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Hydrangea macrophylla has a large inflorescence and rich colors, which has made it one
of the most popular ornamental flowers worldwide. Thus far, the molecular mechanism
of flower color formation in H. macrophylla flowers is unknown. By comparing the
pigment content and transcriptome data of the bud period (FSF1), discoloration period
(FSF2) and full-bloom stage (FSF3) of infertile blue flowers of H. macrophylla cv. “Forever
Summer,” we found that genes associated with anthocyanin production were most
associated with the formation of blue infertile flowers throughout development. The
anthocyanin biosynthesis pathway is the main metabolic pathway associated with
flower color formation, and the carotenoid biosynthesis pathway appeared to have
almost no contribution to flower color. There was no competition between the flavonoid
and flavonol and anthocyanin biosynthesis pathways for their substrate. At FSF1, the
key genes CHS and CHI in the flavonoid biosynthesis pathway were up-regulated,
underlying the accumulation of a substrate for anthocyanin synthesis. By FSF3,
the downstream genes F3H, C3′5′H, CYP75B1, DFR, and ANS in the anthocyanin
biosynthesis pathway were almost all up-regulated, likely promoting the synthesis and
accumulation of anthocyanins and inducing the color change of infertile flowers. By
analyzing protein–protein interaction networks and co-expression of transcription factors
as well as differentially expressed structural genes related to anthocyanin synthesis, we
identified negatively regulated transcription factors such as WER-like, MYB114, and
WDR68. Their site of action may be the key gene DFR in the anthocyanin biosynthesis
pathway. The potential regulatory mechanism of flower color formation may be that
WER-like, MYB114, and WDR68 inhibit or promote the synthesis of anthocyanins by
negatively regulating the expression of DFR. These results provide an important basis
for studying the infertile flower color formation mechanism in H. macrophylla and the
development of new cultivars with other colors.

Keywords: Hydrangea macrophylla, transcriptome, anthocyanins, carotenoids, flavonoids, flower color

Frontiers in Plant Science | www.frontiersin.org 1 February 2021 | Volume 12 | Article 585665

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.585665
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.585665
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.585665&domain=pdf&date_stamp=2021-02-17
https://www.frontiersin.org/articles/10.3389/fpls.2021.585665/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-585665 February 15, 2021 Time: 11:38 # 2

Peng et al. Analysis of Color Formation

INTRODUCTION

Hydrangea macrophylla is an shrub in the family Saxifragaceae.
As many different species and cultivars are widely used as cut
flowers, as potted plants, and in landscaping because of their large
inflorescences and beautiful colors, H. macrophylla has become
one of the most promising ornamental flower species. Flower
color has always been a focus of breeders and scientists, and it has
been revealed that the formation of flower color is the result of the
interactions between genes and the external environment (Kumar
et al., 2008). Accordingly, the cultivation of blue H. macrophylla
varieties can be achieved by altering external conditions; for
example, changing soil pH or adding exogenous Al3+ can change
the color of some infertile flowers of H. macrophylla (Yoshida
et al., 2003; Eid, 2015; Hariri et al., 2015; Gong et al., 2017),
but some varieties maintain a stable blue color under the same
cultivation conditions. However, the molecular mechanism of the
gradual blue color of the infertile flower formation process of H.
macrophylla remains to be further studied.

Flower color is one of the most important ornamental traits in
plants and plays an important role in improving plant quality.
Plant color is mainly affected by anthocyanins (Zhao and Tao,
2015); their type and content are the most important factors
affecting the formation of flower color (Dai, 2005; Han et al.,
2008; Yamagishi et al., 2012). It has been found that the main
substances affecting plant color are flavonoids and carotenoids
among species in the order Caryophyllales (Nishihara and
Nakatsuka, 2010; Brockington et al., 2015). Flavonoids are the
main substances that determined the formation of most plant
colors (Yoshioka et al., 2012). Among flavonoids, anthocyanins
have the greatest influence on flower color. There are six
main anthocyanins in plants: pelargonin, cyanidin, delphirin,
paeoniflorin, paeoniflorin, and malvidin. Among them, peonidin
is formed by methylation of cyanidin, and petunidin and
malvidin are formed under different degrees of delphinium
methylation (Martin et al., 1991; Hondo et al., 1992; Tanaka
et al., 2009). Pelargonin appears brick red, while cyanidin
and peonidin appear purple-red; delphinidin, petunidin, and
malvidin are instead between purple and blue. Accordingly, these
compounds can change the color of plants from pink to blue-
violet (Kazuma et al., 2003; Wei et al., 2009). However, other
flavonoids can cause the color of plants to exhibit varying degrees
of yellowness. Carotenoids can make plants yellow, orange, and
red (Kishimoto and Ohmiya, 2006; Chiou et al., 2010; Yamagishi
et al., 2010a; Hai et al., 2012; Han et al., 2014). At present,
the flavonoid biosynthesis pathway (Burns et al., 2013; Cheynier
et al., 2013; Zhao and Tao, 2015) and carotenoid biosynthesis
pathway are well understood (Yuan et al., 2015). The precursor
of the flavonoid biosynthesis pathway is phenylalanine, which
forms various types of anthocyanins after a three-step catalytic
reaction. The first step is the conversion of phenylalanine to
coumarin-CoA catalyzed by PAL, C4H, and 4CL; this step is
a common pathway for the production of many secondary
metabolites. The second step is the conversion of coumarate-CoA
to dihydroflavonol under CHS, CHI, F3H, and F3′5′H. This is a
key response in the metabolism of flavonoids. The third step is
the formation of various stable anthocyanins under the catalysis

