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Digital farming is a novel agricultural philosophy that aims to maximize a crop yield with 
the minimal environmental impact. Digital farming requires the development of technologies 
that can work directly in the field providing information about a plant health. Raman 
spectroscopy (RS) is an emerging analytical technique that can be used for non-invasive, 
non-destructive, and confirmatory diagnostics of diseases, as well as the nutrient 
deficiencies in plants. RS is also capable of probing nutritional content of grains, as well 
as highly accurate identification plant species and their varieties. This allows for Raman-
based phenotyping and digital selection of plants. These pieces of evidence suggest that 
RS can be used for chemical-free surveillance of plant health directly in the field. High 
selectivity and specificity of this technique show that RS may transform the agriculture in 
the US. This review critically discusses the most recent research articles that demonstrate 
the use of RS in diagnostics of abiotic and abiotic stresses in plants, as well as the 
identification of plant species and their nutritional analysis.

Keywords: digital farming, non-invasive phenotyping, nutrient content assessment, plant disease diagnostics, 
Raman spectroscopy, optical sensing

INTRODUCTION

As the global population grows exponentially, the expansion of agricultural territories is restricted 
by a scarcity of rich land, an increase in cost, and operational time consumption of conventional 
farming. This problem can be  solved by an expansion of agricultural territories or by the 
development of digital farming. While the first approach is destructive and inefficient, the 
second strategy is focused on an enhancement of the farming efficiency. By other means, 
digital farming, or precision agriculture, aims to maximize the crop yield with minimal 
environmental impact. This can be  achieved by timely detection and identification of biotic 
(plant diseases) and abiotic [drought and nutrient deficiency (ND)] stresses.

Plant diseases caused by fungi and viruses can reduce the crop yield on average by 40%, 
depending on a host, the pathogen and environmental conditions (Mantri et  al., 2012; Waqas 
et  al., 2019). Confirmatory diagnosis of such diseases can be  used for the precise application 
of fungicides and pesticides, allowing for highly efficient pathogen treatment, maximization of 
the crop yield and minimization of the environmental impact of farming (Farber et  al., 2019a). 
There are several molecular and imaging techniques that can be  used to detect biotic stresses 
(Raza et al., 2015). For instance, polymerase chain reaction (PCR) and enzyme-linked immunosorbent 
assay (ELISA) are commonly used for confirmatory diagnostics of plant diseases (Alvarez and 
Lou, 1985; Li et  al., 2006; Lievens et  al., 2006). Rapid development of these technologies enabled 
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on-site, rather than laboratory-based, use of these methods 
(Ahrberg et  al., 2016, 2020; Thomas et  al., 2019). However, 
relatively high cost of PCR analysis (~$15 per sample) limits 
broad use of this technique in farming. Confirmatory diagnostic 
of abiotic stresses, such as nutrient deficiencies and drought, is 
far more challenging than the detection and identification of 
plant diseases. These conditions are also far more detrimental 
than a pathogen-induced stress: lack of nutrients, water or hyper 
salinity can cause up to a 70% reduction in the crop yield 
(Mantri et al., 2012; Waqas et al., 2019). There are several imaging 
techniques, such as hyperspectral imaging and thermography, 
that potentially can be  used for an indirect detection of abiotic 
stresses in plants (Bauer et  al., 2019; Caballero et  al., 2020). 
These techniques allow for fast imaging of broad field areas and 
identification of “problematic areas” (Baena et al., 2017; Lu et al., 
2020). However, these methods do not always possess required 
specificity. Diagnostics of nutrient deficiencies can also be achieved 
by the use of sophisticated chromatographic and colorimetric 
procedures (Zhu et  al., 2008; Mihaljev et  al., 2015), which are 
time and labor consuming. This catalyzes a search for alternative 
methods of diagnostics of plant stresses that can be  inexpensive, 
fast, portable, and confirmatory.

Digital farming also requires advanced methodologies in plant 
breeding and selection (He et  al., 2020; Wang et  al., 2020). This 
is necessary to develop the germplasm of crops to have higher 
drought or soil salinity tolerance, as well as enhance the resistance 
to pathogens. One of the major drawbacks of conventional plant 
selection and breeding techniques is the long period of time 
that takes to measure the effect of a specific stress on plants 
(He et  al., 2020; Wang et  al., 2020). For example, the current 
in vivo techniques are focused on determination of physiological 
changes or plant chlorophyll contents, which are not directly 
related to the stress response and therefore require many 
experiments to draw meaningful conclusions (He et  al., 2020). 
Biochemical in vitro techniques are more relevant but are 
destructive and labor-intensive. Because of unpredictable weather 
patterns, drought or fungal tolerance screening of breeding 
populations during the entire growing session over many months 
are difficult to perform as drought stress is difficult to control 
(Gao et  al., 2008). To speed up this research, there is an urgent 
need to develop more robust phenotyping techniques for 
non-destructive, accurate and rapid assessment of breeding 
populations for drought-related responses, especially at the early 
seedling stages and with short periods of withholding water.

Raman spectroscopy allows for non-invasive and non-destructive 
detection and identification of biotic (Egging et  al., 2018; Farber 
and Kurouski, 2018; Sanchez et  al., 2019a, 2019c) and abiotic 
(Altangerel et  al., 2017; Sanchez et  al., 2020b) stresses. RS can 
be used for accurate and rapid plant phenotyping and the assessment 
of the nutritional content of grains (Krimmer et  al., 2019; Farber 
et  al., 2020c). RS is based on a phenomenon of inelastic light 
scattering by molecules that are being excited to higher vibrational 
or rotational states. After the first experimental demonstration of 
this phenomenon in 1928 by C. V. Raman, the spectroscopy of 
inelastic light scattering or RS continuously gain popularity in a 
large variety of research fields that range from food chemistry 
(Almeida et  al., 2010) and electrochemistry (Zeng et  al., 2016) to  

forensics (Kelly Virkler and Lednev, 2009; López-López et al., 2013) 
and materials science (Cantarero, 2015). Agriculture and farming, 
together with a basic plant biology, plant breeding, and pathology 
are relatively new unchartered territories for RS. One can expect 
that RS had far-reaching implications in agriculture broadly 
defined due to its non-invasiveness, non-destructiveness, high 
sensitivity, and a label-free nature. Raman had desired portability, 
low labor, and cost requirements (Yeturu et  al., 2016; Farber 
and Kurouski, 2018; Farber et al., 2019a). Raman had no difficulty 
in scanning an entire orchid due to its quick analysis time 
(typically 1  s per reading) and high specificity for both biotic 
and abiotic stresses. The fast results of RS allow farmers to take 
advantage of the information and make quick adjustments to 
cease the development of a certain biotic or abiotic stress. The 
non-labor-intensive and non-destructive nature of Raman also 
allows for rapid assessment of the plant phenotype directly in 
the field, eliminating the need of a wet-laboratory analysis of 
plants (Krimmer et  al., 2019; Farber et  al., 2020c).

INSTRUMENTATION AND IMAGING 
APPROACHES

Although the instrumental concept of RS was known since 1928, 
rapid growth of this technique took place after the invention 
of lasers in 1960s and CCDs in 1980s (Cardona, 1975). Massive 
lasers used in first Raman spectrometers not only needed a 
large footprint of a laboratory space for such instruments but 
also required highly efficient water chillers. Appearance of solid-
state continuous wavelength (CW) lasers and highly stable CCDs 
allowed for substantial militarization of Raman spectrometers. 
Currently, several companies offer excellent hand-held devices 
that can be used directly in the field or a crime scene (Figure 1). 
Although portable spectrometers continuously gain popularity, 
confocal Raman microscopes remain the instrument of choice 
if low amount of material is available or spatial resolution of 
the Raman measurements is required.

