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Multigene families coding for valine-glutamine (VQ) proteins have been identified in all kind 
of plants but chlorophytes. VQ proteins are transcriptional regulators, which often interact 
with WRKY transcription factors to regulate gene expression sometimes modulated by 
reversible phosphorylation. Different VQ-WRKY complexes regulate defense against varied 
pathogens as well as responses to osmotic stress and extreme temperatures. However, 
despite these well-known functions, new regulatory activities for VQ proteins are still to 
be explored. Searching public Arabidopsis thaliana transcriptome data for new potential 
targets of VQ-WRKY regulation allowed us identifying several VQ protein and WRKY factor 
encoding genes that were differentially expressed in oxygen-related processes such as 
responses to hypoxia or ozone-triggered oxidative stress. Moreover, some of those were 
also differentially regulated upon nitric oxide (NO) treatment. These subsets of VQ and 
WRKY proteins might combine into different VQ-WRKY complexes, thus representing a 
potential regulatory core of NO-modulated and O2-modulated responses. Given the 
increasing relevance that gasotransmitters are gaining as plant physiology regulators, and 
particularly considering the key roles exerted by O2 and NO in regulating the N-degron 
pathway-controlled stability of transcription factors, VQ and WRKY proteins could 
be instrumental in regulating manifold processes in plants.
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INTRODUCTION

A group of proteins containing the FxxxVQxxTG motif was first identified in Arabidopsis 
thaliana and named as valine-glutamine (VQ) proteins (Morikawa et  al., 2002; Xie et  al., 2010; 
Cheng et  al., 2012). Up to 34 VQ proteins have been identified in A. thaliana (Cheng et  al., 
2012). The analysis of the regulatory activity of Arabidopsis VQ proteins revealed that all but 
five exhibited transcriptional regulatory activity, 17 activating and 12 repressing gene transcription 
(Li et  al., 2014a). The integrity of the VQ motif seems to be  essential for VQ4/MVQ1 and 
VQ29 regulatory activities (Li et  al., 2014b; Weyhe et  al., 2014) likely because their regulation 
often relies on the interaction with WRKY transcription factors (Cheng et  al., 2012). The 
functional interaction of a subset of Arabidopsis VQ proteins, comprising 10 members, with 
WRKY transcription is modulated by reversible phosphorylation catalyzed by MAP kinases 
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(Pecher et  al., 2014; Weyhe et  al., 2014). After the initial 
identification in Arabidopsis, VQ protein families have been 
also identified in a large number of plants, including rice, 
soybean, grapevine, Chinese cabbage, maize, banana, bamboo, 
strawberry, apple, tea plant, Eucalyptus, tobacco, chick pea, 
and alfalfa (Kim et  al., 2013; Li et  al., 2014a; Wang et  al., 
2014, 2015a, 2017; Zhang et  al., 2015; Song et  al., 2016; Ye 
et  al., 2016; Zhou et  al., 2016; Dong et  al., 2018; Guo et  al., 
2018; Zhong et  al., 2018; Garrido-Gala et  al., 2019; Yan et  al., 
2019; Ling et  al., 2020; Liu et  al., 2020). The size of the VQ 
proteomes varies ranging from seven members identified in 
Selaginella moellendorffii to 74  in Glycine max (Jiang et  al., 
2018). While VQ proteins were initially thought to be  plant 
specific proteins (Jing and Lin, 2015), recent studies on diverse 
genomes concluded that VQ proteins are also present in bacteria, 
fungi, and lower animals but not in algae (Jiang et  al., 2018). 
The regulatory functions exerted by VQ proteins are manifold, 
and include defense against biotic (Xie et  al., 2010; Lai et  al., 
2011; Wang et  al., 2015b; Jiang and Yu, 2016; Chen et  al., 
2018; Yan et  al., 2018) and abiotic stresses (Perruc et  al., 2004; 
Hu et  al., 2013b; Song et  al., 2016; Cheng et  al., 2020), and 
plant growth (Wang et  al., 2010; Li et  al., 2014b; Lei et  al., 
2017, 2018; Pan et  al., 2018). Nevertheless, most of the plant 
VQ protein functions remain unknown.