of DFR, ANS, UFGT, and MT. The precursor of the carotenoid
biosynthesis pathway is isoprenoid (Rodriguez-Concepcion,
2010), and many genes in this biosynthesis pathway have been
studied (Farre et al., 2010; Kato, 2012; Ohmiya, 2013; Rodriguez-
Concepcion and Stange, 2013; Liu L. et al., 2015). PSY/crtB, PDS,
Z-ISO, ZDS, crtISO, crtZ, CCS1, ZEP, VDE, and NCED are key
enzymes in the carotenoid biosynthesis pathway and play an
important regulatory role in the accumulation of carotenoids.
In addition to structural genes, transcription factors (including
MYB, bHLH, and WD40) also have important regulatory effects
on the accumulation of anthocyanins (Ramsay and Glover,
2005). The regulatory mechanisms by which transcription factors
impact plant color have been verified in many plants (Hong et al.,
2019; Fu et al., 2020), including petunia (Quattrocchio et al., 1993;
Spelt et al., 2000; Albert et al., 2009, 2011), Japanese morning
glory (Yasumasa et al., 2006), rose (Kui et al., 2010), Asiatic
hybrid lily (Nakatsuka et al., 2009; Yamagishi et al., 2010b, 2012,
2014), chrysanthemum (Zhu et al., 2013; Liu X. et al., 2015), and
phalaenopsis (Hsu et al., 2015), among others. MYB6 in Asiatic
hybrid lily (Nakatsuka et al., 2009) and chrysanthemum (Liu X.
et al., 2015) can change flower color by positively regulating a
single structural gene, DFR. However, IpMYB1 in morning glory
can alter flower color by regulating multiple structural genes
(Yasumasa et al., 2006), and PhNYB27 in petunia can alter flower
color by suppressing flavonoid genes (Albert et al., 2011). Thus,
the regulatory mechanisms of transcription factors on plant color
are diverse. The formation of plant flower color is affected by both
structural genes and transcription factors.

Recently, transcriptome sequencing technology has been
widely used in plant research owing to its low cost, speed,
and efficiency (Wang et al., 2009, 2014; Loraine et al., 2013; Li
et al., 2016). To reveal the molecular mechanisms influencing the
development of blue flowers in H. macrophylla, transcriptome
sequencing technology was used to analyze differentially
expressed genes (DEGs) in infertile flowers across different
developmental stages in the blue H. macrophylla cultivar “Forever
Summer.” The biosynthesis pathways related to the accumulation
of anthocyanidins, such as the flavonoid and carotenoid
biosynthesis pathways, and flower-related transcription factors
were also specifically examined. The purpose of this study was
to provide guidance for the systematic investigation of the
molecular mechanism of flower color formation.

MATERIALS AND METHODS

Plant Materials
Hydrangea macrophylla cv. “Forever Summer” was planted in
the Botanical Garden of the Central South University of Forestry
and Technology, Changsha, Hunan, China, which has a soil
pH of 6.8. At 10 am in April and May, three experimental
samples for each developmental period were collected from
three progenies obtained from cuttings of the same plant at
the bud stage (FSF1), discoloration stage (FSF2), and full-bloom
stage (FSF3). The samples were photographed during sampling,
and the colors of the samples were compared and measured
using colorimetric cards from the Royal Society of Landscape
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Architecture, a portable color difference meter, and a microscope
(Figure 1A). In order to avoid RNA contamination during
sampling, healthy infertile flowers with good growth and no
visible contamination by pests or diseases were collected, rinsed
three times with deionized water, immediately frozen in liquid
nitrogen, and stored in a−80◦C refrigerator.