From a hardware perspective, confocal Raman microscopes 
and hand-held instruments share similar engineering concepts. 
Electromagnetic radiation generated by a laser source is directed 
by a beam splitter toward the sample. Achromatic lens or a 
microscope objective is then used to focus a light on the sample 
(Figure  2). Scattered light is collected typically using the same 
optical setup. Next, with a use of edge/long-pass filters, elastically 
scattered photons are removed. The remaining inelastically 
scattered photons are directed into the spectrometer, where 
photons are dispersed on a grating according to their energies 
prior to their appearance on the CCD. Typically, researchers 
use near-Infrared (near-IR; 785 and 830  nm) laser sources for 
RS on biological species (Vallejo-Pérez et al., 2016; Farber et al., 
2019b, 2020c; Mandrile et  al., 2019; Sanchez et  al., 2019c, 
2020e). This wavelength choice is based on a phenomenon 
that is known as “biological window.” A light of a red-near-IR 
part of the electromagnetic spectrum penetrates deeper into 
biotical species compared to the blue-green light. Near-IR 
excitation is also unlikely in the case of photodegradation 
and thermal degradation of biological specimens. For instance, 
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Kurouski group demonstrated a lack of photodegradation 
and thermal degradation of a plant leaf upon the use of 
nearly 0.5  W of 830  nm laser (Sanchez et  al., 2019c). It 
should be  noted that the use of green (532  nm) and IR 
(1,064  nm) excitations in the plant research also has been 
demonstrated (Yeturu et  al., 2016; Altangerel et  al., 2017; 
Egging et  al., 2018; Farber and Kurouski, 2018).

SPECTRAL TREATMENT AND 
INTERPRETATION OF VIBRATIONAL 
BANDS

Raman spectra collected from plant leaves with both 532  nm 
and 785–830  nm excitations typically have a fluorescence 
background (Figure  3). Subtraction of such a background is 
a straightforward process that can be  performed either in 
Matlab (Sikirzhytski et al., 2012) or directly by the spectrometer 
(Farber and Kurouski, 2018; Farber et  al., 2019b).

Direct comparison of Raman spectra can be a challenging 
task, primarily because the overall spectral intensity can 
vary with coloration of the analyzed specimen. For instance, 
Krimmer and co-workers found that dark maize kernels 
absorbed more and consequently scattered less light relative 
to the yellow or pale color kernels (Krimmer et  al., 2019). 
Since RS is based on inelastic light scattering, the researchers 

concluded that dark color maize varieties would produce 
less intense Raman spectra (under the same experimental 
conditions) compared to the light color maize varieties. 
Therefore, observed variations in spectral intensities are 
likely to originate from different light absorption and scattering 
properties of such kernels. Kurouski group proposed to solve 
this problem using normalization. It should be  noted that 
spectra normalization on one particular band that can 
be  assigned to a specific class of molecules, such as 
carbohydrates, is not appropriate. Such normalization would 
bias spectral interpretation in regard to the nutrient content 
of that class of molecules. At the same time, there are several 
vibrational bands that originate from aliphatic (CH2) vibrations, 
such as 1,440 and 1,458  cm−1. Normalization of spectra on 
these vibrational bands can be used for an unbiased comparison 
of Raman spectra collected from both leaves and seeds 
(Farber et  al., 2019b, 2020c; Krimmer et  al., 2019; Sanchez 
et  al., 2019b,c, 2020b,e). Such normalization allows for 
avoiding artificial differences in spectra associated with 
different coloration of analyzed plant material.

Interpretation of vibrational bands in Raman spectra of 
plant material is a challenging process. In the Raman spectra 
collected from plant leaves, vibrational bands originating from 
pectin, cellulose, phenylpropanoids, proteins, and carotenoids 
can be  detected (Table  1).

Information provided by Table  1 suggests that RS can 
be  used for the analysis of a large spectrum of compounds 
in both plant leaves and seeds. It should be  noted that an 

FIGURE 1 | Two commercially available hand-held Raman spectrometers 
with 1,064 nm (left) and 830 nm (right) excitations (top) and a bench-top 
home-built confocal Raman microscope (bottom).

FIGURE 2 | Schematic representation of a Raman spectrometer.
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interpretation of spectroscopic changes on the level of molecular 
species is not always feasible. Nevertheless, RS can be  used 
to probe changes in the most important classes of molecules, 
such as carotenoids and phenylpropanoids.

ELUCIDATION OF METABOLOMIC 
CHANGES THAT ARE TAKING PLACE 
UPON BACTERIAL DISEASES IN PLANTS

Raman spectroscopy is a non-invasive and non-destructive analytical 
technique that can be  used to reveal the chemical structure and 

composition of analyzed samples (Kurouski et  al., 2015). Unlike 
IR spectroscopy, RS can be  used for the analysis of hydrated 
biological specimens such as cells and tissues because water 
provides very low Raman signal (Farber et  al., 2019c). Various 
advantages of RS make this technique the perfect method for 
the detection of both biotic and abiotic stresses in living organisms, 
particularly in plant pathology (Egging et  al., 2018; Farber and 
Kurouski, 2018; Farber et  al., 2019b, 2020c; Sanchez et  al., 
2019a,b,c, 2020e). There have been many recent findings on RS 
breakthroughs in the detection of abiotic and biotic stresses. 
These include the detection of bacterial infections, secondary 
diseases, insect infestations, fungal infections, and a variety of 

TABLE 1 | Vibrational bands and their assignments for spectra collected from plant leaves and seeds.

Band (cm−1) Vibrational mode Assignment

480 C–C–O and C–C–C Deformations; Related to glycosidic ring 
skeletal deformations δ(C–C–C) + τ(C–O) Scissoring of C–C–C 
and out-of-plane bending of C–O

Carbohydrates (Almeida et al., 2010)

520 ν(C–O–C) Glycosidic Cellulose (Edwards et al., 1997; Pan et al., 2017)
747 γ(C–O–H) of COOH Pectin (Synytsya et al., 2003)
849–853 (C6–C5–O5–C1–O1) Pectin (Engelsen and Nørgaard, 1996)
917 ν(C–O–C) In plane, symmetric Cellulose and phenylpropanoids (Edwards et al., 1997)
964–969 δ(CH2) Aliphatics (Yu et al., 2007; Cabrales et al., 2014)
1,000–1,005 In-plane CH3 rocking of polyene aromatic ring of phenylalanine Carotenoids (Schulz et al., 2005) and protein
1,048 ν(C–O) + ν(C–C) + δ(C–O–H) Cellulose and phenylpropanoids (Edwards et al., 1997)
1,080 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrates (Almeida et al., 2010)
1,115–1,119 Sym ν(C–O–C), C–O–H bending Cellulose (Edwards et al., 1997)
1,155 C–C Stretching; v(C–O–C), v(C–C) in glycosidic linkages, 

asymmetric ring breathing
Carotenoids (Schulz et al., 2005) and carbohydrates (Wiercigroch et al., 2017)

