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Recent substantial advances in high-throughput field phenotyping have provided
plant breeders with affordable and efficient tools for evaluating a large number of
genotypes for important agronomic traits at early growth stages. Nevertheless, the
implementation of large datasets generated by high-throughput phenotyping tools such
as hyperspectral reflectance in cultivar development programs is still challenging due to
the essential need for intensive knowledge in computational and statistical analyses.
In this study, the robustness of three common machine learning (ML) algorithms,
multilayer perceptron (MLP), support vector machine (SVM), and random forest (RF),
were evaluated for predicting soybean (Glycine max) seed yield using hyperspectral
reflectance. For this aim, the hyperspectral reflectance data for the whole spectra ranged
from 395 to 1005 nm, which were collected at the R4 and R5 growth stages on 250
soybean genotypes grown in four environments. The recursive feature elimination (RFE)
approach was performed to reduce the dimensionality of the hyperspectral reflectance
data and select variables with the largest importance values. The results indicated that
R5 is more informative stage for measuring hyperspectral reflectance to predict seed
yields. The 395 nm reflectance band was also identified as the high ranked band
in predicting the soybean seed yield. By considering either full or selected variables
as the input variables, the ML algorithms were evaluated individually and combined-
version using the ensemble–stacking (E–S) method to predict the soybean yield. The
RF algorithm had the highest performance with a value of 84% yield classification
accuracy among all the individual tested algorithms. Therefore, by selecting RF as
the metaClassifier for E–S method, the prediction accuracy increased to 0.93, using
all variables, and 0.87, using selected variables showing the success of using E–S as
one of the ensemble techniques. This study demonstrated that soybean breeders could
implement E–S algorithm using either the full or selected spectra reflectance to select
the high-yielding soybean genotypes, among a large number of genotypes, at early
growth stages.

Keywords: artificial intelligence, data-driven model, ensemble methods, high-throughput phenotyping, random
forest, recursive feature elimination
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INTRODUCTION

The world population is projected to exceed nine billion
individuals by 2050, which will require significant improvements
in the yield of major crops that contribute to global food
security (Tilman et al., 2009; Foley et al., 2011; Alexandratos and
Bruinsma, 2012; Dubey et al., 2019). Increasing the yield is the
primary goal of most plant breeding programs for major crops,
such as soybean (Glycine max), which is the world’s most widely
grown leguminous crop and an important source of protein
and oil for food and feed (Hartman et al., 2011). In the area
of plant breeding, however, measuring primary traits, such as
yield, which is under influenced by a combination of quantitative
and qualitative traits, in large breeding populations consisting of
several thousand genotypes is time and labor-consuming (Araus
and Cairns, 2014; Cai et al., 2016; Xiong et al., 2018). Breeding
for yield is known as a highly complex and non-linear process
due to the genetic and environmental factors (Collins et al.,
2008). Therefore, breeding approaches that are established based
on secondary traits (e.g., yield component traits and reflectance
bands), which are strongly correlated with the primary trait,
enable plant breeders to efficiently recognize promising lines at
early growth stages (Ma et al., 2001; Jin et al., 2010; Montesinos-
López et al., 2017).

The combination of high-throughput genotyping and
phenotyping technologies have enabled plant breeders to make
their early growth stage selections more accurate while it
reduced the evaluation time and cost in their breeding programs
(Rutkoski et al., 2016). Although there has been significant
progress in high-throughput genotyping in recent years with a
direct impact on current plant breeding challenges (Araus and
Cairns, 2014; Tardieu et al., 2017; Araus et al., 2018), acquisition
of high-throughput field phenotyping is still a bottleneck in
most breeding programs (Furbank and Tester, 2011; Araus et al.,
2018).

Remote sensing of spectral reflectance is considered as an
efficient high-throughput phenotyping tool (Araus and Cairns,
2014; Tardieu et al., 2017), which aims to measure the spectral
reflectance efficiently at several plant growth and development
stages in large breeding populations (Rutkoski et al., 2016). It
is well documented that the spectral properties are genotype-
specific and influenced by the anatomy, morphology, and
physiology of plants (Kycko et al., 2018; Schweiger et al., 2018)
and, therefore, can be used for screening plant genotypes with
different agronomic potentials.