Determination of Relative Content of
Pigment
Determination of Relative Content of Anthocyanins
For anthocyanin extraction, 0.2-g samples were ground into
powder under liquid nitrogen, extracted in 10 mL of 1% acidic
methanol solution under dark conditions at 4◦C for 24 h, and
then suspended by ultrasonication for 1 h. The supernatant
was obtained after centrifugation at 10,000 rpm for 10 min
and filtered through a 0.22-µm membrane filter. A UV-Vis
spectrophotometer was used to read the absorbance at 530 nm.
Three biological replicates were set up for each experiment. The
trend in the relative content of anthocyanins across the three
periods was calculated based on the absorbance value.

Determination of Relative Content of Flavonoids
For flavonoid extraction, 0.2-g samples were ground into powder
under liquid nitrogen, extracted in 10 mL of methanol solution
under dark conditions at 4◦C for 24 h, and then suspended
by ultrasonication for 1 h. The supernatant was obtained after
centrifugation at 10,000 rpm for 10 min and filtered through a
0.22-µm membrane filter. Then, 2 mL of the supernatant was
removed, and 2 mL of 1.5% AlCl3 solution and 3 mL of 1 M
sodium acetate (pH 5.0) were added, thus keeping the volume at
10 mL. After 10 min, the absorbance was read at 415 nm using
a UV-Vis spectrophotometer. Three biological replicates were
set up for each experiment. The trend in the relative content of
flavonoids across the three periods was calculated based on the
absorbance values.

Determination of Relative Content of
Carotenoids
For carotenoid determination, 0.2-g samples were ground into
powder under liquid nitrogen and extracted in 10 mL petroleum
ether under dark conditions at 4◦C for 24 h, and then suspended

FIGURE 1 | Images and difference analysis of infertile flower color at three developmental stages: FSF1, FSF2, FSF3. (A) Images of inflorescences and infertile
flowers at these three stages. (B) Measured result of color testers at FSF1 and FSF3. Blue points represent the color values of infertile flowers at FSF1, and red
points represent the color values of infertile flowers at FSF3. (C) Microscopic observation of epidermal cells from infertile flowers at FSF1 and FSF3. (D) The relative
contents of anthocyanins, total flavonoids, and carotenoids in the infertile flower at the three developmental stages.
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by ultrasonication for 1 h. The supernatant was obtained after
centrifugation at 10,000 rpm for 10 min and filtered through a
0.22-µm membrane filter. The UV-Vis spectrophotometer was
used to read the absorbance at 440 nm. Three biological replicates
were set up for each experiment. The trend in the relative content
of carotenoids across three periods was calculated based on the
absorbance values.

Transcriptome Sequencing and Data
Analysis
Transcriptome sequencing of infertile flowers from H.
macrophylla cv. “Forever Summer” at three different flowering
periods was performed by Beijing Nuohe Zhiyuan Biotechnology
Co., Ltd. Clean reads were assembled (Grabherr et al., 2011) and
annotated, and plant transcription factors were predicted using
iTAK software (Zheng et al., 2016). To analyze the expression
level of genes (Trapnell et al., 2010), RSEM software (Li and
Dewey, 2011) was used to analyze the number of read counts for
each gene. The parameters used in bowtie 2 took their default
values, and fragments per kilobase of exon model per million
mapped reads (FPKM) conversion was then performed. The
DESeq R package was used for gene differential expression
analysis, and the screening threshold was padj < 0.05 (Anders
and Huber, 2010). A Venn diagram of DEGs was drawn based
on these results, and the DEGs were also analyzed by Kyoto
Encyclopedia of Genes and Genomes (KEGG) classification and
KEGG enrichment Using KOBAS2.0 (Xie et al., 2011).

Gene Validation and Expression Analysis
To verify the accuracy of the transcriptome data, four unigenes
related to anthocyanin synthesis were selected for qPCR
analysis, and Actin was selected as an internal reference gene.
Specific primers were designed using primer software version
5 (Supplementary Table 1). The qPCR reaction system was
prepared according to the manufacturer’s instructions for the
2 × SYBR Green Master Mix Enzyme kit (Biotool, Houston,
TX, United States). PCR amplification proceeded as follows:
predenaturation at 95◦C for 5 min, 40 cycles of 95◦C for 15 s and
annealing at 60◦C for 40 s. Dissolution curves were recorded from
60◦C to 95◦C, with a 0.5◦C increase every 5 s. Each reaction was
repeated three times. The relative expression level of the target
genes was calculated by the 2−11Cq method. Correlation analysis
was performed using SPSS version 17.0 software (SPSS Inc.,
Chicago, IL, United States) according to the relative expression
of the gene and its FKPM value.

