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Cytokinins (CKs) are a class of phytohormones playing essential roles in various
biological processes. However, the mechanisms underlying CK transport as well as
its function in plant growth and development are far from being fully elucidated.
Here, we characterize the function of PURINE PERMEASE1 (OsPUP1) in rice (Oryza
sativa L.). OsPUP1 was predominantly expressed in the root, particularly in vascular
cells, and CK treatment can induce its expression. Subcellular localization analysis
showed that OsPUP1 was predominantly localized to the endoplasmic reticulum (ER).
Overexpression of OsPUPT resulted in growth defect of various aerial tissues, including
decreased leaf length, plant height, grain weight, panicle length, and grain number.
Hormone profiling revealed that the CK content was decreased in the shoot of OsPUP1 -
overexpressing seedling, but increased in the root, compared with the wild type. The
CK content in the panicle was also decreased. Quantitative reverse transcription-
PCR (gRT-PCR) analysis using several CK type-A response regulators (OsRRs) as the
marker genes suggested that the CK response in the shoot of OsPUPT-overexpressing
seedling is decreased compared to the wild type when CKs are applied to the root.
Genetic analysis revealed that BG3/OsPUP4, a putative plasma membrane-localized
CK transporter, overcomes the function of OsPUP1. We hypothesize that OsPUP1
might be involved in importing CKs into ER to unload CKs from the vascular tissues
by cell-to-cell transport.

Keywords: purine permease, cytokinin, plant height, grain weight, rice (Oryza sativa L.)

INTRODUCTION

Cytokinins are a class of phytohormones playing important roles in various biological processes
including cell division and differentiation, shoot/root balance, nutrient relocation, seed number as
well as stress responses (Sakakibara, 2006). In plants, CKs exist naturally either in free-base forms,
including N®-(AZ-isopentenyl)-adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin
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(DHZ), or in conjugated forms, although the ratio varies with
plant species (Sakakibara, 2006; Osugi and Sakakibara, 2015).
A series of synthetic enzymes, including isopentenyltransferases
(IPTs), CK-specific cytochrome P450 (CYP735As), and LONELY
GUY/LOG LIKE phosphoribohydrolases (LOG/LOGLs), have
been identified, while uridine diphosphate glucosyltransferases
(UGTs) and CK oxidase/dehydrogenases (CKXs) are involved
in the CK inactivation and degradation (Sakakibara, 2006;
Kurakawa et al, 2007). IPTs preferably utilize adenosine
triphosphate (ATP) or adenosine diphosphate (ADP) as
isoprenoid acceptors to synthesize isopentenyladenine riboside
5'-triphosphate (iPRTP) and isopentenyladenine riboside 5'-
diphosphate (iPRDP), respectively (Kakimoto, 2001); CYP735As
convert iP nucleotides into the corresponding tZ nucleotides
(Takei et al., 2004); LOG/LOGLs catalyze the transition from
inactive CK derivatives to bioactive CK nucleobases (Kurakawa
etal., 2007; Kuroha et al., 2009); UGTs deactivate CK nucleobases
by conjugation at O- and N- position with a sugar moiety, mostly
glucose (Martin et al., 1999a,b; Smehilova et al., 2016). CKXs
catabolize CKs to adenine or adenosine (Galuszka et al., 2001).

The signal pathway of CK involves a His-Asp phosphorelay
system from receptor histidine kinases (HKs) to histidine-
containing phosphotransfer proteins (HPTs), then to the
transcriptional factor type-B response regulators (RRs) (Werner
and Schmiilling, 2009; Hwang et al., 2012; Kieber and Schaller,
2018). Hybrid HKs sense CKs via the cyclases/histidine kinases
associated sensory extracellular (CHASE) domain for CK-
binding, which reside both in plasma membrane (PM) and
ER, and have been suggested to mainly happen in ER lumen
(Caesar et al., 2011; Lomin et al., 2011, 2018; Wulfetange et al,,
2011; Hwang et al., 2012; Ding et al, 2017; Romanov et al,
2018; Kubiasova et al., 2020). Type-B RRs contain DNA-binding
domain and mediate CK-dependent transcriptional activation
(Sakai et al., 2000, 2001; Hwang and Sheen, 2001; Hutchison
et al., 2006). Type-B RRs regulate the expression of target genes
in response to the hormone (Sakai et al., 2000, 2001). Among the
target genes, type-A RRs are induced by CK and play negative
roles through competing with type-B RRs for phosphoryl group
(Werner and Schmiilling, 2009; Hwang et al., 2012; Kieber and
Schaller, 2018).