VQ PROTEINS REGULATION OF 
DEVELOPMENT

Valine-glutamine proteins regulate developmental processes such 
as pollen or seed germination, plant size, photomorphogenesis, 
and leaf senescence. IKU1/VQ14 was characterized as a 
component of the so-called HAIKU pathway controlling the 
early growth phase of the seed endosperm (Garcia et al., 2003). 
iku1 mutant seeds were small and showed reduced endosperm 
growth (Wang et  al., 2010). Chloroplast targeted VQ8 also 
plays a role in regulating growth as vq8-1 mutant displayed 
stunted-growth and pale-green leaves throughout the entire 
life cycle (Cheng et  al., 2012). However, the over-expression 
of VQ17, VQ18, or VQ22, also led to highly stunted transgenic 
plants (Cheng et  al., 2012), thus suggesting VQ proteins might 
promote or repress plant growth. Moreover, the over-expression 
of VQ29 delayed flowering time without altering vegetative 
growth (Cheng et  al., 2012), but the expression of Arabidopsis 
VQ21 resulted in dwarfed and late-flowering plants (Gargul 
et  al., 2015), thus suggesting VQ gene-specific functions may 
also uncouple different developmental processes. In addition, 
the heterologous overexpression of several soybean VQ genes 
in Arabidopsis led to altered leaf morphology, flowering, and 
seed setting (Zhou et al., 2016), thus indicating that developmental 
regulatory roles of VQ proteins are likely conserved across 
species. Moreover, the Arabidopsis vq29 mutant exhibited 
decreased hypocotyl elongation under low-intensity far-red and 
white light (Li et  al., 2014b), thus pointing to VQ29 as a 
negative regulator of photomorphogenesis (Li et  al., 2014b).

VQ20 regulates pollen development through its VQ motif 
by acting together with WRKY2 and WKRY34  in plant male 

gametogenesis (Lei et al., 2017) through the negative regulation 
of the expression of MYB97, MYB101, and MYB120 genes 
(Lei et  al., 2018). Some of the development-related processes 
regulated by VQs are linked to phytohormone action. OsVQ13 
positively regulated jasmonic acid (JA) signaling by activating 
the OsMPK6-OsWRKY45 signaling pathway that regulates grain 
size and resistance to Xanthomonas in rice (Uji et  al., 2019). 
On the other hand, Arabidopsis seed germination seems to 
be controlled through the negative regulation exerted by VQ18 
and VQ26 on ABI5 transcription factor-mediated ABA signaling 
(Pan et  al., 2018). However, neither seed dormancy or leaf 
senescence nor ABA-regulated drought tolerance were 
significantly regulated by VQ18 and VQ26 (Pan et  al., 2018), 
thus pointing to highly specific regulation. Leaf senescence is 
another developmental process potentially regulated by VQ 
proteins. The overexpression of maize ZmVQ52 in Arabidopsis 
accelerated premature leaf senescence (Yu et al., 2019). Figure 1A 
summarizes what has been reported on the involvement of 
VQ proteins and WRKY transcription factors in regulating 
different processes throughout plant life cycle.