Screening of Key Structural Genes in
Pigment Synthesis Pathways
Based on the FPKM values of the DEGs in the flavonoid and
carotenoid biosynthesis pathways, a heat map of the three
flowering periods was drawn using the pheatmap package in
the R statistical computing environment. Then, an expression
map of the DEGs was drawn according to the KEGG pathway
map. Based on the expression map, the expression rules were
comprehensively analyzed, and the key genes related to pigment
substance synthesis were screened.

Screening of Key Transcription Factors
During Flower Formation
The transcription factor expression data, which included
expression levels for MYB, bHLH, WD40, and the DEGs
identified in the flavonoid biosynthetic pathway, was screened
using blastx software, with an e-value of 1e-10. The target
gene set sequence was aligned to the protein sequence of the
reference species contained in the string database1, and the
protein interaction relationship of the reference species was
used to construct an interaction network. Network visualization
for the interaction network related to MYB and DEGs was
performed using Cytoscape version 3.6.1. A phylogenetic tree of
MYB transcription factors and WD from different species was
constructed using the maximum likelihood method with 1000
bootstrap replicates with MEGA version 6.0 (Koichiro et al.,
2013). Co-expression analysis was performed using SPSS 17.0
based on the transcription factor and DEG data.

RESULTS

Pigment Levels in Infertile Flowers at
Three Developmental Stages
During the development of the blue infertile flowers of H.
macrophylla cv. “Forever Summer,” the color changed from
yellow-green to bright blue-violet (Figure 1A). According to
the colorimetric card from the Royal Society of Landscape
Architecture, the infertile flowers at FSF1 were yellow-green
(RHS 150C), the distal sepals and proximal sepals of infertile
flower at FSF2 were purple-blue (RHS 100D) and yellow-green
(RHS 150C), respectively, and the infertile flowers at FSF3 were
bright blue-violet (RHS 98C). The color values of FSF1 and FSF3
infertile flowers were distributed in the second and the third
quadrant respectively according to color testers (Figure 1B). The
color of the epithelial cells at FSF3 was significantly different
from that at FSF1, and blue matter was accumulated in the
epithelial cells by FSF3 (Figure 1C). As shown in Figure 1D,
the carotenoid contents and the flavonoid contents decreased
from FSF1 to FSF3, and the anthocyanin contents increased. This
indicates that the blue infertile flower color formation process
of H. macrophylla cv. ‘Forever Summer’ is associated with the
reduction of flavonoids and carotenoids, as well as an increase
in anthocyanins.

Library Construction and Transcriptome
Sequencing
To understand the molecular basis of the blue infertile flower
color change in H. macrophylla cv. “Forever Summer,” infertile
flowers at the FSF1, FSF2, and FSF3 stages were used to construct
three libraries for high-throughput sequencing. Thus, 69,281,730,
62,700,144, and 73,712,440 raw reads were obtained from the
FSF1, FSF2, and FSF3 sequencing libraries, respectively. After
removal of adaptor sequences, ambiguous reads, and low-quality
reads, 66,658,800, 60,767,008, and 70,675,124 high-quality clean

1http://string-db.org/
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reads comprising 9.99, 9.12, and 10.60 Gb with Q20 >96.90%
were obtained from FSF1, FSF2, and FSF3 transcriptome
sequencing, respectively. The correlation coefficient of gene
expression levels between the three biological replicate samples
of the infertile flowers exceeded 0.81. To verify the accuracy
of the transcriptome data, a correlation analysis was performed
based on transcripts per million (TPM) as a measure of transcript
abundance, and the relative expression of four representative
genes was also analyzed by qPCR. The relative expression levels
of qPCR for the four genes (HmF3H, HmC3′5′H, HmANS,
HmBZ1) were closely related to their FPKM values. The Pearson
correlation coefficients between the two estimates of the HmF3H,
HmC3′5′H, HmANS, and HmBZ1 expression levels were 0.76,
0.98, 0.71, and 0.77, respectively, and significant at a P < 0.05
threshold (Figure 2). All raw high throughput sequence data
have been deposited in the NCBI SRA database under accession
number PRJNA588557.