Cytokinins regulate various agronomic traits, such as grain
number, grain size, and plant height. Loss-of-function of LOG
decreases shoot apical meristem and reduces grain number
(Kurakawa et al., 2007). Knockout of CYP735A4 decreases plant
height (Gao et al., 2019). Decreased expression of OsCKX2/Gnla
increases the grain number (Ashikari et al, 2005; Li et al,
2013). OsCKX2 also negatively regulates grain weight (Yeh
et al., 2015). The knockout mutants of OsCKX11 display delayed
leaf senescence and increased grain number (Zhang W. et al,,
2020). Overexpression of another CK oxidase/dehydrogenase
gene OsCKX4 significantly decreases grain number, grain weight,
and plant height (Gao et al., 2014). TaCKX6-D1, a wheat ortholog
of rice OsCKX2, has been shown to be significantly associated
with grain weight, and haplotype of the gene is associated with
higher grain weight (Zhang L. et al, 2012). Knockdown of
TaCKX2.4 increases grain numbers per spike (Li et al., 2018).
However, it has been suggested that TaCKX2.1 and TaCKX2.2

expressions are positively correlated with grain number per spike
(Zhang J. et al., 2011).

Cytokinins function not only as local paracrine signal, but also
as long-distance signal through translocating in vascular tissues
(Sakakibara, 2006; Hirose et al., 2008; Osugi and Sakakibara,
2015; Liu et al, 2019). Trace experiments with the help of
isotope-labeled CKs have demonstrated the movement of CK
among tissues in planta (Bishopp et al, 2011; Kiba et al,
2013; Sasaki et al, 2014; Zhang K. et al, 2014). Due to the
tissue-specific expression pattern of CK biosynthetic genes such
as CYP735As which are mainly expressed in the roots for
synthesis of tZ-type CKs, CK species are unevenly produced
in different tissues (Takei et al., 2004; Hirose et al., 2008).
tZ-type CKs are mainly distributed in xylem sap, while iP-
type CKs mainly present in the phloem sap (Hirose et al,
2008). Moreover, it has been demonstrated that the shoot-
derived and root-derived CKs could have specific function
in regulating plant growth and development (Matsumoto-
Kitano et al.,, 2008; Kiba et al., 2013; Sasaki et al., 2014).
The Arabidopsis atiptl;3;5;7 quadruple mutant with reduced
CK content does not form cambium and displays reduced
thickness of the stem and root (Matsumoto-Kitano et al.,
2008). Reciprocal grafting the shoot and root of the quadruple
mutant and the wild-type plant recover the growth-deficient
phenotypes of the mutant (Matsumoto-Kitano et al., 2008). The
Arabidopsis cyp735al cyp735a2 double mutant with severely
reduced tZ-type CK content but unchanged total CK quantity
has retardation of the shoot growth, which can be recovered
to the wild-type phenotype by applying exogenous tZ but
not iP (Kiba et al, 2013). The shoot phenotype can also be
complemented with the recovery of tZ-type CK content by
grafting the shoot of the double mutant onto the wild-type stock
(Kiba et al., 2013).

There are at least four types of proteins reported to be
involved in CK traffic and translocation. One type is ATP-
binding cassette (ABC) transporter subfamily. AtABCGI4 is
expressed in cells of vascular tissues and localized to the plasma
membrane and it functions as an efflux transporter for loading
CK into xylem, and plays a crucial role in the long distance
transport of root-derived CKs (Ko et al., 2014; Zhang K. et al.,
2014). A rice homolog, OsABCGI8, has been shown to play
a similar role (Zhao et al., 2019). Loss-of-function of either
AtABCGI4 in Arabidopsis or OsABCGI8 in rice leads to the
retention of tZ-type CKs in the roots, resulting in reduced
growth of the shoots (Ko et al., 2014; Zhang K. et al., 2014;
Zhao et al, 2019). Another type is equilibrative nucleoside
transporter (ENT) family, which has been suggested to selectively
translocate CK nucleosides (Hirose et al., 2005, 2008). OsSENT2 is
expressed in the scutellum of germinating seeds and the vascular
tissues of germinated seedlings, and predominantly expressed
in the roots in mature plants (Hirose et al., 2005). It has been
suggested that OsENT2 participates in retrieving endosperm-
derived nucleosides through the germinating embryo and in
the long-distance transport of nucleosides in growing plants
(Hirose et al., 2005). Three homologs in Arabidopsis, AtENT3,
AtENTS6, and AtENTS, are also suggested to be involved in
transporting CK nucleoside (Sun et al., 2005; Hirose et al., 2008).
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Very recently, AZG2, a member of AZA-GUANINE RESISTANT
(AZG) purine transporter family, is reported to have the ability
to transports purines and CK with high affinity (Tessi et al.,
2020). The forth type is purine permease (PUP) family. Three
genes, AtPUPI, AtPUP2, and AtPUPI4, are supposed to mediate
CK nucleobase uptake in Arabidopsis (Burkle et al., 2003;
Zurcher et al,, 2016). AtPUPI is expressed in the epithem of
hydatodes and the stigma surface of silique, and localized to
the plasma membrane, whereas AtPUP2 is expressed in the
phloem of leaves (Biirkle et al., 2003; Szydlowski et al., 2013).
AtPUP14 is also localized to the plasma membrane, and has the
ability to import CK nucleobase into cell (Ziircher et al., 2016).
AtPUP14 is proposed to diminish the spatiotemporal active
CK sink in the apoplast for perception by plasma membrane-
localized CK receptor (Ziircher et al., 2016). In rice, there are
12 PUP family members (Qi and Xiong, 2013). OsPUP4 and
OsPUP7 are localized to the plasma membrane and endoplasmic
reticulum (ER), respectively, though they are both expressed
in vascular tissues (Qi and Xiong, 2013; Xiao et al, 2019).
OsPUP4 and OsPUP7 are assumed to be involved in long-
distance transport and local allocation of CK in a cell-to-cell way
(Xiao et al., 2019).