1,185 ν(C–O–H) Next to aromatic ring + σ(CH) Carotenoids (Schulz et al., 2005)
1,218 δ(C–C–H) Carotenoids (Schulz et al., 2005), xylan (Agarwal, 2014)
1,265 Guaiacyl ring breathing, C–O stretching (aromatic); –C〓C– Phenylpropanoids (Cao et al., 2006), unsaturated fatty acids (Jamieson et al., 2018)
1,286 δ(C–C–H) Aliphatics (Yu et al., 2007)
1,301 δ(C–C–H) + δ(O–C–H) + δ(C–O–H) Carbohydrates (Cael et al., 1975; Almeida et al., 2010)
1,327 δCH2 Bending Aliphatics, cellulose, and phenylpropanoids (Edwards et al., 1997)
1,339 ν(C–O); δ(C–O–H) Carbohydrates (Almeida et al., 2010)
1,387 δCH2 Bending Aliphatics (Yu et al., 2007)
1,443–1,446 δ(CH2) + δ(CH3) Aliphatics (Yu et al., 2007)
1,515–1,535 –C〓C– (in plane) Carotenoids (Rys et al., 2014; Adar, 2017; Devitt et al., 2018)
1,606–1,632 ν(C–C) Aromatic ring + σ(CH) Phenylpropanoids (Agarwal, 2006; Kang et al., 2016)
1,654–1,660 –C〓C–, C〓O Stretching, amide I Unsaturated fatty acids (Jamieson et al., 2018) and proteins (Devitt et al., 2018)
1,682 COOH Carboxylic acids (Sanchez et al., 2020d)
1,748 C〓O Stretching Esters, aldehydes, carboxylic acids and ketones (Colthup et al., 1990)

FIGURE 3 | Raw (green) and baseline-corrected (red) Raman spectra collected from a rose leaf with 785 nm excitation.
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other pathogens (Egging et al., 2018; Farber and Kurouski, 2018; 
Farber et  al., 2019b, 2020c; Sanchez et  al., 2019a,b,c, 2020e). 
Although RS can detect pathogens directly (Gan et  al., 2017), 
the below discussed diagnostic of plant biotic and abiotic 
stresses is achieved by the detection and identification of 
pathogen-induced changes in the plant biochemistry. Detected 
changes in the plant metabolism that are taking place on 
the below discussed diseases are summarized in the Table  2.

Recently, Kurouski group showed that RS can be  used 
to detect Liberibacter disease in tomatoes (Sanchez et  al., 
2020c). Liberibacter is a bacterium that infects tomatoes 
and potatoes worldwide (Glynn et  al., 2012; Lin et  al., 2012; 
Nelson et al., 2013; Haapalainen et al., 2018; Swisher Grimm 
and Garczynski, 2019). While infected plants exhibit observable 
characteristics, such as chlorosis, stunting, leaf cupping, and 
scorching, the conventional testing technique of PCR cannot 
detect the pathogen in the early infection stages at which 
no symptoms are evident (Liefting et al., 2009; Tamborindeguy 
et  al., 2017). Sanchez and co-workers reported 80% accurate 
diagnostics of Liberibacter disease on the early infection 
stage before the development of observable symptoms (Sanchez 
et  al., 2020c). They also found that Raman spectra collected 
from leaves of Liberibacter-infected tomatoes exhibited lower 
intensities of carotenoid vibrations compared to healthy 
tomato plants. This finding suggests that Liberibacter disease 
in tomatoes is associated with a degradation and fragmentation 
of host carotenoids. The decrease in the carotenoid content 
can be also attributed to their conversion to apocarotenoids, 
signaling molecules that are synthesized by plants upon the 
development of the stress response. Lee and co-workers 
found a decrease in the content of pectin in Liberibacter-
infected tomatoes. This could be explained by bacteria-driven 
hydrolysis of pectin, as these molecules are a good source 
of carbohydrates for this pathogen. Alternatively, changes 
in pectin content could be  due to plant responses to the 
bacteria-induced stress.

Huanglongbing (HLB) or citrus greening is a devastating 
disease that obliterates citrus trees in Florida and Texas. Kurouski 
group were able to prove that RS could be  used to detect and 
identify not only HLB but also secondary diseases, such as 
blight and canker (CA) in HLB-infected orange and grapefruit 
trees (Sanchez et  al., 2019b,c). Sanchez and co-workers also 
showed that RS could be  used to readily diagnoze nutrient 
deficiencies in these plants (Sanchez et  al., 2019c). Sanchez and 
co-workers collected spectra from four groups of plants: 
symptomatic qPCR positive plants, and asymptomatic, but qPCR 
positive plants for HLB, as well as trees that exhibited ND 
symptoms, which had a similar visual appearance to symptomatic 
HLB plants, and healthy control plants. In these experiments, 
leaves were detached from the tree and analyzed immediately 
using Agilent Resolve spectrometer equipped with 830  nm laser 
(Figure  1). Although a leaf detachment was not required in 
this experiment, it was done to minimize exposure to the 
enormous heat in the area of the spectral analysis (Weslaco, 
TX). Sanchez and co-workers found that Raman spectra collected 
from symptomatic and asymptomatic plants exhibited an increase 
in the intensity of phenylpropanoids (~1,601–1,630  cm−1)  

relative to the intensity of this band in the spectra collected 
from leaves of healthy trees (negative to HLB by qPCR). It 
should be  mentioned that, in addition to an increase in the 
intensity of phenylpropanoids, spectra of symptomatic and 
asymptomatic plants had a decrease in intensities of 1,184 and 
1,218 cm−1 (xylan), 1,525 cm−1 (carotenoids), as well as 1,288 cm−1 
(aliphatic) and 1,155 and 1,326 cm−1 (cellulose) bands (Figure 4).

It has been also found that Raman spectra collected from 
ND trees had even more intense vibration of phenylpropanoids, 
together with a band at 1,247  cm−1, which was assigned to a 
phenolic vibration. This evidence allowed for a clear 
differentiation between HLB, ND, and healthy trees. Sanchez 
and co-workers also used chemometrics to enable quantitative 
diagnostics of HLB and ND in citrus trees. In the first set of 
orthogonal partial least square discriminant analysis (OPLS-
DA) models, healthy plants were differentiated from ND and 
HLB plants. The predicted accuracy was 98% for grapefruit 
and 87% for orange trees (cross-validation). In the following 
set of models, chemometrics was used to distinguish symptomatic 
vs. asymptomatic plants. The accuracy of prediction upon 
cross-validation appeared to be  100% for grapefruit and 94.4% 
for orange trees. This work showed that RS can be  used for 
accurate diagnostics of HLB and ND on citrus trees, which 
helps to enable timely management of that devastating disease 
in the field. These findings show that non-invasive, 
non-destructive Raman-based approach allows citrus farmers 
to properly manage infected trees to increase fruit yield of 
the rest of their crops.

Microscopic examination of HLB-infected trees confirmed 
spectroscopic evidence provided by Sanchez and co-workers 
(Brodersen et  al., 2014). It has been found that HLB causes 
a deformation of cambium cells, has a collapse, callose plug 
formation, and the thickening of cell walls of parenchyma 
cells (Brodersen et  al., 2014). Cell wall thickening can happen 
in the attempt to block propagation of bacteria inside the 
plant. Alternatively, one can imagine that plants secrete low 
molecular weight phenylpropanoids, aiming to deactivate bacteria. 
However, these phenylpropanoids later polymerase into high 
molecular weight phenylpropanoid polymers, also known as 
lignins. Thus, such phenylpropanoid polymerization can cause 
histological changes as observed by Brodersen and co-workers.

It should be  noted that HLB-infected trees are a subject 
for secondary infections due to suppressed immune resistance 
to pathogens. As a result, HLB infected trees become easily 
susceptible for a blight (BL), one of the most frequently observed 
secondary diseases on HLB trees, which even further reduces 
fruit yield and the lifetime of plants. The question to ask was 
whether RS can be  used to differentiate between HLB-infected 
and HLB  +  BL plant species. Another question is whether RS 
can be  used to differentiate between HLB and other diseases, 
such as CA that can appear on citrus trees. Sanchez and 
co-workers investigated whether RS can be used to differentiate 
between healthy, HLB, HLB  +  BL, and orange trees infected 
by CA (Sanchez et  al., 2019b). It has been found that CA 
and HLB  +  BL could be  detected and identified with 95 and 
96% accuracy, respectively. The accuracy of prediction of BL 
and HLB was 87.7 and 89.4%, respectively. Such a fast and 
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TABLE 2 | Summary of observed spectroscopic and corresponding biochemical changes in plants that are associated with certain diseases.