Identification and Analysis of DEGs
Among Infertile Flowers at Three Stages
According to the read count data obtained from the gene
expression level analysis, DESeq (Anders and Huber, 2010) was
used to screen the transcripts for differential expression based on
a negative binomial distribution, at a padj < 0.05 level. A total of
19,250 DEGs were thus obtained (Figure 3). In total, 3458 DEGs

were found between FSF1 and FSF2, with 1555 unigenes up-
regulated and 1,903 unigenes down-regulated. There were 11,847
DEGs between FSF2 and FSF3, with 4,887 DEGs up-regulated
and 6,960 DEGs down-regulated. The number of DEGs between
FSF3 and FSF1 was the highest, with a total of 14,696, of which
5,927 were up-regulated and 8,769 were down-regulated. The
number of DEGs increased fastest over time from FSF2 to FSF3,
and the highest number of DEGs was between FSF1 and FSF3.

Kyoto Encyclopedia of Genes and Genomes pathway
enrichment analysis was performed on the identified DEGs.
The numbers of DEGs enriched among KEGG pathways were
987, 3531, and 4035, respectively, which were attributed to
105, 121, and 120 metabolic pathways in FSF1, FSF2, and
FSF3, respectively. The top 20 enriched metabolic pathways
were explored (Figure 4). Flavone and flavonol biosynthesis,
phenylpropanoid biosynthesis, and flavonoid biosynthesis
were enriched in the FSF2 versus FSF1 comparison. Flavone
and flavonol biosynthesis, phenylpropanoid biosynthesis,
and anthocyanin biosynthesis were enriched in the FSF3
versus FSF2 comparison. During the development of the
blue infertile flowers, flavone and flavonol biosynthesis and
phenylpropanoid biosynthesis were always significantly different.
Flavonoid biosynthesis was significantly enriched in the FSF2
versus FSF1 comparison, while anthocyanin biosynthesis was
significantly enriched in the FSF3 versus FSF2 comparison;
thus, anthocyanin biosynthesis might be more important than

FIGURE 2 | Correlation analysis between qRT-PCR and RNA-seq results for HmF3H, HmC3′5′H, HmANS, and HmBZ1.
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FIGURE 3 | Statistics on the number of differentially expressed genes among three development stages of infertile flowers of Hydrangea macrophylla cv. “Forever
Summer.”

FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of infertile flower of Hydrangea macrophylla cv. “Forever Summer” at the FSF1,
FSF2, and FSF3 developmental stages.

flavonoid biosynthesis for formation of blue coloration of
infertile flowers. In addition, the other two metabolic pathways
involved in flower color formation, including the carotenoid
and isoflavone biosynthesis pathways, were also found in the
KEGG enrichment pathway. The difference in these metabolic
pathways may underlie the formation of the blue coloration of
infertile flowers.

Analysis of DEGs in the Flavonoid
Biosynthesis Pathway
Flavone, flavonol, anthocyanin, and isoflavone biosynthesis
pathways are branched pathways of flavonoid biosynthesis, which
can be incorporated into flavonoid biosynthesis for analysis.
The direct prerequisites for the flavonoid biosynthesis pathway
are cinnamoyl-CoA and p-coumaroyl CoA. Proanthocyanidins
are formed in the catalysis of CYP73A, CHS, CHI, F3H,

CYP75A, CYP75B1, and DFR. In the main pathway of the
flavonoid biosynthesis pathway, a total of 29 DEGs were obtained,
involving seven enzymes. Except for the two enzymes CHI and
LAR, the other structural genes exist in multiple copies. As
shown in Figure 5, the expression levels of DEGs encoding
the enzymes CYP73A, CHS, and CHI were up-regulated during
FSF1 and FSF2, but down-regulated during FSF3. As the
rate-limiting enzyme in the flavonoid biosynthesis pathway,
CHS and CHI have important effects on the accumulation of
flavonoids. These genes are highly expressed during FSF1 and
FSF2, which may be related to the accumulation of flavonoids
during these periods. At FSF3, the expression levels of the DEGs
encoding F3H, DFR, CYP75A, and CYP75B1 were almost all up-
regulated, which may be related to the rapid accumulation of
anthocyanidins in this period.