In this study, we identified another PUP homolog OsPUPI.
The gene was expressed highly in the root, predominantly in
vascular cells, and the protein was predominantly localized to
ER. Overexpression of OsPUP]I led to altered distribution of CKs,
and resulted in growth defect in the shoot. Further analyses
suggested that the CK response in OsPUPI-overexpressing
seedling plant is altered. We hypothesize that OsPUP1 might
be involved in importing CKs into ER to mediate CK transport
and CK response.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

The Japonica cultivar Zhonghuall was used as the wild type
in this study. For the analysis at the reproductive stage, rice
plants were grown in the field under natural condition. For
seedling analysis, rice plants were grown hydroponically in
a growth chamber at 28°C with a 12-h-day/12-h-night cycle,
light intensity of 30000 lux, and humidity of 70%. Modified
Kimura B (pH 5.8) solution (Ma et al.,, 2001) was supplied as
nutrient medium containing the following macronutrients (mM):
(NH4)2504 (0.36), MgSO4.7H20 (0.54), KNO3 (0.18), Ca(N03)2
(0.36), KzSO4 (0.09), KH2PO4 (0.18), and NaZSiO3.9H20 (1.6);
and micronutrients (WM): MnCl,.4H,0 (9.14), H3BO3 (46.2),
H,MoOy4 (0.56), ZnSO4.7H,0 (0.76), CuSO4.5H,0 (0.32), and
Fe(I1)-EDTA (20).

Vector Construction and Plant

Transformation

The full-length coding sequence of OsPUPI was cloned into
pCAMBIA2300-Actin and pCAMBIA2300-35S:GFP to generate
the constructs for overexpression and protein subcellular
localization analysis, respectively. The 2,091 bp promoter
sequence upstream the start codon of OsPUPI was cloned into

pCAMBIA2391Z to generate the construct for GUS staining
analysis. Sequences were cloned into vectors by recombination
fusion strategy. To create knockout mutants, OsPUPI was
edited by targeting 5-GTCGTGCTTCGTGTACGCGCTGG-
3’ in the coding sequence as described previously (Lu
et al, 2017). The transgenic plants were produced using
Zhonghuall as the receptor by Agrobacterium tumefaciens-
mediated transformation following the previously described
method (Liu et al., 2007). To and T lines of pOsPUPI:GUS
transgenic plants, and T3 and higher lines of OsPUPI-
overexpressing and knockout homozygous plants were
used for analyses.

Total RNA Isolation and qRT-PCR

Analysis

Total RNA was isolated using TRIzol (Code No. 15596026,
Invitrogen). The ¢cDNA was synthesized using a kit named
“PrimeScript™ RT reagent Kit with gDNA Eraser” (Code No.
RR047A, TaKaRa) following the product instructions. qRT-PCR
using SYBR Green PCR mix (Code No. RR820A, TaKaRa)
was performed on a real-time PCR detection system (Bio-
Rad CFX96) according to the manufacturer’s instructions. The
rice Ubiquitin2 gene was used as an internal reference for
all analyses. The primers used for qRT-PCR are listed in
Supplementary Table 2.

GUS Staining

Root from plants at the seedling stage and other tissues from
plants at the reproductive stage were sampled for GUS staining
according to a previously described method (Jefferson, 1989).
The stained tissues were observed and the images were taken
using a stereomicroscope (Olympus SZX16) with a digital camera
(Canon EOS 600D).

Hormone Treatment

For responsive analyses of OsPUPI to CK as well as other
phytohormones, the roots of 8-day-old wild-type seedlings were
treated with iP, tZ, or ¢Z at 1 wM concentrations for 2 h, or
treated with other phytohormones, including brassinolide (BL),
gibberellin (GA3), abscisic acid (ABA), 1-aminocyclopropane-1-
carboxylic acid (ACC), indole-3-acetic acid (IAA), and jasmonic
acid (JA), at 10 WM concentrations for 4 h. The materials for the
analyses were used as the same as in our previous work (Xiao
et al., 2019). For CK transport analysis, the roots of 10-day-old
wild-type seedlings and OsPUPI-overexpressing seedlings were
treated using iP, tZ, or cZ at 0.01 .M concentrations for 4 h. After
treatments, the shoots and roots of the plants were separately
harvested for expression analyses of OsPUPI, OsRRI1, OsRR2,
and OsRR4.