Disease Plant/Organ Peaks with increase in 
intensity

Peaks with decrease in 
intensity

Conclusion

Liberibacter disease in tomatoes 
(Sanchez et al., 2020b)

Tomato, leaf - 747 cm−1 (pectin); 1,000, 
1,115, 1,155, 1,184, 1,218, 
and 1,525 cm−1 (carotenoids)

Liberibacter disease in tomatoes is 
associated with degradation and 
fragmentation of host carotenoids and 
pectin

Huanglongbing (HLB) or citrus 
greening (Sanchez et al., 2019c)

Orange and 
grapefruit, leaves

1,601–1,630 cm−1 
(phenylpropanoids); 1,440–
1,455 cm−1 (aliphatic)

1,184 and 1,218 cm−1 (xylan, 
carotenoids); 1,525 cm−1 
(carotenoids), as well as 
1,288 cm−1 (aliphatic); 1,155 
and 1,326 cm−1 (cellulose)

HLB is associated with an increase in 
phenylpropanoids and a decrease in xylan, 
carotenoids and cellulose

Nutrient deficiency (ND) in citrus 
trees (Sanchez et al., 2019c)

Orange and 
grapefruit, leaves

1,247, 1,601–1,630 cm−1 
(phenylpropanoids); 1,440–
1,455 cm−1 (aliphatic)

1,184 and 1,218 cm−1 (xylan 
and carotenoids)

ND is associated with an increase in 
phenylpropanoids

Canker (Sanchez et al., 2019b) Orange, leaf - 1,601–1,630 cm−1 
(phenylpropanoids)

Canker is associated with a decrease in 
phenylpropanoids content

HLB and blight (Sanchez et al., 
2019b)

Orange, leaf - - Diagnostics was achieved via the use of 
partial least square discriminant analysis 
(PLS-DA)

Ergot (Egging et al., 2018) Wheat, grain 1,650 and 1,667 cm−1 
(proteins)

- Ergot infection may be associated with the 
expression and deposition of alpha-helical 
and beta-sheet proteins

Black tip (Egging et al., 2018) Wheat, grain 1,348 cm−1 (monomeric 
sugars) and 1,600 cm−1 (lignin); 
shift of 862 peak to 856 cm−1 
(pectin)

862 and 937 cm−1 (starch) Black tip may degrade lignin and ferment 
starch into monomeric sugars, 
esterification of pectin

Mold (Egging et al., 2018) Sorghum, grain shift of 856 peak to 862 cm−1 
(pectin); change in ratio 
between 1,518 and 1,541 cm−1 
peaks (carotenoids)

1,600 and 1,630 cm−1 
(phenylpropanoids)

Degradation of phenylpropanoids: a 
decrease in methylesterfication of pectin 
caused by the infections suggest a 
decrease in the length of conjugated 
double bonds of carotenoids

Ergot (Egging et al., 2018) Sorghum, grain 1,150, 940, 1,124, and 
1,083 cm−1 (monomeric 
sugars); shift of 856 peak to 
862 cm−1 (pectin); change in 
ratio between 1,518 and 
1,541 cm−1 peaks (carotenoids)

1,600 and 1,630 cm−1 
(phenylpropanoids)

Ergot hydrolyzes starches to produce 
monomeric sugars: a decrease in 
methylesterfication of pectin caused by the 
infections suggest a decrease in the length 
of conjugated double bonds of carotene

Fusarium spp. (Farber and 
Kurouski, 2018)

Maize, grain 1,658 cm−1 (protein); 
1,153 cm−1 (starch)

1,600 and 1,633 cm−1 
(phenylpropanoids); 1,547 cm−1 
(shifted from 1,523 cm−1 in 
healthy) species (carotenoids)

Fusarium infection is associated with 
degradation of phenylpropanoids and 
deposition of protein in maize kernels; 
pathogen converts monomeric sugars 
polymeric carbohydrates

Aspergillus flavus (Farber and 
Kurouski, 2018)

Maize, grain 1,003–1,115 cm−1 (monomeric 
sugars); 1,600–1,633 cm−1 
(phenylpropanoids)

1,600 and 1,633 cm−1 
(phenylpropanoids); 1,547 cm−1 
(shifted from 1,523 cm−1 in 
healthy) species (carotenoids); 
1,153 cm−1 (starch)

A. flavus is associated with a breakdown 
maize starch into monomeric sugars

Aspergillus niger (Farber and 
Kurouski, 2018)

Maize, grain 1,153 cm−1 (starch); 1,600–
1,633 cm−1(phenylpropanoids)

1,600 and 1,633 cm−1 
(phenylpropanoids); 1,547 cm−1 
(shifted from 1,523 cm−1 in 
healthy) species (carotenoids)

A. niger converts monomeric sugars 
polymeric carbohydrates

Diplodia spp. (Farber and 
Kurouski, 2018)

Maize, grain 1,003–1,115 cm−1 (monomeric 
sugars)

1,153 cm−1 (starch) Diplodia is associated with a breakdown 
maize starch into monomeric sugars

Abutilon mosaic virus (Yeturu 
et al., 2016)

Abutilon hybridum, 
leaf

1,605–1,629 cm−1 
(phenylpropanoids); 1,440–
1,460 cm−1 (aliphatic)

- Abutilon mosaic virus is associated with an 
increase in phenylpropanoids in A. 
hybridum

Tomato yellow leaf curl Sardinia 
virus (TYCLSV; Mandrile et al., 
2019)

Tomatoes, leaf 1,608 cm−1 (phenolic); 
1,483 cm−1 (aliphatic)

1,526 cm−1 (carotenoids); 
1,420 and 1,483 cm−1 
(aliphatic), 1,500 and 
1,608 cm−1 (phenolic); 
1,353 cm−1 (unidentified);

Small changes in plant biochemistry

Tomato spotted wilt virus 
(TSWV; Mandrile et al., 2019)

Tomatoes, leaf 1,608 cm−1 (phenolic); 
1,438 cm−1 (aliphatic); 
1,353 cm−1 (unidentified);

1,483 cm−1 (aliphatic) Small changes in plant biochemistry

(Continued)
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reliable spectroscopic approach is highly important for successful 
intervention and management of HLB-infected trees.

RAMAN-BASED DIAGNOSTICS OF 
FUNGAL DISEASES IN WHEAT, MAIZE, 
AND SORGHUM

Kurouski group discovered that RS could also be used to detect 
fungal infections in wheat and sorghum grain, some of the 
most economically important food sources grown worldwide 
(Egging et  al., 2018). Pathogens such as ergot, black tip, and 
mold can cause devastating, up to 50% crop, losses in wheat 
and sorghum (Egging et  al., 2018). Simple diseases, like ergot, 
are caused by one pathogen. More complex diseases, such as 
black tip or mold, are caused by several different pathogens 
co-infecting the plant simultaneously. Egging and co-workers 
collected Raman spectra from healthy sorghum grain, as well 
as sorghum grain infected by ergot and mold at different stages 
of disease proliferation. Spectra were collected form dried grain 
in the laboratory using Rigaku Progeny spectrometer (Figure 1) 
equipped with 1,064  nm laser. The researchers also used RS 
to analyze healthy wheat, wheat black tip, and wheat infected 
by ergot. It was found that ergot-infected wheat had two distinct 
peaks at 1,650 and 1,667  cm−1 that were not indicated in 
healthy and black tip-infected wheat. This change in intensity 
of the amide I  region (1,650 and 1,667  cm−1) suggests that 
ergot infection may be  associated with the expression and the 
deposition of alpha-helical and beta-sheet proteins. It was also 
found that spectra collected from black tip-infected wheat had 
decreased intensities of bands at 862 and 937  cm−1 when 
compared to healthy wheat spectra. These vibrational bands 
are associated with C–O–C vibration, which is very typical 
for starch. In addition, vibrational bands at 1,348 and 1,600 cm−1 
had increased intensities in black tip-infected wheat when 
compared to healthy wheat. The 1,348  cm−1 band correlates 
to C–O–H vibration that is common in monomeric sugars. 
This observation suggests that black tip may ferment starch 
in wheat into monomeric sugar. The 1,600 cm−1 band originates 
from lignin and suggests that black tip degrades lignin or 
phenylpropanoid content of the plant. Black tip-infected wheat 
also has a 856  cm−1 peak that is shifted from the regular 
862 cm−1 peak that healthy and ergot wheat exhibit. The authors 
proposed that this could be due to methylesterification of pectin 
caused by the black tip infection. Egging and co-workers used 
OPLS-DA to enable quantitative prediction of the disease on 

