortical microtubule severing and ordering. SPR2, Augmin localized in the cMT crossover sites can
prevents KTN1-mediated cMTs severing and ordering (Wightman et al., 2013; Wang et al., 2018; Tian and Kong, 2019).KATANIN 1 (KTN1): p60 catalytic subunit of
MT cleavage enzyme katanin, promotes cortical microtubule severing and ordering. It is the positive regulator of ABS6 in cortical microtubule severing and ordering
(Li et al., 2020). ABS6, a plant-specific IQD protein and MAP, promotes cortical microtubule severing and ordering (Li et al., 2020).

directly, and whether SPR2 interacts with ABS6 (Figure 1),
similar to the direct physical interaction between ABS6,
SAV4, and KTN1. Additionally, only half of the C-end of
ABS6 is combined with MT, which is also an interesting
issue to be explored. If, as Li et al. (2020) guess, other
proteins are required to adjust the conformation of ABS6
to make the full-length ABS6 interact with KTN1 and
SAV4. Which proteins can regulate its conformation, has not
been studied so far.

THE ROLE OF IQD ON ORGAN SHAPE

Arabidopsis IQD5 and Pavement Cell
Shape
Pavement cell are tightly packed in plant epidermis, with many
lobes (Cosgrove, 2018; Cosgrove and Anderson, 2020). The lobes
formation would be related to the dynamics of the cytoskeleton
(Panteris and Galatis, 2005; Cosgrove and Anderson, 2020).
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Disordered cortical microtubules usually correlate with wider
pavement cell indentations and reduced lobe length. Due to
the abnormal expression of IQD5, IQD11, IQD14, IQD16, and
IQD25 in Arabidopsis, cortical microtubules become disordered
in pavement cells to affect their shape, indicating that IQD
proteins may regulate anisotropic growth and shape formation
by regulating the order of cortical microtubules (Burstenbinder
et al., 2017b; Liang et al., 2018; Mitra et al., 2019). Different IQDs
affect microtubule organization in different ways to produce
unique phenotypes (Liang et al., 2018). Due to the limitations of
intracellular Ca2+ imaging and the functional redundancy of the
IQD family, the specific regulatory mechanisms are still unclear
(Mitra et al., 2019). It is complex.

IQD5 is highly expressed in the vegetative organs of plants
and combines evenly across cortical microtubules (Liang et al.,
2018). In iqd5-1 mutants, microtubule stability decreases, thereby
disordering microtubules in cotyledon cells and decreasing the
interdigitation of pavement cells. Therefore, IQD5 stabilizes
microtubules by decreasing their dynamics. In Arabidopsis M2
seedlings, pavement cells in IQD5 mutants (bQ18E, iqd5-1,
and iqd5-2) lack interdigitating lobes compared to wild-type
Col-0, with cells becoming smaller and rounder. In three-day-
old cotyledons, leaf length is reduced and the neck width is
increased in mutants. IQD5 therefore plays an essential role in
regulating Arabidopsis leaf morphogenesis (Liang et al., 2018).
However, the mechanisms of IQD5 affecting leaf morphogenesis
remain to be explored.

Furthermore, Ca2+ signaling plays a key role for the pavement
cell morphology and IQD5’s recruitment to cortical microtubules
(Mitra et al., 2019). The IQD-KLCR module stabilizes cortical
microtubules laterally, especially at the microtubule-plasma
membrane interface (Mitra et al., 2019).Unlike IQD5, which
inhibits microtubule dynamics to stabilize microtubules,
microtubule-associated proteins exist in Arabidopsis that
affect microtubule organization by promoting their growth,
contraction, and catastrophe frequency, thereby enhancing
microtubule dynamics and ensuring normal sorting (Liang
et al., 2018) [e.g., MOR1 in the Arabidopsis MAP215 family
(Twell et al., 2002)]. This coordinated regulation of microtubule
dynamics by different proteins enables microtubule cytoskeletal
organization, nucleation, and severing. Intracellular signals are
thereby transmitted in an ordered manner to control normal
plant development (Liang et al., 2018).

OsIQD14 and the Shape of Seed in Rice
Rice is an important crop that has been subject to extensive
efforts to increase grain size and yields. Rice OsIQD14 (Yang
et al., 2020), an IQD family protein, is highly expressed in rice
seed hull cells, regulating microtubule cytoskeletal dynamics to
control rice grain size. In addition to localizing to the nucleus
and cytoplasm, OsIQD14 also distributes along microtubules.
When OsIQD14 is depleted, grains become wider and shorter
and crop yields increase; when OsIQD14 is overexpressed, grains
become longer and narrower without an effect on overall yield.
OsIQD14 interacts with MAPs to cause catastrophic events such
as expansion and contraction, thereby reducing microtubule
dynamics to form narrower cells. The IQD C-terminus binds to

microtubules, and the IQ67 region at the N-terminus interacts
with CAM; both proteins are located on microtubules.