Analyzing large datasets consisting of spectral reflectance data
requires intensive computational and statistical analyses, which
is still challenging in many plant breeding programs (Lopez-Cruz
et al., 2020). Nowadays, machine learning algorithms have drawn
attention from researchers to develop model-based breeding
methods that can improve the efficiency of breeding processes
(Hesami et al., 2020a). Recently, one of the most common
artificial neural networks (ANNs), the multilayer perceptron
(MLP) developed by Pal and Mitra (1992), has been broadly
used for modeling and predicting complex traits, such as yield,
in different breeding programs (Geetha, 2020). MLP can be
considered as a non-linear computational method employed for

various tasks such as classification and regression of complex
systems (Chen and Wang, 2020; Hesami et al., 2020b). This
algorithm is able to detect the connection and relationship
between the input and output (target) variables and quantify the
inherent knowledge existing in the datasets (Ghorbani et al., 2016;
Hesami et al., 2020b). This algorithm includes several highly
interconnected processing neurons that can be used in parallel
to detect a solution for a specific problem (Ghorbani et al., 2016;
Geetha, 2020). Support vector machines (SVMs), developed by
Vapnik (2000), are known as one of the powerful and easy to
use machine learning algorithms that can recognize patterns and
behavior of non-linear relationships (Auria and Moro, 2008; Su
et al., 2017). Some of the advantages of SVMs over MLP are
linked to the complexity of the networks. SVMs usually use a
large number of learning problem formulations leading to solving
a quadratic optimization problem (Feng et al., 2020; Hesami
et al., 2020b). In theory, SVM has to be better performance
because of using structural risk minimization inductive principles
rather than the empirical risk minimization inductive principle
(Belayneh et al., 2014). In addition to MLP and SVM, random
forest (RF) (Breiman, 2001) is another method for data modeling
with a computational efficient training phase and very high
generalization accuracy. RF has been broadly used in areas such
as object recognition (Lepetit et al., 2005), skin detection (Khan
et al., 2010), plant phenomics (Falk et al., 2020), and genomics
(Mokry et al., 2013).

Machine learning algorithms are subject to overfitting, mainly
because of limited training data and dependent on single
predictive models (Ali et al., 2014; Feng et al., 2020). Ensemble
techniques, in which a group of algorithms are exploited to
combine all the possible predictions for the ultimate prediction
used to address this shortage (Dietterich, 2000). By using
ensemble models, the predictive performances were improved
for yield prediction in Alfalfa (Feng et al., 2020), Nicosia
wastewater treatment plant (Nourani et al., 2018), and plant
lncRNAs (Simopoulos et al., 2018). Boosting, bagging, and
stacking are three of the most commonly used ensemble models
(Dietterich, 2000; Feng et al., 2020). The bagging method was first
introduced by Breiman (1996) as a variance reduction approach
for different algorithms such as decision trees or other algorithms
that employed variable selection and fitting in a linear model
(Galar et al., 2011). Boosting algorithms have been introduced by
Schapire (1999) to serve as the alternative for the bagging method
(Drucker and Cortes, 1996). Unlike bagging methods, which are
parallel ensemble techniques, boosting methods are known as
sequential ensemble techniques of base models by exploiting the
dependencies of each algorithm (Dietterich, 2000; Feng et al.,
2020). Many studies reported the successfulness of using bagging-
RF and stochastic gradient boosting in predicting the yield of
different crops (Pal, 2007; Gandhi et al., 2016; Aghighi et al., 2018;
Zhang Z. et al., 2019). Bagging and boosting ensemble techniques
commonly combine homogeneous algorithms for interpretation,
while stacking methods tend to use heterogeneous algorithms
and adjust the difference between them to increase precision
(Dietterich, 2000; Zhou, 2012; Feng et al., 2020).

The successful use of machine learning algorithms for
predicting the performance of different agronomic traits,
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including yield, are reported in Alfalfa (Feng et al., 2020), Senecio
species (Carvalho et al., 2013), grassland (Feilhauer et al., 2017;
Rocha et al., 2018), and chrysanthemum (Hesami et al., 2019).
However, the application of machine learning algorithms for
predicting soybean yield from hyperspectral reflectance data is
still unexplored and required comprehensive studies. Ensemble-
based methods have successfully been applied to improve the
prediction accuracies in artificial intelligence and computer
vision (Ali et al., 2014; Feng et al., 2018, 2020; Ju et al., 2018) and,
therefore, they may improve the accuracy of the yield prediction
in this study. Thus, the main objectives of this study are:
(1) to investigate the potential use of hyperspectral reflectance
for predicting soybean yield, (2) to identify appropriate time-
point of soybean growth stages for collecting hyperspectral
reflectance to maximize yield prediction accuracy, and (3) to
have a comparative study of individual and ensemble machine
learning algorithms to improve the accuracy of predicting yield.
The results of this study might help soybean breeders to increase
the efficiency of selecting superior lines by estimating the final
yield at early growth stages using spectral reflectance combined
with machine learning approaches.