A

B

C

FIGURE 4 | Leaf samples collected from fields for qPCR assay and Raman 
spectrum (A). Raman spectra generated from leaves of healthy (green), HLB-
infected on late (blue) and early (purple) stages, and ND symptoms (red) in grapefruit 
(B), and orange (C) trees. Spectra normalized on cellulose vibrational bands 
[marked by asterisks (*)]. Reproduced with permission from Sanchez et al. (2019c).

Disease Plant/Organ Peaks with increase in 
intensity

Peaks with decrease in 
intensity

Conclusion

Barley yellow dwarf virus (BYDV; 
Farber et al., 2020a)

Wheat, leaf 1,601–1,630 cm−1 
(phenylpropanoids)

1,000, 1,115, 1,156, 1,186, 
1,218, and 1,525 cm−1 
(carotenoids)

BYDV is associated with an increase in 
phenylpropanoids and decrease in 
carotenoids

Wheat streak mosaic virus 
(WSMV; Farber et al., 2020a)

Wheat, leaf 1,601–1,630 cm−1 
(phenylpropanoids)

1,000, 1,115, 1,156, 1,186, 
and 1,218 cm−1 (carotenoids)

WSMV is associated with an increase in 
phenylpropanoids and decrease in 
carotenoids

TABLE 2 | Continued

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Payne and Kurouski Raman-Empowered Digital Farming

Frontiers in Plant Science | www.frontiersin.org 8 January 2021 | Volume 11 | Article 616672

wheat and sorghum. The researchers found that RS was capable 
of predicting the diseases on wheat with 100% accuracy 
(cross-validation; Egging et  al., 2018).

Kurouski group also analyzed differences in spectra collected 
from healthy sorghum, mold sorghum, and ergot sorghum 
(Egging et  al., 2018). It was found that lignin bands at 1,600 
and 1,630 cm−1 disappeared in mold-infected sorghum, indicating 
the degradation of lignin associated with mold development. 
There was also some slight decrease in the intensities of those 
bands in ergot-infected sorghum when compared to healthy 
sorghum. Spectra collected from ergot-infected sorghum were 
also found to have increased intensity at 1,150, 940, 1,124, 
and 1,083 cm−1 bands, indicating that ergot hydrolyzes starches 
to produce monomeric sugars. Spectra collected from both 
ergot- and mold-infected sorghum exhibited a shift in their 
856  cm−1 band to 862  cm−1. The authors proposed that this 
could be  due to a decrease in methylesterfication of pectin 
caused by the infections. Decreases in the methyl-esterified 
pectin suggests a decreased ability for the grain to resist 
infection. Finally, changes in ratios between 1,518 and 1,541 cm−1 
peaks were observed between healthy and infected sorghum. 
These changes suggest a decrease in the length of conjugated 
double bonds of carotene. Based on the above-discussed 
spectroscopic changes, Kurouski group was able to distinguish 
between mold, ergot, and healthy sorghum using RS with over 
96% accuracy.

Maize, also referred to as corn, is one of the most impactful 
grains in the world in terms of its uses. With a commercial 
impact of more than 50  billion in the United  States, maize 
is used as livestock feed, as raw material in the industry, and 
as a biofuel and serves as a staple for human consumption 
as food (Farber and Kurouski, 2018). Kurouski group showed 
that RS could detect fungal pathogens Aspergillus flavus, 
Aspergillus niger, Fusarium spp., and Diplodia spp. in maize 
with 100% accuracy (Farber and Kurouski, 2018). In this study, 
Raman spectra were collected from dried grain in the laboratory 
using Rigaku Progeny spectrometer (Figure  1) equipped with 
1,064  nm laser. Healthy maize has vibrational bands attributed 
to lignin, carbohydrates, proteins, and carotenoids. The 1,600 
and 1,633  cm−1 bands from lignin completely disappear in 
Fusarium-infected maize, suggesting the significant degradation 
of lignin (Figure 5). These peaks also had a change in intensity 
in A. flavus and A. niger-infected maize, but no noticeable 
difference in Diplodia. Protein exhibits a key vibrational band 
at around 1,658 cm−1 in the Fusarium-infected maize, indicating 
that the growth of this pathogen is strongly associated with 
the deposition of protein in maize kernels. In healthy maize 
kernels, carotenoids show an intense peak at 1523  cm−1 with 
another less intense peak at 1547  cm−1. Fusarium-, A. flavus-, 
and Diplodia-infected maize kernels all exhibit a stronger peak 
at 1547  cm−1 rather than 1,523  cm−1. This suggests that these 
pathogens either lead to degradation and fragmentation of 
carotenoids in maize, produce specific short-chain carotenoids, 
or convert carotenoids to apocarotenoids. Starch and monomeric 
sugars are carbohydrates and make up the major components 
of maize. An increase in C–O–H vibrations were observed in 
Diplodia- and A. flavus-infected maize. This suggests that these 

pathogens breakdown maize starch into monomeric sugars. 
The authors also observed an increase in the intensity of C–O–C 
band (1,153  cm−1) in the spectra collected from A. niger- and 
Fusarium-infected maize, suggesting that these pathogens turn 
monomeric sugars into polymeric carbohydrates.

RAMAN-BASED DIAGNOSTICS OF 
VIRAL DISEASES

First experimental evidence about a feasibility of Raman-based 
diagnostics of viruses was provided by Yeturu et  al. (Yeturu 
et  al., 2016). The authors demonstrated that the intensity of the 
collected spectra from Abutilon hybridum depends on a degree 
of the plant infection by Abutilon mosaic virus. Expanding upon 
these findings, Rossi group investigated the accuracy of diagnostics 
of tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato 
spotted wilt virus (TSWV) in tomatoes (Mandrile et  al., 2019). 

A

B C

FIGURE 5 | Raman spectra of healthy maize kernels (green) and maize 
kernels infected by Aspergillus niger (brown), A. flavus (blue), Diplodia spp. 
(black), and Fusarium spp. (red). 1450-1700 cm-1 and 950-1200 spectral 
regions shown by dashed lines in the panel A are magnified in panels B and C, 
respectively. Reproduced with permission from Farber and Kurouski, (2018).
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Using RS and real-time PCR, the researchers monitored inoculated 
plants over 28  days until the appearance of symptoms. Mandeile 
and co-workers showed that RS allowed the discrimination of mock 
inoculated (healthy) from virus-infected specimens with above 70% 
accuracy after only 14  days after inoculation for TYLCSV and 
>85% only after 8  days for TSWV. These findings demonstrate a 
suitability of RS for an early detection of virus infections in tomatoes.