However, the specific molecular mechanism of IQD affecting
the shape of rice seeds, such as how to respond to Ca2 + signals
to affect the interaction between IQD and CaM remains to be
explored. Breeding has traditionally been manipulated by altering
intracellular signal transduction through GW5 and GW5L (Duan
et al., 2017; Liu et al., 2017). GW5 is an IQD protein located in the
plasma membrane and is involved in brassinosteroid signaling.
And It is similar to OsIQD14 about its regulation of seed shape
(Duan et al., 2017; Liu et al., 2017; Yang et al., 2020).

OsIQD14 controls cytoskeletal dynamics and cell morphology
in rice by integrating auxin and calcium signaling pathways
to increase rice yield. Regarding its specific mechanism, many
hypotheses have been proposed, including the interaction among
OsIQD14, SPR2 and CaM proteins is regulated by auxin/blue
light and Ca2 + signal (Yang et al., 2020). Moreover, it is
unclear whether there are other microtubule-related proteins
such as katanin, MOR1, and Augmin involved with the process,
and how they regulate microtubule dynamics and respond to
environment signals.

IQD/SUN in Tomato
The tomato plant is a useful model for studying fleshy fruit
development. Since the Solanum lycopersicum genome is small
and highly conserved, it serves as a reference for other species in
the Solanaceae family such as peppers, eggplants, and potatoes
(Wu et al., 2016). Due to improvements in living standards
and cultural changes, new fruits and vegetables such as square
watermelons, large green peppers, and long tomatoes are now of
commercial interest. Therefore, the study of genes that regulate
the shape of edible plant organs is of increasing interest. The
microtubule-binding proteins IQD/SUN, OFP (ovate family
protein), and TRM (TON1 recruiting motif proteins) can
interact with each other to form complexes and combine
with microtubules to regulate microtubule-related pathways and
ultimately affect tomato fruit shape (van der Knaap et al., 2014;
Lazzaro et al., 2018; Wu et al., 2018). SUN, OVATE, and TRM
are all implicated in tomato shaping (Xiao et al., 2008, 2009;
Wu et al., 2016). IQD is a microtubule-binding protein, and
TRM is also located in microtubules (Lee et al., 2006; Drevensek
et al., 2012). Ovate is the archetypal OFP, and while OFPs
are mostly nuclear, the OFP-TRM complex migrates through
the cell to bind to microtubules (Lazzaro et al., 2018; Snouffer
et al., 2020). IQD/SUN and TRM elongate tomatoes, while ovate
(OFP) inhibits elongation. IQD12 controls fruit elongation via
alterations to cell division patterning, while TRM1-5-like genes
promote the elongation of fruits, grains, leaves, and tubers, with
OFP1 having the opposite effect (Wu et al., 2011, 2018; Lazzaro
et al., 2018).

IQD locates to microtubules and regulates microtubule
dynamics by interacting with KLCR, CMU (Cellulose-
Microtubule Uncoupling), and other related proteins. AtIQD5
may mediate the coupling of cellulose synthase movement
to orbital microtubules, and cortical microtubules act as the
template to transport CSCs to the plasma membrane. The
slightest deviation to the trajectory of anchoring to the cell wall
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will directly affect the cell wall positioning of CSCs, consequently
affecting the directional deposition of cellulose in the cell wall
and the direction of cell expansion (Endler and Persson, 2011);
ultimately, this will change the cell shape and the organ. AtOPF4
directly affects cell wall formation by interacting with KNAT7
(Li et al., 2011). Furthermore, cell division is affected by Pok1,
which is mainly regulated by TRM, as well as the interaction
between Pok1 and ROPs (Rho-like GTPases). These proteins
also locate to the PPB, spindle, and phragmoplast. OFP and
TRM regulate cell division during ovary development (Wu et al.,
2018). Similarly, AtIQD5 also localizes to the PPB, spindle,
and cortical microtubules in roots. Moreover, OPFs, TRMs, and
TTP complexes are involved in cell plate positioning during cell
division, which in turn affects organ shape.

CONCLUSION AND PERSPECTIVES

In addition to affecting the shape of the cells and organs of some
plants, IQDs can also enhance drought resistance of some plants
including cabbage, corn, moso bamboo, and poplar (Ma et al.,
2014; Cai et al., 2016; Wu et al., 2016; Yuan et al., 2019). The 26
ZmIQD genes in maize are regulated by drought stress. BrIQD5
is a potential target gene to improve the drought tolerance of
cabbage, and four drought-related proteins have been found to
interact with BrIQD5. However, this work remains in its infancy,
and the IQD-related molecular pathways underpinning drought
resistance need further study.

For the important role of IQD in plants, we should try to use
transgenic or gene editing technology to modify the structure or
expression of IQD in plants. For example: transfer the osIQD14
gene of rice into wheat or corn to increase their production?
Transform the drought resistance genes BrIQD5 in cabbage into
wheat and corn to promote insistence level. This could be a
direction for future exploration.
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