Measurement of CKs

Shoots and roots of 10-day-old rice seedlings grown in a growth
chamber and 18-20 cm length panicles of plants grown in
the field under natural condition were harvested and used for
measurement of CKs as described previously (Cai et al., 2014).
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Subcellular Localization Analysis of

OsPUP1

pCAMBIA2300-35S:GFP-OsPUP1 was transformed alone or
co-transformed with endoplasmic reticulum-red fluorescent
protein (ER-RFP) into rice protoplasts using a previously
described method (Zhang Y. et al., 2011). The same vector was
introduced into Nicotiana benthamiana leaves by Agrobacterium
tumefaciens-mediated transformation following the method
described previously (Sparkes et al., 2006). After incubating for
18 h in rice protoplasts and 48 h in tobacco leaves, fluorescent
signals were detected using a confocal laser scanning microscopy
(Leica TCS SP5).

Phylogenetic Analysis

PUP genes in Arabidopsis, coffee, and rice are numbered
according to previous studies (Qi and Xiong, 2013; Zircher
et al., 2016; Kakegawa et al., 2019). Gene information referred
to websites for Arabidopsis', coffee?, and rice’. Protein sequences
were used to construct the phylogenetic tree by software MEGA
X (Kumar et al., 2018) using the Maximum Likelihood method
based on the JTT matrix-based model (Jones et al., 1992). The tree

Uhttps://www.arabidopsis.org/
*http://coffee- genome.org/
*http://rice.plantbiology.msu.edu/

was drawn to scale, with branch lengths measured in the number
of substitutions per site.

Accession Numbers

Sequence data from this article can be found in the Rice
Genome Annotation Project (see text footnote 3) under the
following accession numbers: OsPUPI (LOC_0Os03g08880),
BG3/0OsPUP4 (LOC_0Os01g48800), OsRRI (LOC_0Os04g36070),
OsRR2 (LOC_0s02g35180), OsRR4 (LOC_Os01g72330), and
Ubiqutin2 (LOC_0s02g06640).

RESULTS

Molecular Characteristics of OsPUP1

We previously identified two OsPUPs, BG3/OsPUP4, and
OsPUP7, being involved in long-distance transport of CK (Xiao
etal,, 2019). OsPUP1 is a close homolog of OsPUP4 and OsPUP?7.
In addition, it has been shown that both OsPUP1 and OsPUP4
have increased expression in OsPUP7-overexpressing plant (Qi
and Xiong, 2013). We thus selected OsPUP1 for further analysis
in order to explore its potential role in CK transport. We firstly
evaluated the expression pattern of OsPUPI in different tissues of
the wild-type plant by qRT-PCR. The results showed that OsPUP1
was evidently expressed in all tissues tested, including mature
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FIGURE 1 | Molecular characteristics of OsPUP1. (A) Expression pattern of OsPUP1 in various tissues of the wild-type plant. MR, mature root; ST, stem; LB, leaf
blade; LS, leaf sheath. Ubiquitin2 gene was used as the internal reference. n = 3, bar = SD. (B) GUS staining analyses of the various tissues of the pOsPUP1:GUS
transgenic plants. (a) young root; (b) cross section of young root; (¢) ampilification of the red-framed regions in (b) to better show the signals in phloem; cross
section of culm (d), leaf blade (e), leaf sheath (f), and grain husk (g). Scale bar: 1 mm in (a), 50 wm in (b-g). (C) Inductive effect of different CK nucleobases on
OsPUP1 expression in the shoots and roots of 8-day-old wild-type seedlings, of which roots were treated by iP, tZ, and c¢Z at 1 WM concentrations for 2 h. Ubiquitin2
gene was used as the internal reference. n = 3, bar = SD, **P < 0.01 in Student’s t-test. (D) Subcellular localization of OsPUP1 in rice protoplast. ER, endoplasmic

reticulum; BF, bright field. Scale bar, 10 um.
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root, stem, leaf blade, leaf sheath, and panicles with different
length (Figure 1A). However, the expression level was much
higher in the root than those of other tissues (Figure 1A). In
reproductive tissues, OsPUP1 expression was gradually increased
along with the panicle development (Figure 1A). This expression
pattern was somewhat similar with those of OsPUP4 and OsPUP7
(Xiao et al., 2019), indicating that OsPUP1 could also play a role
in panicle growth and development.