MATERIALS AND METHODS

Experimental Locations and Plant
Materials
The research was conducted at the University of Guelph,
Ridgetown Campus, in 2018 and 2019. A panel of 250 soybean
genotypes was grown under field condition at two locations:
Ridgetown (42◦27′14.8′′N 81◦52′48.0′′W, 200 m above sea level)
and Palmyra (42◦25′50.1′′N 81◦45′06.9′′W, 195 m above sea
level), in Ontario, Canada, during two consecutive growing
seasons in 2018 and 2019 (Figure 1).

The soybean genotypes used in this study were the core
germplasms of the soybean breeding program at the University of
Guelph, Ridgetown, that have been collected in the past 35 years
and used for genetic studies and cultivar developments. The
experiments were conducted using randomized complete block
designs (RCBD) with two replications in four environments (two
locations× two years). Overall, there were 500 soybean plots per
environment and 1000 soybean plots per year. In order to reduce
the possible spatial variability in the field, each experiment was
analyzed by nearest-neighbor analysis (NNA) as one of the error
control strategies by using double covariate analysis (Stroup and
Mulitze, 1991; Bowley, 1999; Katsileros et al., 2015). Each plot
consisted of five rows, each 4.2 m long with a row spacing of
43 cm. The seeding rate was 57 seeds/m2. At the end of the season,
the three inside rows were machine harvested for estimating total
seed yields (Ton ha−1).

Phenotypic Evaluations
Yield Collection
Soybean seed yield (Ton ha−1) was measured using three out
of five harvested rows for each plot and adjusted to a 13%
moisture level. The best linear unbiased prediction (BLUP)
as a mixed model was used to calculate the average seed

yield production for each soybean genotype across different
environments (Goldberger, 1962).

Hyperspectral Reflectance Data Collection
In this study, the focus was on the spectral reflectance bands that
are typically classified as the visible (VIS) and near-infrared (NIR)
spectral components (Albetis et al., 2017). Canopy hyperspectral
reflectance measurements were collected during the soybean
growth and development stages at R4, where pods are 1.91 cm
long at one of the four uppermost nodes, and R5, where seeds
are 0.31 cm long in pods at one of the four uppermost nodes
(Pedersen et al., 2004).

Each soybean genotype’s hyperspectral reflectance properties
were collected using a UniSpec-DC Spectral Analysis System
(PP Systems International, Inc., 110 Haverhill Road, Suite
301 Amesbury, MA, United States). The machine covers 250
reflectance bands between 350 nm and 1,100 nm with a
bandwidth of 3 nm. The field-of-view of the sensor was
approximately 25◦ and covered a sample area of 0.25 m2.
Dark reference was used for calibrating the dual channels, and
Spectralon panels were used to characterize incoming solar
radiation. For each plot, three measurements were recorded,
and their average, calculated by the BLUP model, was used as
the reflectance band datapoint. All of the measurements were
performed as close to solar noon as possible—the data for each
stage were collected in 1 day, from 11:00 AM to 2:00 PM, to
minimize the signal noise associated with the environment.

Data Pre-processing and Statistical
Analyses
The existence of noise during hyperspectral reflectance
measurement is inevitable, typically caused by sensors and
electronic fluctuations (Ozaki et al., 2006). Therefore, it would
be critical to have a pre-processing step for the collected data in
order to increase the accuracy of the study. The hyperspectral
data and yield of 250 soybean genotypes were pre-processed
using the R software (version 3.6.1) to remove potential noises
that randomly occur across the whole spectra resulting in
misinterpretations. After checking the quality of reflectance
bands and detecting outliers by using principal component
analysis (PCA) for each genotype, 245 genotypes were selected
for further analyses (Serneels and Verdonck, 2008). As a result
of sensor-specific artifacts, reflectance bands at the two edges of
the hyperspectral reflectance spectrum, 350–395 nm and 1,005–
1,100 nm, were removed from the original data. The collected
contiguous hyperspectral reflectance data was also reduced from
395 to 1005 nm with a 3 nm interval to a 10 nm interval leading to
a total of 62 variables. Data scaling and centering were applied in
order to improve reflectance properties in the pre-processing and
the pre-treatment steps (Rossel, 2008). For each reflectance band
variable, the Savitzky–Golay filter was applied for improving the
signal-to-noise ratio (Savitzky and Golay, 1964).