Proanthocyanidins are precursors in the anthocyanin
biosynthesis pathway and are converted into various stable
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FIGURE 5 | Analysis of differentially expressed gene in the flavonoid biosynthesis pathway for infertile flowers of Hydrangea macrophylla cv. “Forever Summer” at the
FSF1, FSF2, and FSF3 developmental stages. The color scale represents log2-transformed FPKM (fragments per kilobase of exon per million mapped reads) values.
Red represents high expression, and blue represents low expression.

anthocyanins under the catalysis of enzymes that include ANS,
BZ1, UGAT, and UGT75C1. In the anthocyanin biosynthesis
pathway, 13 DEGs encoding the enzymes BZ1, UGAT, and
UGT75C1 were identified. ANS is a key enzyme in the
anthocyanin biosynthesis pathway and plays an important
regulatory role in anthocyanin accumulation. The two DEGs
encoding ANS were significantly up-regulated at FSF3, which
is consistent with the color change during this period. In the
flavonoid and flavonol biosynthesis pathway, 10 DEGs encoding
FLS, E2.4.1.91, E2.4.1.234, and AOMT were obtained. All DEGs
were down-regulated during FSF3.

Analysis of DEGs in the Carotenoid
Biosynthesis Pathway
Carotenoids also have an important influence on plant color
formation. In order to study the role of structural genes in
the carotenoid biosynthesis pathway on flower color formation,
DEGs were analyzed at the FSF1, FSF2, and FSF3 stages. A total
of 33 DEGs were obtained in these three periods (Figure 6). From
geranylgeranyl pyrophosphate (GGPP) to lutein and neoxanthin
in the pathway diagram in Figure 6, 17 DEGs encoding six
enzymes were found, and almost all DEGs were down-regulated
from FSF1 to FSF3. In H. macrophylla cv. “Forever Summer,” the
decomposition pathway of carotenoids was the BCH pathway

(Meng et al., 2013), and the final product was abscisic acid.
In the process of carotenoid decomposition, 14 of the 16
DEGs encoding four enzymes were up-regulated at FSF2 or
FSF3. The genes involved in carotenoid synthesis were down-
regulated, but genes involved in carotenoid breakdown were
up-regulated, likely leading to a decrease in carotenoids during
the flowering process.

Identification of Transcription Factors
To screen for key transcription factors involved in anthocyanin
synthesis, transcription factors and structural genes were
analyzed using interaction networks. We found that two
MYB transcription factors and one WDR68 (including three
unigenes) participated in the regulation of structural genes
in the anthocyanin biosynthesis pathway (Figure 7). The
phylogenetic relationships among MYB and WD transcription
factors from different species showed that MYB114 and WER-
like proteins in Hydrangea are closely related to the homologous
transcription factors in Vitis vinifera, Prunus avium, and Malus
domestica, and the WD transcription factor in Hydrangea is
also closely related to the homologous transcription factors in
Camellia sinensis and tree peony (Supplementary Figure 1).
CsWD40 and PsWD40 regulate anthocyanin biosynthesis and
accumulation in the C. sinensis and tree peony, respectively
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FIGURE 6 | Analysis of differentially expressed genes in the carotenoid biosynthesis pathway in infertile flowers of Hydrangea macrophylla cv. “Forever Summer” at
the FSF1, FSF2, and FSF3 developmental stages. The color scale represents log2-transformed FPKM (fragments per kilobase of exon per million mapped reads)
values. Red represents high expression, and blue represents low expression.

(Zhang et al., 2014; Wang et al., 2019). Therefore, WDR68 in
Hydrangea may also regulate anthocyanin synthesis. According
to the FPKM values of the transcription factors and structural
genes, their Pearson correlation coefficients were calculated
using SPSS version 17.0. The FPKM values of the unigenes
of the MYB transcription factor and the two unigenes of

the WDR68 (Cluster-33435.149152 and Cluster-33435.158759)
were positively correlated (P < 0.01) and negatively correlated
with the F3H, DFR, and ANS FPKM values (P < 0.01),
respectively. Additionally, the FPKM value of a WDR68 unigene
(Cluster-33435.149152) was negatively correlated with those
of F3H and DFR (P < 0.01), respectively (Table 1). MYB
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FIGURE 7 | Protein–protein interaction network of putative genes related to
flavonoid biosynthesis.

transcription factors, including WER-like, MYB114, and WDR68
(Cluster-33435.149152 and Cluster-33435.158759) might have an
important influence on the formation of the blue coloration of
infertile flowers in Hydrangea.