VQ PROTEINS IN DEFENSE AGAINST 
PATHOGENS AND PESTS

Reports during the last decade supported the function of VQ 
proteins as relevant regulators of plant defense against pathogens 
and pests. The first report involving VQ proteins in defense 
against pathogens identified SIB1/VQ23 as an activator of 
JA-dependent salicylic acid (SA)-triggered resistance to 
Pseudomona syringae (Xie et al., 2010), and together with SIB2/
VQ16, WRKY33, and WRKY57 also activated resistance to 
the necrotrophic pathogen Botrytis cinerea through the Jasmonate-
zim-domain 1 (JAZ1) and 5 (JAZ5) proteins (Lai et  al., 2011; 
Jiang and Yu, 2016). By contrast, VQ20 acted as a negative 
regulator of resistance to both biotrophic and necrotrophic 
pathogens (Cheng et al., 2012). MKS1/VQ21, in turn, positively 
regulated SA-mediated defense against biotrophic pathogens 
but it plays a negative role in JA-regulated defense against 
necrotrophic pathogens (Andreasson et al., 2005; Petersen et al., 
2010). Regulation of resistance to Botrytis by VQ21 also requires 
the interaction with WRKY33 at the VQ motif domain (Petersen 
et  al., 2010). Different VQ-WRKY complexes not only allow 
discriminating between different pathogens but also between 
defense and development. Silencing the JAV1/VQ22 gene 
significantly enhanced JA-regulated defense responses against 
necrotrophic pathogens and herbivorous insects by forming 
complexes with WRKY28 and WRKY51 but did not severely 
alter JA-mediated development (Hu et  al., 2013a). Mutant or 
transgenic plants with double loss-of-function and gain-of-
function in VQ12 and VQ29 genes were resistant and susceptible, 
respectively, to B. cinerea (Wang et  al., 2015b), thus supporting 
the role of these VQ proteins as negative regulators of defense 
against this pathogen. Besides, the inactivation of VQ29 gene 
significantly increased susceptibility to Peronospora parasitica 
during the late stages of infection likely due to the inability 
to restrict the penetration and development of the oomycete 
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(Le Berre et  al., 2017). Other combinations of VQ proteins 
with WRKY transcription factors are also involved in modulating 
resistance to Botrytis. VQ10 physically interacts with WRKY8 
and positively regulates plant basal resistance (Chen et  al., 
2018). On the other hand, strawberry homologs of Arabidopsis 
VQ defense proteins were all regulated in response to the 
ascomycete fungus Colletotrichum acutatum infection, causing 
anthracnose disease (Garrido-Gala et  al., 2019). In tobacco, 
half of the 59 identified VQ protein encoding genes were 
significantly induced in response to Ralstonia solanacearum 
infection (Liu et al., 2020), thus supporting the potential extensive 
roles of VQ proteins in tobacco defense against this pathogen.

The complex roles of VQ genes in plant defense responses 
are likely due to their ability to interact with multiple WRKY 
proteins that in Arabidopsis were modulated through MAP 
Kinase-mediated phosphorylation and further degradation of 
VQ proteins (Pecher et  al., 2014; Weyhe et  al., 2014). Similar 
regulatory mechanisms seem to be  operational also in rice 

(Li et  al., 2014a) and Cucurbitaceae plants (Jiao et  al., 2018), 
having an impact on regulating resistance to powdery mildew. 
Altogether, the involvement of VQ proteins in regulating defense 
against different pathogens is complex and gene-specific, likely 
occurring through combinatorial mechanisms involving other 
partners as well as functional interaction with diverse hormone-
regulated pathways. These regulatory mechanisms seem to 
be  also functional in plants attacked by insects. Injury rapidly 
triggers calcium influxes, calmodulin-dependent phosphorylation 
of JAV1/VQ22, dismantling of JAV1-JAZ8-WRKY51 complex, 
and activation of JA biosynthesis for plant defense (Yan et  al., 
2018). JAV1-associated Ubiquitin Ligase1 (JUL1) is the RING-
type E3 ubiquitin ligase leading JAV1 to proteasomal degradation 
(Ali et al., 2019). In soybean, the down-regulation of GmVQ58 
confers resistance to the common cutworm Spodoptera litura 
Fabricius (Li et  al., 2020).