Recently, Kurouski and group demonstrated that RS could 
be used for confirmatory identification of viruses in wheat (Farber 
et al., 2020a). Farber and co-workers found that RS can be used 
to differentiate between healthy wheat and wheat infected by 
wheat streak mosaic virus (WSMV) and barley yellow dwarf 
virus (BYDV). Lastly, researchers showed that RS could be used 
to identify whether wheat is infected by these individual viruses 
or by a combination of WSMV and BYDV, as well as WSMV, 
BYDV, and Triticum mosaic virus (TriMV; Figure  6).

FRUIT AND SEED QUALITY CONTROL 
ENABLED BY RAMAN SPECTROSCOPY

Tomato is a major fruit, and the need for determining the 
quality attributes of this fruit in a non-destructive way is in 

increasing demand. Nikbakht and co-workers proposed to use 
RS to determine tomato fruit quality (Nikbakht et  al., 2011). 
This study showed that RS could be used to measure important 
quality parameters of tomatoes such as soluble solid content 
(SSC), acidity (pH), and color. The work done by Nikbakht 
and co-workers also showed that RS can be  highly effective 
in quality assessment of both external and internal properties 
of tomatoes (Nikbakht et  al., 2011). Martin and co-workers 
further expanded the use of RS for the analysis of tomatoes 
ripening (Martin et  al., 2017). The researchers developed a 
model of tomato ripening based on carotenoid vibrational 
bands in Raman spectra. Tomato fruits were scanned using 
bench-top spectrometer equipped with 532  nm laser during 
their post-harvest time evolution and ripening. It has been 
found that an increase in carotenoid vibrations were coincident 
with the onset of the turning stage of the fruit ripening. The 
model built from the collected data describes the tomato 
ripening stages and helps to accurately assess postharvest fruit 
quality control (Martin et  al., 2017).

Expanding upon these results, Nekvapil and co-workers 
investigated the applicability of RS for quality control of fruits 
(Nekvapil et  al., 2018). Nekvapil and co-workers were able 
to show that RS can be  used to scan for fruit freshness, 

A

B

FIGURE 6 | Raman spectra of: (A) Healthy and WSMV- or BYDV-infected wheat leaves and (B) the combination of these two viruses. Normalization band at 
1,440 cm−1 is marked by an asterisk (*).
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particularly in citrus. By scanning the peels of citrus fruits, 
such as mandarin oranges, tangerines, and clementines, it 
was found that the intensity of carotenoids in a fruit can 
be  used to determine the freshness of a fruit. The researchers 
proposed that this approach can be used to increase consumer 
trust, safety, and satisfaction when purchasing citrus fruits 
(Nekvapil et  al., 2018). Independently, Feng and co-workers 
used RS to test eight different citrus varieties (Feng et  al., 
2013). The researchers were able to build a model to distinguish 
the citrus varieties. This work demonstrates that RS can 
be  used for accurate, rapid, effective identification of citrus 
varieties and quality assessment for citrus fruits. Further 
studies on the ability of RS to be  used for the purpose of 
quality assessment was done by Zhu et al. (2018). Lignification 
in fruits leads to increased fruit firmness and is important 
to optimize postharvest fruit handling to minimize quality 
deterioration. Zhu and co-workers were able to come up 
with a procedure to use Raman to assess fruit lignification 
(Zhu et al., 2018). By using Raman spectroscopy, lignification 
of a fruit can be  assessed to determine ripeness.

The cowpea bruchid is an insect that damages legumes, 
such as beans and peas by feeding on them. The bruchid lays 
its eggs on the seeds, making the detection of infestation a 
difficult problem. If left unchecked, two bruchids could destroy 
up to 50% of a ton of harvest cowpea. Sanchez and co-workers 
discovered that RS could be  used for the detection of bruchid 
larvae as well as their excrements inside intact seeds (Sanchez 
et  al., 2019a). Specifically, Sanchez and co-workers collected 
spectra from cowpea seeds infested with bruchids. They took 
the spectra of bruchids at different developmental stages, including 
the first, second, third, and fourth larvae (L1–L4) or pupa. 

The respective spectra were then averaged and compared to 
healthy cowpea seeds. The spectra were normalized on the 
1,458  cm−1 band. They found in L1–L3 infected seeds that 
gradual decreases in intensity occurred in (C–O–H) vibrational 
bands (440, 479, 522, 862, 938, 1,057, 1,085, 1,125, 1,258, 1,339, 
1,384, and 1,397  cm−1) and observed drastic changes in these 
bands in L4 and pupa (Figure  7). The differences between 
healthy, early stage (L1–L3), and late stage (L4 and pupa) 
infections were statistically significant. The Kurouski group also 
observed additional changes in the intensity of bands in L4 
and pupa spectra. To determine if the spectral changes were 
from insects feeding on the seeds or from the actual bruchid 
larvae, Raman spectra were taken from L4 seeds where the 
larvae were removed and called the L4’ spectrum. They found 
that the observed spectral changes in the 1,600–1725  cm−1 
region were due to the larvae.

Using this information, RS can also be  used to monitor 
the growth of insect larvae. The vibrational band at ~630  cm−1 
was found to be  assigned to uric acid and was a major 
component of the bruchid excrement. A decrease in intensity 
in all vibrational bands was also observed and associated with 
carbohydrates in the L4’ spectrum. Using partial least square 
discriminant analysis (PLS-DA) and cross-validation, Kurouski 
group was able to determine the early stage infection with 
93.7% accuracy, the late stage infection with 100% accuracy, 
and the healthy stage with 85% accuracy. The results of Lee 
and co-workers demonstrate that RS can detect insects within 
plant hosts, such as cowpeas.

Piot and co-workers showed that RS can be  used to probe 
wheat grain to follow the evolution of protein content and 
structure during grain development (Piot et  al., 2002). 

FIGURE 7 | Raman spectra of healthy, uninfested cowpea seeds and seeds infested by bruchids at larval and pupal stages, normalized to the 1,458 cm−1 peak 
[indicated by an asterisk (*)]. Reproduced with permission from Sanchez et al. (2019a).
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The work done by Piot and co-workers shows Raman 
spectroscopy’s ability to not only detect molecular species at 
the micro scale but also give information on the structure 
and their binding with neighboring molecules. For example, 
Piot and co-workers discovered that an increase in α-helical 
protein content occurs when the kernel hardens during 
grain ripening.

Virgin olive oil is different from other vegetable oils because 
it is edible from the moment of production. However, olive 
oil comes in different grades, and if its quality is not high 
enough, it cannot be  considered virgin olive oil and must 
undergo further refinement prior to consumption. Muik and 
co-workers were able to use RS to differentiate between olives 
of different qualities (Muik et  al., 2004). Sound olives, olives 
with frostbite, olives collected from the ground, fermented 
olives, and olives with diseases were analyzed using RS. Principal 
component analysis (PCA), hierarchical cluster analysis (HCA), 
and soft independent modeling of class analogy (SIMCA) were 
used to analyze differences in vibrational bands. Based on the 
acquired spectra and the above-discussed statistical approaches, 
Muik and co-workers were able to identify the type with 95% 
accuracy for sound olives, 93% accuracy for frostbite, 96% 
accuracy for ground, and 92% accuracy for fermented olives 
(cross-validation; Muik et  al., 2004). In addition, none of the 
damaged olive samples were wrongly predicted to the class 
for sound olives.