DISCUSSION

Flavonoid Biosynthesis Pathway
Changes Are Associated With Blue
Infertile Flower Development
The formation of plant flower color is mainly affected by
the accumulation of flavonoids and carotenoids. Anthocyanins
are water-soluble flavonoids responsible for the red, pink,
blue, and purple coloration of flowers (Han et al., 2008). In
infertile flowers of the H. macrophylla cv. “Forever Summer,”
blue anthocyanin is accumulated in the upper epidermal
cells, and the total anthocyanin content was significantly
increased by FSF3. However, the total flavonoid and carotenoid
contents decreased during the development of infertile flowers.
Furthermore, based on KEGG pathway enrichment analysis,
anthocyanin biosynthesis was enriched in the FSF3 versus FSF2

and FSF3 versus FSF1 comparisons. This suggested that the
accumulation of anthocyanins is the main factor causing infertile
flowers to turn blue.

The anthocyanin biosynthesis pathway is a branch of the
flavonoid biosynthetic pathway. The synthesis and accumulation
of anthocyanins are affected by flavonoids. In the flavonoid
biosynthetic pathway, CYP73A, CHS, and CHI are upstream
genes, while F3H, C3′5′H, CYP75B1, DFR, and ANS are
downstream. They encode key enzymes in the flavonoid
biosynthetic pathway (Zhao and Tao, 2015) and thus play an
important role in the development of flower color. CHS and CHI
have important effects on the accumulation of flavonoids.
A previous study reported that in untransformed tobacco flowers,
anthocyanin was not accumulated, while the accumulation
of flavonoids increased by over-expression of CHI from
chrysanthemum (Li et al., 2006). Overexpression of peony CHI
in tobacco also increased the accumulation of flavonoids (Zhou
et al., 2014). During the development of infertile flowers of
H. macrophylla cv. “Forever Summer,” unigenes encoding CHS
and CHI were almost all up-regulated and expressed at FSF1,
and the flavonoid content was highest in this period. Up-
regulated expression of early expressed genes in the flavonoid
biosynthetic pathway may cause accumulation of flavonoid and
provide precursors for anthocyanin synthesis. F3H catalyzes
naringenin into dihydroflavones. Three types of dihydroflavones
(dihydromyricetin, dihydroquercetin, and dihydrokaempferol)
are reduced in the presence of DFR and NADPH. The level of
DFR expression can cause flower color change, and DFR has the
highest expression in petals that accumulate large amounts of
anthocyanins (Nakatsuka et al., 2003; Zhao et al., 2012). C3′5′H
is a key enzyme involved in the synthesis of delphinidin, which
can promote the formation of blue flowers (Tanaka and Brugliera,
2013). ANS can catalyze the conversion of proanthocyanidins
into colored anthocyanins, which is the last key enzyme in
the flavonoid biosynthetic pathway. Deletion of the ANS gene
sequence can reduce the content of anthocyanins (Shimizu
et al., 2011). During the formation of the H. macrophylla
cv. “Forever Summer” infertile blue flowers, unigenes of the
downstream genes F3H, C3′5′H, CYP75B1, DFR, and ANS
in the flavonoid biosynthetic pathway were almost all up-
regulated. This expression trend is consistent with the trend
in anthocyanin content, so the flavonoid biosynthetic pathway
is likely the key metabolic pathway involved in the formation
of the blue coloration of infertile flowers of H. macrophylla
cv. “Forever Summer.” F3H, C3′5′H, CYP75B1, DFR, and ANS
may be the main factors underlying the formation of the blue

TABLE 1 | Co-expression of putative genes related to flavonoid biosynthesis.

Gene
name

#ID Cluster-
33435.149151

Cluster-
33435.149152

Cluster-
33435.158759

CHS F3H C3′5′H CYP75B1 DFR ANS BZ1

WER-like Cluster-33435.54542 0.49 0.861** 0.904** −0.082 −0.857** −0.598 −0.395 −0.830** −0.849** 0.222

MYB114 Cluster-33435.66205 0.606 0.805** 0.823** 0.064 −0.839** −0.698* −0.546 −0.805** −0.893** 0.318

WDR68 Cluster-33435.149151 1 0.253 0.463 0.392 −0.500 −0.683* −0.564 −0.483 −0.670* 0.608

WDR68 Cluster-33435.149152 0.253 1 0.779* −0.252 −0.853** −0.537 −0.301 −0.862** −0.767* 0.052

WDR68 Cluster-33435.158759 0.463 0.779* 1 −0.195 −0.706* −0.349 −0.110 −0.724* −0.647 0.219

** represent significant at a P < 0.01 threshold, * represents significant at a P < 0.05 threshold.
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coloration of the infertile flowers. Additionally, the flavonoid
and flavonol biosynthetic pathways are branched pathways
of the flavonoid biosynthetic pathway and share the same
substrate as the anthocyanin biosynthetic pathway. Therefore,
they should compete for the same substrate. However, during
FSF3, the expression levels of DEGs in the flavonoid and flavonol
biosynthetic pathways were all down-regulated and did not show
a competitive effect on the substrate for anthocyanin synthesis.