Summarizing, specific subsets of VQ proteins may regulate 
different pathosystems with process specificity through a complex 

A

B

C

FIGURE 1 | Involvement of valine-glutamine (VQ) proteins and WRKY transcription factors in developmental processes throughout plant life cycle (A), in resistance 
of plants against biotrophic and necrotrophic pathogens as well as insects (B), and in responses to abiotic stress factors (C). VQ and WRKY proteins from different 
plants (At, Arabidopsis thaliana; Gm, Glycine max; Ma, Musa acuminate; Os, Oryza sativa; Pe, Phyllostachys edulis; Sl, Solanum lycopersicum; Zm, Zea mays) 
regulate positively (arrow lines) or negatively (blunt-ended lines).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


León et al. Novel Functions of Plant VQ Proteins

Frontiers in Plant Science | www.frontiersin.org 4 January 2021 | Volume 11 | Article 632678

network of interactions with WRKY transcription factors 
(Figure 1B). The distinct resulting complexes are often regulated 
through post-translational modifications (PTMs), with reversible 
phosphorylation being the best characterized.

VQ PROTEINS AND ABIOTIC STRESS

Most of the information on plant VQ protein functions in 
responses to abiotic stress is related to osmotic stress. AtCaMBP25/
VQ15 expression is induced in Arabidopsis seedlings exposed 
to dehydration, low temperature, or high salinity (Perruc et al., 
2004). Transgenic plants overexpressing AtCaMBP25 exhibited 
increased sensitivity to both ionic and non-ionic osmotic stress 
during seed germination and seedling growth (Perruc et  al., 
2004). VQ9 protein acted as a repressor of the WRKY8 factor 
to maintain an appropriate balance of WRKY8-mediated signaling 
pathways and the onset of salinity stress tolerance (Hu et  al., 
2013b). In bamboo, PeVQ28 and WRKY83 interacted in the 
nucleus, and the over-expression of PeVQ28 in Arabidopsis 
led to increased resistance to salt stress and enhanced sensitivity 
to ABA (Cheng et  al., 2020). Besides responses to osmotic 
stress, VQ proteins regulate responses to extreme temperatures. 
In banana fruits, MaVQ5 might act as a repressor of 
MaWRKY26  in activating JA biosynthesis in response to cold 
stress (Ye et  al., 2016). On the other hand, ectopically 
overexpressed tomato SlVQ6 in Arabidopsis plants decreased 
thermotolerance (Ding et  al., 2019). The main regulatory roles 
exerted by VQ proteins on plant responses to abiotic stress 
factors are summarized in Figure  1C.

MOLECULAR OXYGEN AND NITRIC 
OXIDE REGULATION ON THE 
ARABIDOPSIS VQ PROTEIN FAMILY

An important though still mostly unexplored feature of VQ 
proteins is their subcellular localization. An in silico analysis 
of subcellular localization for Arabidopsis VQ proteins points 
to predominantly nuclear localization. However, VQ1 and VQ10 
are potentially localized both in nuclei and cytoplasm, and 
others (VQ3, VQ8, VQ12, VQ19, VQ20, VQ23/SIB1, VQ16/
SIB2, and VQ31) both in nuclei and chloroplasts. The nucleus/
chloroplast alternative localizations of some VQ proteins may 
be  potentially involved in plastid-nucleus retrograde and 
anterograde signaling (Unal et  al., 2020). On the other hand, 
nucleo-cytoplasmic shuttling of regulatory proteins is often 
modulated by PTMs. Although phosphorylation of VQ proteins 
has been documented (Pecher et al., 2014; Weyhe et al., 2014), 
many other still unknown PTMs might regulate the subcellular 
localization and dynamics of VQ proteins. All VQ proteins 
but VQ3 might be  potentially ubiquitinated and acetylated in 
K residues. In turn, only some are predicted to be  sumoylated 
in K, palmitoylated or S-nitrosylated in C residues, and nitrated 
in Y. VQ6, VQ7, VQ8, VQ9, and VQ12 are predicted to be both 
S-nitrosylated and palmitoylated in the same C residue at the 
N-terminus of the proteins, thus suggesting both PTMs compete 

for the same sites. These alternative PTMs may be  critical to 
determine the subcellular localization and transcriptional activity 
of these VQ proteins. More work will be  needed to support 
this hypothesis and to clarify whether PTMs can determine 
the fate, localization, and function of VQ proteins.