As shown in Figure 2, the measured soybean yield was
divided into four classes with equal numbers (∼) of data points
in ascending order: Low (0–24.99% of total yield), medium-
low (25–49.99% of total yield), medium-high (50–74.99% of
total yield), and high (75–100% of total yield) yield. While
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FIGURE 1 | The location of the experiments in 2018 and 2019.

FIGURE 2 | The distribution of soybean genotypes in each yield class.

62 reflectance bands were considered as input variables, the
classified yield was chosen as the output variable.

Variable Selection
Feature or variable selection is usually applied before developing
the machine learning algorithms for reducing the data
dimensionality, specifically in the small training datasets.
One of the common approaches for variable selection is

the recursive feature elimination (RFE) approach, which is
easy to configure and effectively select the most relevant
variables that predict the output (Chen and Jeong, 2007).
Therefore, the RFE was run to indicate the initial variable
importance scores and eliminate the reflectance band
variables with the lowest importance score. Afterward,
the process was recursively repeated until the ranking
was indicated for all the reflectance bands. The package
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FIGURE 3 | A schematic representation of the machine learning algorithms used in this study to classify the soybean yield using reflectance bands: (A) Multilayer
perceptron, (B) Support vector machine, and (C) Random forest.

caret (Kuhn, 2008) in R software version 3.6.1 was used
for running RFE.

Data-Driven Modeling
Three of the most commonly used algorithms in the literature,
multilayer perceptron (MLP), the support vector machine
(SVM), and random forest (RF) (Filippi and Jensen, 2006; Chen
et al., 2007; De Castro et al., 2012; Makantasis et al., 2015;
Zhang N. et al., 2019; Šestak et al., 2019), were chosen and
used for predicting the soybean yield. Figure 3A shows the
MLP algorithm including an input layer, one or more hidden
layers, and an output layer of completely interconnected neurons.
Each neuron unit produces an output based on a sigmoid
function derived from a linear combination of outputs from
a previous layer (Wang et al., 2009). SVM (Figure 3B) is a
set of related supervised learning methods that can recognize
patterns used for classification analyses (Suykens and Vandewalle,
1999; Shao et al., 2012). The objective of SVM is to use
hyperplanes for determining the optimal separation of yield
classes. The random forest (RF) approach generates a series
of trees representing a subset n of independent observations
(Figure 3C). A detailed description of these machine learning

algorithms can be found in Taillardat et al. (2016) and
Meinshausen (2006). All of the relevant parameters in each
machine learning algorithm were optimized based on the
input variables.

We employed an ensemble method based on a stacking
strategy (E–S) to improve the prediction performance.
The results from individual algorithms were collected and
combined together via the stacking procedure described in
Dietterich (2000), where an algorithm with the highest accuracy
performance was selected as the metaClassifier for this ensemble
model. The Weka software version 3.9.4 (Hall et al., 2009)
was used for running all machine learning algorithms and the
ensemble method.

Quantification of Machine Learning
Performance
In this study, the fivefold cross-validation strategy (Siegmann
and Jarmer, 2015) with 10 repetitions was used to measure the
classification quality of all the tested ML algorithms (Figure 4). In
order to evaluate each algorithm, the values of precision (Eq. 1),
recall (Eq. 2) as a measure of sensitivity, F-measure (Eq. 3),
and Matthews correlation coefficient (MCC, Eq. 4) for validation
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dataset were measured using the following formulas:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F-measure = 2×
Precision× Recall
Precision+ Recall

(3)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)

where TP stands for the number of true positives, TN is the
number of true negatives, FP stands for the number of false
positives, and FN is the number of false negatives.

Visualizing and Analyzing
The Microsoft Excel software (2016), ggplot2 (Wickham, 2011),
and ggvis (Dennis, 2016) packages in the R software version 3.6.1
were used to conduct statistical analyses and visualize the results.