To further dissect the expression pattern of OsPUPI, we
constructed a plasmid with GUS driven by the promoter
of OsPUPI and introduced it into the wild-type plant.
Histochemical staining of various tissues, including root, stem,
leaf blade, leaf sheath, young panicle, and husk, showed that
OsPUPI was predominantly expressed in vascular tissues, and
turned to be specific in phloem (Figure 1B). The expression was
also detected in other cells such as parenchymal cells, but to a
much lesser extent (Figure 1B).

To test whether OsPUPI is responsive to CK, we analyzed
the OsPUPI expression under CK treatment. iP, tZ, and cZ are
three type of active CKs that can be endogenously synthesized
in rice. When the roots of the wild-type seedling were treated
with these different CKs, respectively, OsPUPI was always
significantly induced in both shoots and roots (Figure 1C),
suggesting that CKs can positively regulate the expression of
OsPUPI. We further examined the expression of OsPUPI under
other phytohormone treatments. Interestingly, OsPUPI could
also be induced by brassinolide (BL), gibberellin (GA), 1-
aminocyclopropane-1-carboxylic acid (ACC), and jasmonic acid
(JA), but was suppressed by abscisic acid (ABA) and indole-3-
acetic acid (IAA) (Supplementary Figure 1). Thus, it appears that
OsPUPI as a potential CK transporter is involved in response to
various phytohormones.

Subcellular localization of a protein is important for its
function, and OsPUP4 has been shown to be localized on
plasma membrane for CK transport (Xiao et al., 2019). We
thus tagged OsPUP1 with a green fluorescent protein (GFP)
tag at the N-terminus of the protein and then introduced the
corresponding vector into either rice protoplast or tobacco
epidermal cells for analysis. Observation with a confocal laser
scanning microscopy showed that OsPUP1 was apparently not
localized to plasma membrane in protoplast (Supplementary
Figure 2), but appeared to be localized to the endoplasmic
reticulum (ER), as the nuclei were surrounded by the fluorescence
signal (Supplementary Figure 3), which is thought to be a
typical characteristic of ER localization (Sparkes et al., 2006).
To confirm this result, we co-expressed the fusion protein
with an ER marker (ER-RFP) in rice protoplasts, and found
the fluorescence signals of the two fusion proteins are highly
overlapped, demonstrating that OsPUP1 was predominantly
localized to ER.

Overexpression of OsPUP1 Suppresses
Plant Height, Grain Weight and Grain

Number
To study the function of OsPUP1 in regulating growth and
development in rice, we overexpressed OsPUPI under the control

of ACTINI promoter in the wild-type plants, and obtained
a number of independent transgenic plants. Compared with
the wild-type plant, homozygous OsPUPI-overexpressing plants
(designated as OE for short) exhibited remarkably reduced
growth of various tissues. In detail, the grain size and grain weight
were significantly decreased, which could be mainly attributed to
the reduction of grain width (Figures 2A-D). The plant height
was also decreased both at the reproductive stage and at the
seedling stage (Figures 2E,F and Supplementary Figure 4A).
In addition, the tiller number of the transgenic plants was
slightly less than the wild type (Supplementary Figure 4B).
Both the leaf blade and leaf sheath were shorter than the wild
type (Figure 2G and Supplementary Figure 4C). Moreover, the
panicle length, the primary and secondary branches were all
decreased, which finally resulted in a decreased grain number
(Supplementary Figure 5). The severity of the above-mentioned
phenotypes were well consistent with the expression level of
OsPUPI (Figure 2H).

We also generated knockout mutants of OsPUPI using
CRISPR/Cas9 gene-editing technology. Two independent
homozygous lines, both containing frameshift mutations
with 1 bp insertion in the coding region and thus
should be knockout alleles, were selected for phenotypic
analysis  (Supplementary Figure 6A). The mutation
seems to have no effect on gene transcription since the
expression of OsPUPI was not changed in both mutants
(Supplementary Figure 6B). However, no clear phenotypic
difference was observed compared with the wild-type
plant, suggesting the existence of functional redundancy
among PUP members.

Since ospupl mutant is phenotype-silent, we
focused on the analysis of the overexpressing plants for
dissection of potential functions of OsPUPI1. Considering
that OEI showed a weak phenotype and even had no
statistically significant difference in some terms compared
with the wild type (Supplementary Figures 4, 5), whereas
OE2 presented a very typical and marked phenotype,
we majorly used OE2 as a representative line for the
following analyses.