Analysis of public repositories of transcriptome data allowed 
proposing processes potentially regulated by VQ proteins. Gene 
Ontology categories enrichment suggests that a significant 
number of Arabidopsis VQ genes were upregulated under 
ozone-triggered oxidative stress and differentially expressed in 
response to low oxygen availability. Molecular oxygen and their 
metabolites, mainly reactive oxygen species (ROS), have gained 
relevance lately as key signaling molecules in plant development 
and responses to stress (Van Breusegem and Dat, 2006; Suzuki 
et al., 2012; van Dongen and Liacausi et  al., 2015; Choudhary 
et  al., 2020; Dogra and Kim, 2020; Fichman and Mittler, 2020; 
Weits et  al., 2020). Ozone has been used as a tool to study 
the role of ROS in cell death and defense signaling as well 
as in regulating gene expression (Vainonen and Kangasjärvi, 
2015). The analysis of the differentially expressed transcriptome 
in ozone-treated Arabidopsis plants (Xu et  al., 2015) allowed 
identifying that 56% of the VQ genes (19 out of 34) and 64% 
of the WRKY genes (48 out of 75) were upregulated by ozone 
(Figure  2). These data suggest that ozone seems to extensively 
activate VQ and WRKY genes, thus suggesting that distinct 
VQ-WRKY complexes might regulate plant responses to ROS.

Plants usually grow and develop in 21% O2 normoxic 
environment. However, plants are sometimes exposed to hypoxic 
conditions and do not have specific O2 transporters, like 
hemoglobin in animals, which allow transport between different 
plant organs or tissues. Instead, plants rely on diffusion between 
cells or in passive transport through vascular tissue as oxygen 
transport mechanisms (Armstrong et  al., 2006). Importantly, 
plants contain tissues and organs such as root internal cells, 
apical meristems, or fruits, where different physical or metabolic 
barriers preclude oxygen diffusion, thus causing hypoxic niches 
(Considine et  al., 2017; Weits et  al., 2019; Labandera et  al., 
2020; Mira et  al., 2020). On the other hand, hypoxia may 
be  imposed by heavy rainfall and the subsequent flooding of 
lands, which maintain plants transiently submerged or 
waterlogged (Voesenek and Bailey-Serres, 2015). When water 
recedes, hypoxic plants undergo a rapid re-oxygenation that 
lead to the production and metabolism of ROS and NO. A 
combined analysis of transcriptome data on exogenous NO 
treatment (Castillo et  al., 2018; León et  al., 2020) and in 
response to hypoxia and re-oxygenation after hypoxia (Lee 
and Bailey-Serres, 2019) allows identifying a cluster of 
NO-regulated VQ protein encoding genes that were upregulated 
and downregulated by hypoxia and re-oxygenation after hypoxia, 
respectively (Figure  2). A similar analysis focusing on WRKY 
genes allowed also identifying a cluster of four WRKY genes 
that were upregulated by hypoxia and NO, and downregulated 
upon re-oxygenation (Figure  2). Five genes of that VQ cluster 
(VQ1, VQ10, VQ24, VQ27, and VQ32) and the four WRKY 
genes (WRKY18, WRKY33, WRKY40, and WRKY75) were also 
upregulated under ozone treatment (Figure 2). Altogether, these 
data suggest that some VQ proteins, likely in association to 
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FIGURE 2 | Regulation of Arabidopsis VQ proteins and WRKY transcription factors encoding genes in response to ozone-triggered Reactive Oxygen Species 
(ROS) production (Ozone), hypoxia (Hypox.), and nitric oxide (NO) treatment (NO). Upregulated (magenta) and down-regulated (blue) transcripts identified in ozone-
treated Col-0 plants (Xu et al., 2015), in response to hypoxia and re-oxygenation after hypoxia (Lee and Bailey-Serres, 2019), and in plants exposed to a NO pulse 
(Castillo et al., 2018; León et al., 2020). Genes marked with red asterisks are upregulated by ozone, hypoxia and NO.
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some WRKY transcription factors, may play relevant roles in 
responses to changes in oxygen availability, ROS and NO in 
plants. VQ-WRKY regulatory actions might be  exerted in a 
combinatorial way, so that the elucidation of the dynamics 
and relative VQ-WRKY affinities will be  essential to better 
know the mode of action of these regulatory complexes.