RESULTS

Yield Statistics and Spectral Profiles
In the current study, the average yield of 245 soybean genotypes,
evaluated in four environments, ranged from 2.58 to 5.71 ton
ha−1 with a mean and standard deviation of 4.22 and 0.57 ton
ha−1, respectively. The minimum, mean, and maximum values of
each reflectance bands evaluated for all the genotypes across the
four environments at the R4 and R5 growth stages are reported
in Figure 5. At both growth stages, while the reflectance values
showed small ranges of variation among the genotypes between
395 and 695 nm, the bands greater than 705 nm showed large
variations within the population.

Variable Selection
The importance values of all 62 reflectance band variables for
predicting yield were estimated using the RFE strategy for the
R4 (Table 1) and R5 (Table 2) growth stages. For the R4 growth
stage, the 1005 nm and the 605 nm bands had the highest and
lowest importance values (%) for classifying the soybean yield,
respectively. Based on RFE analysis, 56 of the reflectance bands
were selected for training the algorithm, as shown in Figure 6A.
At the R5 growth stage, the highest and lowest importance values
(%) were found at 395 nm and the 725 nm bands, respectively.
Out of 62 reflectance bands, 21 reflectance bands were selected
to train the algorithms based on RFE strategy, which were
considered selected variables (-VS) for further analyses. Among
the 21 selected reflectance bands, three bands were in the violet,
six in the blue, two in the green, eight in the red, and two were
in the near-infrared (NIR) regions of the spectrum (Figure 6B).
By using RFE for the R4 growth stage dataset, the top five
high importance reflectance bands were located in the violet
and NIR regions of the spectra. However, for R5, the violet
and red regions had the top five high importance reflectance

bands (Tables 1, 2). The violet region, specifically the 395 nm
band, had the highest importance values in both growth stages.
The plotting of the soybean yield versus reflectance values at
395 nm (R5 growth stage) illustrated that the values for 395 nm
in the high yielding class ranged from 0.009 to 0.016 which
lower than values for the low yielding class, ranged from 0.020
to 0.029 (Figure 7). The difference between the reflectance values
of high and low yielding classes was statistically significant at the
significance level of 0.05 (data were not shown). Among all the
tested bands, the 395 nm band measured at R5 was considered
as the best solo reflectance band for discriminating soybeans for
their yield potential.

Growth Stage Comparison
In order to investigate which of the growth stages is better
for collecting reflectance data and predicting the soybean yield,
the reflectance bands collected at each soybean growth stage
were analyzed using the three machine learning algorithms.
The average classification accuracy for validation dataset ranged
between 12 and 43% using the R4 data and between 12 and
99% using the R5 data, which indicated that the R5 soybean
growth stage is, in general, a better stage for collecting reflectance
data if the goal is to predict the yield (Figure 8). Therefore, R5
was selected for further machine learning algorithm analyses.
The results of individual and ensemble machine learning
algorithms using R4 data are available in Figure 8 and
Supplementary Figure 1.

Comparative Analysis of the Developed
Models
All three algorithms (RF, MLP, and SVM), as well as the E–
S model, were trained using both full (62 bands) and selected
(21 bands) variables at R5, and the summaries of the confusion
matrices were presented in Supplementary Table 1. Regarding
the comparative analyses of individual algorithms using all
variables, RF, MLP, and SVM had the highest to lowest MCC
values equal to 0.84, 0.76, and 0.66, respectively (Figure 9A).
For the selected variables, the MCC values for RF and MLP
declined to 0.80 and 0.73, respectively, while the value for SVM
slightly increased to 0.73. The E–S method outperformed all the
individual algorithms obtaining an MCC value of 0.93, using
all variables, and 0.87, using selected variables (Figure 9A).
In general, among all the individual tested algorithms, the RF
algorithm had the highest performance with the values of 84 and
80% yield classification accuracy using all variables and selected
variables, respectively.

When using full variables, the precision values for RF,
MLP, and SVM were 0.91, 0.83, and 0.82, respectively.
However, by using selected variables, the precision values for
RF and MLP declined to 0.87 and 0.78, respectively, while
the SVM performance was improved (0.87) when compared
against all variables (Figure 9B). The E–S model had a
precision of 0.96 using all variables and 0.90 using selected
variables. Using all variables, the highest recall value was
obtained for RF with a value of 0.84, followed by MLP
and SVM with the values of 0.83 and 0.68, respectively.
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FIGURE 4 | The scheme of data collection and machine learning algorithm development and validation. OP, optimizing parameters; MLP, multilayer perceptron;
SVM, support vector machine; RF, random forest; E–S, ensemble–stacking strategy.