next

OsPUP1-Overexpressing Plants Have

Reduced CK Levels in Shoot and Panicle

Given the potential role of PUPs in CK transport, we
asked whether the marked phenotypic changes of OsPUPI-
overexpressing plants are associated with alteration of CK
contents. To this end, we directly quantified various CK forms
in both the shoot and the root of OsPUPI-overexpressing
seedlings, respectively. CK nucleobases are thought to be
solely active CK forms (Sakakibara, 2006; Hothorn et al,
2011; Lomin et al, 2015), and CK nucleosides can be easily
transformed in vivo to CK nucleobases (Yonekura-Sakakibara
et al, 2004; Hwang et al, 2012). Compared to the wild-
type plants, the content of iP, tZ, and DHZ, three kinds of
CK nucleobases, and the nucleoside form of tZ (tZR) were
reduced, but cZ and other nucleoside forms tested were not
markedly changed in the shoot of OsPUPI-overexpressing
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FIGURE 2 | Phenotype analyses of OsPUP17-overexpressing plants. (A) Comparison of the grain morphology of the wild-type plant (WT) and two representative
OsPUPT1-overexpressing plants, designated as OE7 and OE2 for short. Scale bar, 5 mm. (B-D) Statistical data of the grain length (B), grain width (C), and grain
weight (D) in (A). n = 20 in (B,C), n = 3in (D), bar = SD, **P < 0.01 in Student’s t-test. (E,F) Gross morphology of 140-day-old plants at the reproductive stage (E)
and 7-day-old plants at the seedling stage (F). Scale bar: 20 cm in (E) and 2 cm in (F). White arrowheads in (F) mark the second leaves. (G) Statistical data of the
second leaf sheath length in (F). n =9, bar = SD, **P < 0.01 in Student’s t-test. (H) Relative expression of OsPUP1 in shoots of 10-day-old OsPUPT-overexpressing
seedlings tested by gRT-PCR, compared with WT. Ubiquitin2 gene was used as the internal reference. n = 3, bar = SD, **P < 0.01 in Student’s t-test.

plants (Figure 3A). However, cZ, cZR, and DHZR were
increased, tZR was decreased, and other biologically active
forms were not markedly changed in the root (Figure 3C).
Interestingly, the most abundant inactive form cis-zeatin
O-glucoside (cZOG) increased in both shoots and roots
(Supplementary Table 1). Nevertheless, the significant reduction
of the total CK nucleobases and nucleosides in the shoot might
explain the dwarfism phenotype of OsPUPI-overexpressing
seedling plant (Figure 3B).

It has been shown that CKs also promote grain size
and grain number in rice (Ashikari et al., 2005; Gao et al,
2014; Xiao et al, 2019; Yin et al., 2020). To test whether
the decrease of grain size and grain number in OsPUPI-
overexpressing plants are associated with the alteration
of CK content, we further quantified the CK content in
the panicles (Figures 3E,F and Supplementary Table 1).
Compared with the wild-type plants, iP, iPR, and cZR
were all significantly decreased in the transgenic plants,
but DHZ and DHZR were slightly increased, while other
biologically active forms were not significantly changed
(Figure 3E). Thus, the decreased grain weight of OsPUPI-
overexpressing plants might be caused by the reduction of

the total content of CK nucleobases and nucleosides in the
panicles (Figure 3F).

Shoot of OsPUP1-Overexpressing Plants
Exhibits Decreased Response to CK

Application in Root

The levels of tZ and tZR, two CK forms mainly synthesized in the
root (Takei et al., 2004; Xiao et al., 2019), were decreased in the
shoot of OsPUPI-overexpressing seedlings, and the significant
increase of cZ and c¢ZR in the root did not lead to the accordingly
increase of the two forms in the shoot (Figure 3A). Given that
OsPUP1 could be a CK transporter, we hypothesized that the
root-to-shoot transport of CK was impaired in the transgenic
plants. To test this possibility, we treated the roots of both
OsPUPI-overexpressing plants and the wild-type with three
kinds of CK nucleobases, including iP, tZ, and cZ, at 0.01 uM
concentrations for 4 h, and then tried to compare the CK
response in the shoots. If the root-to-shoot transport of CK were
altered in the plant, the hormone response in the shoot should be
accordingly altered in response to the CK treatment in the root.
Three A-type OsRR genes, OsRRI, OsRR2, and OsRR4, which are
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FIGURE 3 | Quantification of CKs in OsPUP1-overexpressing plants. (A,C,E) Quantification of CKs in shoots (A) and roots (C) of 10-day-old seedlings and panicles
(E) with 18-20 cm length of the wild-type (WT) and OsPUP1-overexpressing plants (OE2). See Supplementary Table 1 for individual values. Different CK forms
were grouped according to the content. n = 3, bar = SD. n.d., not detected. *P < 0.05 and **P < 0.01 in Student’s t-test. Asterisks indicate statistically significant
difference of OE2, compared with WT. (B,D,F) Total amounts of the biologically active forms of CKs with statistical significance in shoots (B), roots (D), and panicles
(F). FW, fresh weight.