Nitric oxide might be the potential link between VQ-WRKY 
modules and the responses to oxidative stress, hypoxia, and 
other NO-regulated processes. Plants accumulate NO in response 
to ozone (Mahalingam et al., 2006; Ahlfors et al., 2009; Pasqualini 
et  al., 2012; Bison et  al., 2018; Li et  al., 2018), and because 
of the mitochondrial electron chain using nitrite as electron 
acceptor also under oxygen limiting conditions (Gupta et  al., 
2018). The subset of VQ and WRKY genes that are upregulated 
in plants under oxidative stress, hypoxia, and treatment with 
NO may represent components of potential VQ-WRKY core 
complexes controlling downstream gene expression and metabolic 
alterations in a wide range of physiological processes (Figure 2). 
Interactions between VQ1 and VQ10 with WRKY33, VQ24 
with WRKY75, WRKY18 with WRKY33 and WRKY40, have 
been all reported (Xu et al., 2006; Pandey et al., 2010; Arabidopsis 
Interactome Mapping Consortium, 2011; Cheng et  al., 2012; 
Birkenbihl et al., 2017; Abeysinghe et al., 2019) in stress-related 
responses. Developmental programs such as leaf senescence 
are also regulated by NO and ROS, and they represent potential 
new targets for VQ-WRKY protein regulation. The relationship 
of the senescence process and the production of NO is somehow 
controversial as both positive or negative correlation has been 
reported depending upon the organ or being natural or dark-
induced (Mishina et  al., 2007; Ma et  al., 2010; Niu and Guo, 
2012; Liu and Guo, 2013; Du et al., 2014; Bruand and Meilhoc, 
2019). Linked to ROS and NO action, ZmVQ52 associated to 
WRKY proteins regulate leaf senescence in maize (Yu et  al., 
2019). Moreover, around 32% of the VQ genes and more than 
half of the WRKY genes were upregulated in Arabidopsis 
senescing leaves (Schmid et  al., 2005). Some of these genes 
were also differentially expressed in leaves in the transition 
from mature to senescent leaves (Woo et  al., 2016).

CONCLUDING REMARKS AND 
PERSPECTIVES

Proteins containing the VQ motif have been studied during 
the last 20 years with increasing attention being gained during 

the last decade. Despite the regulatory functions of some VQ 
proteins have been characterized in development and stress 
responses, most of the processes regulated by VQ proteins 
remain unknown. Importantly, the modes of action by which 
VQ proteins regulate these processes are still incompletely 
understood though their functional associations to WRKY 
factors seem to be  important. Nevertheless, the identification 
of the VQ-WRKY complexes and the characterization of their 
affinities in different processes remain yet to be  analyzed. 
Furthermore, the functional connection between VQ proteins 
and gasotransmitters such as O2 and NO opens up multiple 
developmental and stress-related processes potentially regulated 
by VQ proteins. Among them, hypoxia-triggered responses and 
subsequent re-oxygenation recovery are very relevant to modulate 
the tolerance of plants to submergence and waterlogging in 
flooded lands, a stressful condition becoming increasingly 
common in the context of climate change. On the other hand, 
some VQ proteins and their WRKY partners are also regulated 
by NO likely through NO-triggered PTMs that remain yet to 
be  identified. Future questions that need to be  also addressed 
include the elucidation of new WRKY-independent VQ protein 
regulatory functions that will benefit from the combination 
of genetic and omics approaches.
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