However, the recall value of SVM increased to 0.72 using
selected variables. The recall values of RF and MLP declined
when selected variables were used (Figure 9C). E–S had the
highest recall values, with 0.94 and 0.90 for full and selected
variables, respectively.

To have a better interpretation of precision and recall
values, the F-measure was evaluated for each and every
algorithm. Using all variables, the F-measures of RF, MLP, and
SVM were estimated to be 0.87, 0.81, and 0.71, respectively
(Figure 9D). F-measure values were decreased for RF (0.84)
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FIGURE 5 | The minimum, mean, and maximum values of each reflectance band were measured for 245 soybean genotypes evaluated at (A) R4 and (B) R5 growth
stages at four different field environments.

TABLE 1 | Reflectance band ranking using the recursive feature elimination (RFE)
strategy at R4 soybean growth stage.

Reflectance band (nm) Ranking Reflectance band (nm) Ranking

1005 1 775 32

395 2 655 33

945 3 675 34

755 4 665 35

985 5 825 36

995 6 485 37

705 7 695 38

745 8 475 39

965 9 615 40

955 10 465 41

715 11 515 42

975 12 625 43

905 13 685 44

725 14 565 45

885 15 575 46

875 16 535 47

895 17 645 48

765 18 545 49

845 19 635 50

915 20 555 51

865 21 415 52

735 22 505 53

925 23 595 54

855 24 455 55

805 25 585 56

795 26 445 57

935 27 425 58

835 28 435 59

815 29 525 60

405 30 495 61

785 31 605 62

and MLP (0.80) using selected variables. However, for SVM
algorithm, the F-measure value was increased to 0.77 using
selected variables. The E–S algorithm overperformed all
the individual machine learning algorithms by having an
F-measure value of 0.94, using all variables, and 0.90, using
selected variables.

TABLE 2 | Reflectance band ranking using the recursive feature elimination (RFE)
strategy at R5 soybean growth stage.

Reflectance band (nm) Ranking Reflectance band (nm) Ranking

395 1 965 32

665 2 845 33

675 3 865 34

655 4 905 35

405 5 915 36

685 6 515 37

645 7 695 38

435 8 885 39

445 9 875 40

635 10 895 41

475 11 585 42

485 12 925 43

495 13 935 44

415 14 575 45

625 15 955 46

425 16 715 47

455 17 755 48

465 18 535 49

765 19 975 50

615 20 555 51

775 21 985 52

795 22 995 53

815 23 525 54

805 24 545 55

785 25 565 56

505 26 945 57

605 27 705 58

825 28 1005 59

855 29 745 60

595 30 735 61

835 31 725 62

DISCUSSION

One of the objectives of this study was to find the best
growth stage for collecting reflectance data suitable for predicting
soybean yields. In this study, the hyperspectral reflectance data
were collected at the reproductive stages of R4 and R5, in which

Frontiers in Plant Science | www.frontiersin.org 8 January 2021 | Volume 11 | Article 624273

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-624273 December 31, 2020 Time: 17:9 # 9

Yoosefzadeh-Najafabadi et al. Predicting Soybean Yield Using Machine Learning

FIGURE 6 | The importance of selected variables based on the recursive feature elimination (RFE) strategy for soybean reflectance bands measured at R4 (A) and
R5 (B) soybean growth stages.

pods and seeds are developed. R4 and R5 are known as critical
growth and development stages in soybean since stresses can
impose significant impacts on the yield at these stages and,
therefore, soybean genotypes with different levels of tolerance
to stresses can be discriminated from one another at these
stages (Sweeney et al., 2003). For example, the results of a study
by Eck (1987) showed that imposing soybeans to water deficit
stress during the R1 to R3 growth stages reduce seed yields
up to 9-13%. However, imposing the same soybeans to water
deficit stress during R4 to R5 reduced seed yields up to 46%.
Water deficit stress can less influence the total seed yield when
occurring anytime beyond the R5 growth and development stage.
Therefore, measuring hyperspectral reflectance at R4 and R5
would be more informative for predicting the soybean yield
classes since the final yield production has been to some extent
established at these two stages for all the genotypes. Our results
indicated that R5 is a better stage to measure reflectance bands
for predicting the yield. Ma et al. (1996) reported significant
correlations between leaf photosynthetic rates and leaf greenness
at R4 and R5, while this correlation was not significant at R6. In
Soybean, the leaf photosynthetic rate can be changed significantly
during the growth stages that, in turn, can empower different
genotypes to recover the yield losses caused by temporary
environmental stresses (Ferris et al., 1998; Siebers et al., 2015).
Studies showed that environmental stresses at R5 can damage
the soybean yield greater than that at R4 (Fehr et al., 1981)
since the plants have less time to recover for yield before
physiological maturity. It can be hypothesized that predicting
yield of genotypes with different genetic potential by using
reflectance bands that are measured at R5 is more reliable since
the final yield productions have already been established, to
some extent, for all the genotypes. The current study showed
that the reflectance bands collected at R5 are more reliable and
informative for predicting yield than the data collected at R4.