Carotenoid Biosynthesis Pathway Is Not
a Key Metabolic Pathway Involved in the
Formation of Blue Infertile Flowers
Carotenoids are also the basis for the formation of flower
coloration in many plants, mainly underlying yellow, orange,
and red coloration. The flower color of plants, such as Chinese
narcissus (Ren et al., 2017) and Camellia (Zhou et al., 2017), is
mainly affected by carotenoids, and its regulatory mechanism
has also been well elucidated. During the formation of infertile
flowers, almost all DEGs in the carotenoid biosynthetic pathway,
including PSY, CRTZ, ZEP, and VED, were up-regulated at FSF1
and FSF2, and the high expression of these genes likely increased
carotenoid content. However, at FSF3, the DEGs PSY, CRTZ,
ZEP, and VED were all down-regulated, while ABA2, AOG,
and CYP707A were up-regulated, which likely accelerated the
metabolism of carotenoids. This explains why the total amount of
carotenoids gradually decreases throughout the development of
infertile flowers. It also indicates that the carotenoid biosynthesis
pathway has a relatively small contribution on the formation of
blue infertile flowers of the hydrangea variety “Forever Summer.”

MER-like, MYB114, and WDR68 May Be
Key Negative Regulatory Transcription
Factors of Flower Color Formation
The transcription factors MYB, bHLH, and WDR have important
regulatory effects on the formation of flower color in plants
(Ramsay and Glover, 2005). Thus far, many transcription factors
have been discovered. PhAN2 (Quattrocchio et al., 1993), PhAN4
(Albert et al., 2009), PhPHZ (Albert et al., 2011), PhDPL
(Spelt et al., 2000), and PhMYB27 (Albert et al., 2011) were
found in petunia. LrMYB15, a transcription factor that regulates
CHSa, CHSb, DFR, and ANS, was found in lily (Yamagishi,
2016). CmMYB6 and CmMYB1 were found in chrysanthemums
(Zhu et al., 2013; Liu X. et al., 2015; Hong et al., 2019). The
transcription factors PeMYB2, PeMYB11, and PeMYB12 have
been found in Phalaenopsis (Hsu et al., 2015). Transcription
factors can individually or cooperatively regulate structural
genes, and the regulation can be positive or negative. In
short, transcription factors regulate flower color in a variety of
ways. In blue infertile flowers of H. macrophylla cv. “Forever
Summer,” DEGs and transcription factors were analyzed based
on their network interactions, phylogenetic relationships, and
co-expression. The regulation of MYB transcription factors did
not directly affect structural genes, but may instead regulated the
synthesis of anthocyanins through WDR68. The key structural
gene in the flavonoid biosynthesis pathway is DFR. The
transcription factors CmMYB6, LhMYB6, and RhMYB10, which

act on DFR, have been found in chrysanthemum (Liu X. et al.,
2015), Asian lily (Nakatsuka et al., 2009), rose (Kui et al., 2010),
and other plants. MER-like, MYB114, and WDR68 negatively
regulate DFR. A possible regulatory mechanism involves the
transcription factors WER-like, MYB114, and WDR68 being
highly expressed at FSF1, thus inhibiting the synthesis of
anthocyanins by regulating the expression of DFR. During FSF3
and FSF2, however, the expression levels of MYB and WDR
decreased, and the inhibitory effect on DFR was thus weakened.
This in turn led to the rapid synthesis and accumulation of a high
level of anthocyanins, which accelerated infertile H. macrophylla
“Forever Summer” turning blue.

CONCLUSION

This study shows that the formation of blue infertile flowers
of H. macrophylla cv. “Forever Summer” is mainly affected by
anthocyanin accumulation. DFR is a key gene in the anthocyanin
biosynthesis pathway. WER-like, MYB114, and WDR68 may
be the key transcription factors regulate the synthesis of
anthocyanins by negatively regulating DFR, which appears to
affect the color of infertile flowers of H. macrophylla cv. “Forever
Summer.”
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