sensitively induced by CK (Kudo et al., 2012; Tsai et al., 2012; Xiao
et al., 2019), were used as the marker genes to analyze the CK
response in the shoot and root, respectively, and thus to indicate
the activity of CK signal transduction. Without treatment, the
expression levels of these OsRR genes were decreased in the shoot
of OsPUPI-overexpressing plants, consistent with the decreased
CK level, but unchanged in the root, compared with the wild-
type (Figure 4). Upon CK treatment in the roots, the expression
levels were significantly induced in the roots of both OsPUPI-
overexpressing plants and the wild type (Figure 4). In the shoots,
the expression levels of the three genes were induced in both
OE?2 and the wild type under either tZ or cZ treatment, however,
the induction extents are much lower in OE2 than those in the
wild type (Figure 4). For iP treatment, similar tendency was also

observed, although the extent was much lower compared to those
in tZ and cZ treatment (Figure 4). Taken together, these results
strongly suggested that the long-distance transport of CK from
root to shoot is reduced in OsPUPI-overexpressing plants.

BG3/0sPUP4 Overcomes OsPUP1

Function

Phylogenetic analysis of PUPs involving three different plant
species, including Arabidopsis, coffee, and rice, showed that
OsPUP1 is close to BG3/OsPUP4 as well as OsPUP7 and
OsPUP8 in rice (Supplementary Figure 7). However, our
results clearly revealed that overexpression of BG3/OsPUP4
and OsPUPI led to significantly different or even opposite
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phenotypes (Xiao et al., 2019). To study the relationship between
the two genes, we crossed bg3-D mutant, in which BG3/OsPUP4
expression is activated (Xiao et al, 2019), with OsPUPI-
overexpressing plant. At the reproductive stage, the F; plants with
both BG3/OsPUP4 and OsPUP]I overexpressed exhibited a similar
plant height as the wild type (Figures 5A,B and Supplementary
Figure 8). Similar result was obtained at the seedling stage, as the
F) plants showed a plant height like bg3-D (Figures 5C,D), which
is taller than the wild type due to longer leaves (Xiao et al., 2019),
suggesting that activation of BG3 may mask the effect of OsPUPI-
overexpression. In addition, the F; plants also showed increased
grain weight (Figure 5E). Taken together, these results strongly
suggested that, although the two genes function antagonistically
in regulating plant growth and development, BG3/OsPUP4 can
somehow overcome the role of OsPUP1.

DISCUSSION

Plasmodesmata provide eflicient channels for molecules to
move from cell-to-cell via the ER lumen (Barton et al., 2011).
As overexpression of OsPUPI resulted in phenotypes almost
contrary to those of BG3/OsPUP4- or OsPUP7-overexpressing
plants, especially regarding the plant height and grain weight,
we hypothesized that, while BG3/OsPUP4 and OsPUP?7 function

in loading CK into vascular tissues (Xiao et al., 2019), OsPUP1
might be involved in unloading CK out from vascular tissues
(Figure 6). The ER-localized OsPUP1 might function as an
influx transporter together with other CK transporters in
importing CKs from cytoplasm into ER of cells in vascular
tissues. Considering the role of root-derived tZ in promoting
the shoot growth (Takei et al, 2004; Gao et al, 2014; Ko
et al., 2014; Zhang K. et al., 2014), the reduced content of tZ
and tZR in the shoot might be the reason for the dwarfism
of OsPUPI-overexpressing plants. It should be mentioned that
OsPUPI was expressed much more higher in the root than
other tissues in the shoot (Figure 1A), which is quite different
from the expression pattern of BG3/OsPUP4 and OsPUP7. The
root-preferential expression of OsPUPI suggests the potential
role in unloading shoot-derived or phloem-transported CK
for root growth and development. The decreased efficiency of
the root-to-shoot transport of root-applied CKs in OsPUPI-
overexpressing plants also supported this hypothesis. As OsPUPI
was predominantly expressed in vascular tissues, particular in
phloem (Figure 1B), the gene might play a role in unloading
the systemic transport of CKs to regulate shoot growth and
development. Thus, the identification of OsPUP1 could represent
a distinct CK transporter, whose functions differ from those
of OsPUP4 and OsPUP7. Apparently, these two types of CK
transporters collaborated with each other contributing to the

Frontiers in Plant Science | www.frontiersin.org

December 2020 | Volume 11 | Article 618560


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Xiao et al.

OsPUP1 Modulates Cytokinin Distribution

120 A

Plant height (cm)
(2] ©
o o

w
o
1

a
b b
ok
Cc
bg3-D OE2  F1 WT
(OE2/bg3-D)

a
b
Bl
c
d

o
1

»
o
]

w
o
1

1,000 grain weight (g)
S S

significant differences between groups (t Test LSD, P < 0.05).

bg3-D OE2 F1 WT
(OE2/bg3-D)
C D
12 7
3
O 91 a
<
©
0’ -
G © b
®
Q
2 3]
N
0 - T T 1
bg3-D OE2 F1

(OE2/bg3-D)