Several studies reported the strong correlation between
reflectance bands and yield in different crop plants such as
alfalfa (Kayad et al., 2016; Feng et al., 2020), wheat (Prey and
Schmidhalter, 2019), maize (Lane et al., 2020), rice (Wan et al.,
2020), and sugarcane (Verma et al., 2020). The visible reflectance
bands can be splitted into three main regions, red (650–700 nm),

green (495–570 nm), and violet–blue (390–495 nm) (Hennessy
et al., 2020). Most studies were emphasized the importance of red
spectral bands or the combined use of red and red edge bands
as one solid index in predicting the total yield (Jolly et al., 2005;
Filippa et al., 2018; Lykhovyd, 2020; Phan et al., 2020; Tiwari and
Shukla, 2020). In this study, we identified highly ranked bands in
the violet and red regions for classifying the soybean seed yield,
centered at 395 nm, 665 nm, and 675 nm (Table 2). The violet
and red spectral regions can be associated with the absorption of
plant pigments such as carotenoid, anthocyanins, and chlorophyll
(Merzlyak et al., 2003; Richter et al., 2016; Hennessy et al., 2020).
Carotenoid plays a pivotal role in discrimination of senescent
leaves (Richter et al., 2016; Hennessy et al., 2020). The importance
of 395 nm band in soybean yield prediction at R5 growth stage
can refer to the fact that soybean at R5 growth stage initiates
the senescence and decay of chlorophyll resulting in better
discrimination of the genotypes with different photosystems
functioning and photoprotection capabilities. However, there is
no report on the solid effect of the 395 nm reflectance band in the
physiological process of soybean or any other plants.

In order to have accurate yield prediction and avoid model
overfitting, machine learning algorithms may benefit from using
a variable selection process to reduce the dimensionality of the
data to an appropriate level (Hennessy et al., 2020). Existing
variable selection methods can be categorized based on their
applications, complexities, and accuracy (Zheng et al., 2020).
One of the most commonly used variable selection methods is
the RFE approach that provides an acceptable performance with
moderate computational exertions (Guyon et al., 2002; Granitto
et al., 2006). The successful use of RFE to reduce the number of
input variables has been reported in many studies (Granitto et al.,
2006; Chen and Jeong, 2007; Feng et al., 2020). The efficiency
of using selected variables for predicting classified soybean yield
over full reflectance band variables was evaluated using the RFE
method. Using RFE method might decrease the value of the
parameters such as precision, recall, MCC, and F-measure to
avoid overfitting (Loughrey and Cunningham, 2004). This is a
small price to pay, especially if the decrease in performance is
not significant. Among all the tested individual machine learning
algorithms, RF had the highest performance using either full or
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FIGURE 7 | The soybean yield classes versus the 395 nm reflectance band at R5 growth stages.

FIGURE 8 | The accuracy of RF, MLP, SVM, and E–S algorithms for predicting soybean yield using full and RFE selected variables (-VS) measured at R4 (A) and R5
(B) soybean growth stages in four environments. The mean performance was shown as × in each figure. MLP, multilayer perceptron; SVM, support vector machine;
RF, random forest; E–S, ensemble–stacking strategy; RFE, recursive feature elimination.

FIGURE 9 | The estimate values of (A) Matthews correlation coefficient (MCC), (B) Precision, (C) Recall, and (D) F-Measure for RF, MLP, SVM, and the E–S
algorithms used for predicting soybean yield from all and selected variables collected (-VS) at the R5 growth stage. The mean performance is indicated with × in
each figure. MLP, multilayer perceptron; SVM, support vector machine; RF, random forest; E–S, ensemble–stacking strategy; RFE, recursive feature elimination.

selected variables. This high performance may come from the
nature of the RF algorithm, in which trees are trained using
multiple random subsamples of the original dataset. This feature
gives RF this ability to generate better and more stable predictions
for new instances not necessarily included in the training dataset
(Liaw and Wiener, 2002).