SPECTROSCOPIC IDENTIFICATION OF 
PLANT SPECIES AND THEIR VARIETIES

Urushiol oils, a mixture of pentadecylcatechols, are responsible 
for the allergic reactions caused by the notorious poison ivy 
(Hodgson, 2012). Server rashes, skin inflammation, uncolored 
bumps, and blistering are some of the common symptoms 
exhibited by those who were unfortunate enough to come 
across poison ivy (Yang et  al., 2000; Gober et  al., 2008; Joly 
et  al., 2019). Because these reactions take hours or days to 
occur, those covered in urishiol unknowingly spread the 
substance once they have come in contact with poison ivy. 
While extensive washing with soap and water may stop the 
spread of urishiol oils, there is no way to avoid these symptoms 
other than to avoid contact with poison ivy (Joly et al., 2019). 
Unfortunately, it is difficult for those without botanical 
experience to differentiate poison ivy from other plants. To 
help overcome this problem, Kurouski group developed RS 
for non-invasive, non-destructive, confirmatory, and label-free 
identification of poison ivy (Farber et al., 2020b). The exhibited 
vibrational bands in poison ivy could be  assigned to a few 
key groups: cellulose, pectin, carotenoids, phenylpropanoids, 
xylan, protein, aliphatic, and carbonyl/ester groups (Figure 8). 
While some of these bands appear in other similar plants, 
poison ivy has a unique band at 1,717  cm−1, which is not 
evident in other plants. This unique band, along with other 
key spectroscopic features in poison ivy’s Raman fingerprint 
(such as its high carotenoid intensity), can be  used for the 
identification of poison ivy with 100% accuracy when compared 

to similar looking plants, such as palmer amaranth, water 
oak, white crown beard, and saw greenbrier (98.2% accuracy 
when compared to buckbrush).

Potatoes are a staple food for people all over the world 
because of high starch content, simple cultivation, and high 
production. Potatoes are made up of about 83% water, 12% 
carbohydrates, and the remaining 4% includes proteins, vitamins, 
and other trace elements (Morey et  al., 2020). The proportions 
vary based on the potato type and where it was cultivated. 
While there are some chemical methods to investigate starch 
content, these approaches are indirect, destructive, labor 
consuming, and time consuming. Kurouski group was able to 
use RS to asses nutrient content of potato tubers (Morey et al., 
2020). In addition, RS can be  used to identify nine different 
potato varieties as well as to determine the origin of cultivation. 
Using spatially offset Raman spectroscopy (SORS), Kurouski 
group found that a peak intensity varied by potato variety at 
479 and 1,125  cm−1 for starch, 1,600 and 1,630  cm−1 for 
phenylpropanoid, 1,527  cm−1 for carotenoid content, and 
1,660 cm−1 for protein content. Using these differences in relative 
intensities and PLS-DA with cross-validation, Kurouski group 
was able to identify a potato variety, as well as to determine 
the location of potato cultivation with accuracy ranging from 
81 to 100%. In addition, Kurouski group was able to demonstrate 
that the intensity of the 479  cm−1 band (which correlates to 
starch) linearly increases with an increase in the starch content 
of the sample (Morey et  al., 2020). These results demonstrate 
that RS can be  used for highly accurate determination of the 
starch content in intact potatoes.

Currently, the identification of specific genotypes can be only 
accomplished via visual recognition of distinct phenotypical 
appearances (if applicable) or by genotype sequencing. Both 
have many downfalls. Identifying genotypes by visual recognition 
is often difficult and requires substantial taxonomic expertise. 
The results are often subjective and often can be  incorrect. 
Genotype sequencing is destructive, time- and labor-consuming. 
The answer to these genotype identification problems can 
be  solved by the use of RS (Farber et  al., 2020c). Farber and 
co-workers show that chemometric analysis of peanut leaflet 
spectra provides an accurate identification of different varieties, 
genotype, and can be  used for the prediction of nematode 
resistance and oleic-linoleic oil (O/L) ratio (Farber et al., 2020c). 
Raman-based analysis of seeds provides accurate genotype 
identification and also can identify carbohydrates, proteins, fiber, 
and other nutrients obtained from the readings of peanut seeds. 
Ten different genotypes of peanuts were grown and their leaflets 
were scanned. They all exhibited similar profiles with vibrational 
bands being mainly due to carbohydrates, cellulose, pectin, 
carotenoids, phenylpropanoids, proteins, and carboxylic acid. 
A PLS-DA model was built, and it was found that Raman 
could identify peanut variety with 80% accuracy just from 
scanning leaflets (cross-validation was used). Root-knot nematodes 
feed on peanut plants and peanut plant resistance is important 
to peanut cultivators. Kurouski group found that peanut plant 
resistance was related to changes in bands associated with 
carotenoid and phenylpropanoid. In addition, peanut cultivators 
prefer peanuts with high oleic ratios as they have a longer 
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shelf life which leads to reduced rancidity. Also, it has been 
found that peanuts with high oleic ratios reduce serum cholesterol 
levels and reduce chances of cardiovascular disease. RS revealed 
that plants with high oleic ratios have lower phenylpropanoid 
content whereas all other peaks remained nearly identical. Farber 
and co-workers found Raman to be  82% accurate in the 
identification of peanuts with high oleic ratios against those 
with normal ratios. Raman scanning of seeds was done to see 
if it was more accurate than scanning leaves of peanut plants. 
The results show that Raman is 95% accurate in the identification 
of peanut seeds when compared to the 82% of leaves.

Because of the popularity of maize as a food source, further 
research on the possibilities of Raman and maize was performed 
by Krimmer and co-workers. The researchers found that RS 
can be used to access the nutrient content of maize. Specifically, 
it can predict the content of carbohydrates, fibers, carotenoids, 
and proteins in six different varieties of maize (Krimmer et al., 
2019). To achieve this, Krimmer and co-workers collected more 
than 600 spectra form six different varieties of maize. All six 
varieties had similar spectral profiles except the darker kernels 
scanned had lower intensities. This is because of different light 
absorption and scattering properties of these maize kernels 
affect the scan. This problem can be  solved by normalization, 
particularly at the 1,458  cm−1 peak which all spectra display. 
The authors analyzed the intensities of bands at 479  cm−1 
(starch), 1,530 cm−1 (carotenoids), 1,600/1,632 cm−1 (both fiber), 

and 1,640–1,670  cm−1 (protein region) to quantify the content 
of carbohydrates, carotenoids, fibers, and proteins in maize 
(Figure  9). In addition, Krimmer and co-workers showed that 
RS in combination with chemometric methods can be  used 
for highly accurate typing of maize varieties.

NON-INVASIVE ASSESSMENT OF 
CANNABINOID CONTENT IN PLANTS

Hemp has been used to treat pain since 2,900  B.C. and has 
pharmacological effects from a variety of cannabinols (Hartsel 
et  al., 2016). While there are over 100 different cannabinoids 
that can be  isolated from cannabis plants, clear physiological 
effects have only been determined for a few such as delta-9 
tetrahydrocannabinol (THC), cannabidiol (CBD), and 
cannabigerol (CBG; Appendino et  al., 2008; Borrelli et  al., 
2013). THC is illegal, but CBD and CBG are legal and have 
been shown to reduce chronic pain, inflammation, anxiety, 
and depression. Cannabis is consumed by 147 million people, 
which is about 2.5% of the world population (Sanchez et  al., 
2020d). Cannabis is a hemp plant that contains 
tetrahydrocannabinolic acid (THCA) in amounts higher than 
industrial hemp. This THCA is the source of the psychoactive 
THC that forms from its oxidation. As the most widely cultivated 
and trafficked illicit drug in the world, it requires substantial 