FIGURE 5 | Analysis of the relationship between BG3/OsPUP4 and OsPUP1. (A,C) Comparison of the gross morphology of the bg3-D mutant,
OsPUP1-overexpressing plant, and their F1 progeny, in which both of BG3/0OsPUP4 and OsPUP1 were overexpressed, at 128-day-old reproductive stage (A) and
12-day-old seedling stage (C). White arrowheads in (C) mark the second leaves. Scale bar: 20 cm in (A), 4 cm in (B). (B,D,E) Statistical data of plant height in (A),
the second leaf sheath length (D) in (C), and grain weight (E). n = 8 in (B), n = 5in (D), n = 3 in (E), bar = SD. Different letters above the columns indicate statistically

o
1

bg3-D OE2  F1 WT
(OE2/bg3-D)

efficient hormone transportation. Together with many other
additional homologs, they may form an efficient loading and
unloading system to fulfill the long transport of CK.

Cytokinin receptors are suggested to be mainly localized
in ER, and the perceiving CHASE domain is supposed to be
exposed to the ER lumen (Caesar et al., 2011; Lomin et al., 2011,
2018; Wulfetange et al., 2011; Hwang et al., 2012; Ding et al,,
2017; Romanov et al., 2018; Kubiasova et al., 2020). Considering
the subcellular localization of OsPUP1 in ER and expression
in cells other than those of vascular tissues (Figures 1B,D),
OsPUP1 might play a role in importing CKs from cytoplasm
into ER, somewhat like the role of AtPUP14 for transporting CK
from apoplast to cytoplasm (Ziircher et al., 2016), to regulate
the CK pool for signal perception. If OsPUP1 imports CK
into ER, overexpression of OsPUPI might increase the CK
signal transduction. However, the signal extents reflected by the
expression level of OsRRs were not markedly changed in the roots
of OsPUPI-overexpressing seedling (Figure 4). One possibility
is that the cells producing active CKs might not be the cells
containing effective CK receptors. In this case, overexpression
of OsPUPI restricts CKs out from the cells responsible for
active CK synthesis to cells responsible for CK perception. Thus,

the functions of OsPUP1 may depend on cells, tissues, actual
developmental stages, as well as environmental conditions.

In rice, cZ-type CKs account for the largest proportion of
CKs (Supplementary Table 1; Kudo et al, 2012; Kamada-
Nobusada et al., 2013; Osugi and Sakakibara, 2015). It has
been reported that cZ can induce CK-dependent responses
(Figure 4; Kudo et al., 2012; Silva-Navas et al., 2019). In our
study, the total content of CK nucleobases and nucleosides
in the roots of OsPUPI-overexpressing plants were increased,
mainly due to the increase of cZ and cZR (Figure 3D). However,
the CK response was not markedly changed, as indicated
by the expression of OsRR genes in the roots without CK
treatment (Figure 4). In addition, the content of ¢ZOG was
significantly increased in both shoots and roots of OsPUPI-
overexpressing seedlings, but has little change in the panicles
(Supplementary Table 1). Since the physiological significance
and homeostasis of ¢Z and its conjugated forms have not been
fully elucidated so far, the reason underlying these intriguing
observations remain unclear.

Although application of either of the iP, tZ or c¢Z in root is
able to induce the CK response in the shoot, the extents are quite
different, that is, the induction effect of iP is much lighter than
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FIGURE 6 | Proposed working model for the function of OsPUP1 in CK
transport system. OsPUP1 is localized to endoplasmic reticulum (ER) in the
cells of vascular tissues, and might functions as an influx transporter together
with other CK transporters in importing CKs from cytoplasm into ER, which
might facilitate the cell-to-cell movement of CK through the plasmodesmata
(PD).

those of tZ and cZ (Figure 4). These results imply that the root-
to-shoot efficiency of the translocation of iP could be lower than
those of tZ and cZ, which might result from the low recognition
efficiency of iP or affinity of the responsible transporters for
loading iP into the vascular tissues in the root. As the CK
receptors in the shoots are suggested to be usually less sensitive
to iP (Heyl et al,, 2012; Lomin et al., 2012), another possibility
is that CK receptors have a relatively low-affinity binding to
iP in the shoots.

Overexpression of OsPUPI caused marked morphological
alterations, while the knockout mutants showed no phenotypic
change. Similar observation has been reported in our previous
studies, showing that both the single and the double mutants
of OsPUP4 and OsPUP7 are phenotypically silent (Xiao
et al., 2019). Thus, there should be existed strong functional
redundancy among PUP members in plant, which, on the other
hand, implies the importance of the hormone transportation
system (Zircher et al., 2016). Further efforts uncovering this
complicated system are significant for understanding hormone
functions in plant growth and development. Given the crucial
roles of the OsPUP1 as well as OsPUP4 and OsPUP7 in
regulating several key agronomic traits, comprehension of
the hormone transport certainly has a great potential for
crop improvement as has been exemplified in a recent study
(Yin et al., 2020).
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