Multilayer perceptron was another machine learning
algorithm that was exploited in this study. MLP was previously

applied in different areas such as weed science (Tamouridou
et al., 2017) or drought tolerance (Etminan et al., 2019),
but not in soybean for yield prediction. This study found
MLP to be the second-best machine learning algorithm for
predicting the soybean yield. Previous studies reported a
high likelihood of overfitting for neural network algorithms
(Lawrence and Giles, 2000; Murakoshi, 2005). For MLP,
common parameters such as the number of hidden layers, the
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number of neurons in each layer, or training time can be used to
control overfitting; however, the degree of overfitting would vary
throughout the input variables (Lawrence and Giles, 2000).

Support vector machine is also one of the most common
machine learning algorithms that have been broadly used in
different areas such as plant tissue culture (Hesami and Jones,
2020), image classification (Lin et al., 2011), genes classification
(Duan et al., 2005), and drug disambiguation (Björne et al.,
2013). SVM is usually used when scientists have to deal with
large numbers of features and high sparsity (Nguyen and De
la Torre, 2010). Although the prediction accuracy of the SVM
algorithm was lower than the values for RF and MLP in this
study, its performance was slightly increased when the selected
variables were used. An increase in SVM performance using
selected variables was also reported in previous studies (Su and
Yang, 2008; Tan et al., 2010; Alirezanejad et al., 2020). It might
be due to this fact that selecting relevant variables can improve
the performance of SVM through ameliorating its feature
interpretability, computational efficiency, and generalization
performance (Nguyen and De la Torre, 2010; Roy et al., 2015).

In order to see we can improve the prediction accuracy in
this study through the combined use of the machine learning
algorithms, RF, MLP, and SVM were used in constructing E–
S, and RF was chosen as the metaClassifier for this ensemble
algorithm. By using the E–S approach, we improved the
prediction accuracy using either full or selected variables.
A successful use of the E–S method has recently been reported
for predicting the yield in alfalfa (Feng et al., 2020). When
using the E–S approach, it is necessary to include self-sufficient,
independent, and diverse ML algorithms in the analyses (Araya
et al., 2017; Feng et al., 2020), which have a minimum dependency
from one another and sufficient powers to predict the dependent
variable, soybean yield classes in this study (Araya et al.,
2017; Feng et al., 2020). The above criteria are important to
be considered when individual ML algorithms are selected to
combine in a given E–S analysis. In this study, RF, MLP, and
SVM are selected as individual algorithms to be used in the
E–S analyses because of their independent prediction methods
as well as having different training approaches. By using the
E–S approach, the prediction accuracy increased to 0.93, using
all variables, and to 0.87, using selected variables, showing the
success of using E–S as one of the ensemble techniques.

CONCLUSION

Pre-harvest soybean yield classifications and estimations are
important for grain policy-making and food security across
worldwide. Spectral reflectance is considered as an efficient
phenotyping tool that can help breeders to make their selections
at lower cost at a fast pace. The objectives of this study
were to demonstrate the best soybean growth stage for
measuring hyperspectral reflectance and evaluating the three
most commonly used ML algorithms along with introducing the
E–S method in predicting the soybean yield using reflectance
variables. Soybean R5 growth stage was identified as the better
stage than R4 for measuring hyperspectral reflectance. In

addition to using 62 reflectance bands as the full variables,
the RFE method was used to reduce the dimensionality of the
data, and therefore, 21 most important bands were selected as
the selected reflectance variables. Using both full and selected
reflectance variables, RF overperformed all individual algorithms.
Therefore, RF was selected as the metaClassifier for E–S. E–
S had the highest prediction accuracy as one of the ensembles
combined approaches compared to an individual ML algorithm.
Therefore, E–S was recommended as a reliable and appropriate
ML algorithm for predicting the soybean yield using reflectance
variables. This study provides an applicable pipeline for using
hyperspectral reflectance data and suitable ML algorithms for
the development of high yielding soybeans, which can be used
in large soybean breeding programs for selecting high-yielding
soybeans at pre-harvesting stages. The developed methodology
in this study can open a reliable and new window in using
spectral reflectance for selecting high yielding genotypes in
different crops.
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