FIGURE 8 | Baseline-corrected (top) and area normalized (bottom) Raman spectra collected from poison ivy (red), palmer amaranth (green), water oak (blue), white 
crownbeard (marine), buckbrush (purple) and saw greenbrier (black).
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effort from border control and law enforcement to control 
illegal trafficking. Cultivation of cannabis plants with large 
amounts of CBD and CBG, simultaneously exhibiting little to 
no THC, would be ideal for growers. Currently, high performance 
liquid chromatography (HPLC) can be  used to determine the 
amount of cannabinoids in plant material, but the process is 
non-portable, destructive, and time/labor consuming (Patel 
et  al., 2017; Zivovinovic et  al., 2018; Burnier et  al., 2019; Nie 
et  al., 2019). Sanchez and co-workers showed that RS can 
be used to differentiate between hemp, cannabis, and CBD-rich 
hemp with 100% accuracy using OPLS-DA with cross-validation 
(Sanchez et al., 2020d). Using a handheld Raman spectrometer, 
the spectrum of hemp were found to have vibrational bands 
from cellulose, carotenoids, and lignin. Multiple varieties of 
cannabis were scanned, and all clearly demonstrated a presence 
of THCA with key peaks at 780, 1,295, 1,623, and 1,666  cm−1 
(Figure  10). It was also found that vibrational bands assigned 
to carotenoids had higher intensity in hemp scans relative to 
scans of cannabis. This result indicates that hemps have higher 
carotenoid content compared to cannabis. Similarly, higher 
intensity in cellulose peaks in hemp indicate a higher amount 
of cellulose in hemp when compared to cannabis. Using the 
information gathered by Sanchez and co-workers, a model was 
set up to determine if Raman spectrometry could be  used to 

differentiate between hemp and cannabis. The result was 100% 
accuracy in classification between hemp and cannabis. Sanchez 
and co-workers were also able to detect THCA in intact growing 
plants because of the vibrational band at 1,691  cm−1 that 
correlates to the carboxyl group of THCA. Therefore, Sanchez 
and co-workers showed that RS can predict the amount of 
THC in a sample without necessary oxidation of THCA to 
THC (Sanchez et  al., 2020d). In another study, Sanchez and 
co-workers took this idea further and were able to detect 
other cannabinoids, such as CBD, CBG, CBGA, and CBDA 
on top of THCA and THC (Sanchez et  al., 2020a). These 
discoveries allowed the Kurouski lab to not only differentiate 
hemp vs. cannabis but also detect CBD-rich hemp with 100% 
accuracy [63]. Their extensive analysis of Raman spectra on 
the six major cannabinoids (THC, THCA, CBD, CBDA, CBG, 
and CBGA) allows for the differentiation between THC/THCA 
vs. CBD/CBDA vs. CBG/CBGA and can be  used to identify 
cannabis variety with 97% accuracy (Sanchez et  al., 2020a).

FUTURE PERSPECTIVES

Research articles published over the last decade provided 
strong experimental evidence of high sensitivity of RS in 

B

A

FIGURE 9 | Right: Raw (A) and normalized (B) Raman spectra of BL, SW, SY, PP, RD, and LY maize kernels. The 1,458 cm−1 peak, which was used for spectral 
normalization, is indicated by an asterisk (*). Left: Means (circles) and confidence intervals for the intensities of the maize kernel spectra, normalized to 1,458 cm−1, at 
the indicated wavenumbers. Colors indicate significantly different groups. Multiple colors indicate a member of a group that has an overlap between two separate 
groups. Reproduced with permission from Krimmer et al. (2019).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Payne and Kurouski Raman-Empowered Digital Farming

Frontiers in Plant Science | www.frontiersin.org 14 January 2021 | Volume 11 | Article 616672

determination of changes in plant biochemistry that are 
associated with biotic and abiotic stresses (Yeturu et al., 2016; 
Egging et  al., 2018; Farber and Kurouski, 2018; Farber et  al., 
2019b; Mandrile et  al., 2019; Sanchez et  al., 2019a,b,c). These 
studies also showed that plant biochemistry uniquely changes 
as a result of such stresses (Egging et  al., 2018; Farber and 
Kurouski, 2018; Mandrile et  al., 2019; Sanchez et  al., 2019c). 
This allows for the use of RS in diagnostics of biotic and 
abiotic stresses in plants. This high sensitivity to small changes 
in plant biochemistry also enables Raman-based identification 
of plant species and their varieties, as well as allows for 
Raman-based selection and breeding of plants (Krimmer et al., 
2019; Farber et al., 2020b,c; Sanchez et al., 2020a,d). Although 
to date, most of the reported experiments were made in 
greenhouses (Altangerel et  al., 2017; Mandrile et  al., 2019; 
Sanchez et  al., 2020b,c), there is a growing body of evidence 
about successful use of RS in the field (Sanchez et al., 2019b,c, 
2020e; Farber et  al., 2020a). Once this practice will become 
the routine of research studies – recognition of RS as a 
reliable agricultural method will tremendously increase.

The use of RS in agriculture can be  further empowered by 
direct elucidation of biochemical changes that are taking place 
upon the above-discussed biotic and abiotic stresses. Mass 
spectroscopy (MS) and HPLC coupled to MS are excellent analytical 
techniques for analytical characterization of changes in plant 
biochemistry (Hijaz et  al., 2013; Killiny and Nehela, 2017; de 
Moraes Pontes et al., 2020). Their use will allow for the determination 
of biochemical origin of the observed spectroscopic changes on 
the level of molecular analytes. The potential of RS can be further 
enchanted by its coupling to already established imaging 
(Mahlein et  al., 2012; Mutka and Bart, 2015) and molecular 

techniques (Schaad and Frederick, 2002; Liu et  al., 2015; 
Zhang et  al., 2017). For instance, quick surveillance of large 
field territories by RGB, thermography or hyperspectral imaging 
can be  used to navigate RS to the “danger” or “problematic” 
areas (Gowen et  al., 2007; Mahlein et  al., 2012; Raza et  al., 
2015). Such UAV-guided RS-based approaches can save enormous 
resources in diagnostics of biotic and abiotic stresses. This 
approach can be  used to overcome the existing low-throughput 
of RS. Specifically, the use of hand-held spectrometers requires 
a direct contact with the analyzed plant that substantially reduces 
the analysis of large agricultural territories even with 1 s acquisition 
time that is currently required for such diagnostics. Also, in 
the light of numerous diseases simultaneously present on a plant, 
RS can be  considered as a “fast screening” approach that may 
be  used for rapid screening of plants. If more sophisticated or 
accurate analysis is needed, molecular methods of analysis, such 
as PCR, qPCR, or ELISA, can be used (Clark and Adams, 1977; 
Schaad and Frederick, 2002; Liu et al., 2015; Zhang et al., 2017).

Substantial limitation of broad utilization of commercially 
available hand-held spectrometers is their relatively high 
cost (~$30,000–$60,000). This will likely limit the possession 
of instruments by individual farmers. One can expect that 
continuous technological development of spectrometers that 
enabled their militarization will also reduce the cost of these 
devices in the nearest future. Nevertheless, the use of RS 
in agriculture is likely to be  implemented as a service in 
which a farmer can order a non-invasive and reagent-free 
scan of the field to detect the presence of biotic and abiotic 
stresses. Collected spectra can be  transferred to a server 
for the analysis using Bluetooth or WiFi or analyzed directly 
in the field by the hand-help instrument. Next, the farmer 

FIGURE 10 | Top: Raman spectra collected from hemp (green), GC (purple), TCC (blue), and TS (red). Bottom: Raman spectrum of THCA extract (maroon). 
Spectra normalized on CH2 vibrations (1,440 and 1,455 cm−1) are present in nearly all classes in biological molecules [marked by asterisks (*)]. Reproduced with 
permission from Sanchez et al. (2020d).
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will receive information about the status of the field together 
with GPS coordinates of the analyzed locations.

CONCLUSION

This review shows the potential for RS in the future of digital 
farming. Raman spectrometry’s portable and quick analysis 
allows for timely detection of biotic and abiotic stresses in 
plants. In addition, Raman can be used as an advanced method 
in plant breeding and selection thanks to being both non-invasive 
and non-destructive. Furthermore, RS can be  used for plant 
phenotyping and nutrient analysis. The benefits of RS will 
surely become more clear to others and the adoption of Raman 
spectrometry in digital farming will become more common.
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