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Intensive growing systems used for greenhouse tomato production, together with light

interception by cladding materials or other devices, may induce intracanopy mutual

shading and create suboptimal environmental conditions for plant growth. There are a

large number of published peer-reviewed studies assessing the effects of supplemental

light-emitting diode (LED) lighting on improving light distribution in plant canopies,

increasing crop yields and producing qualitative traits. However, the research results

are often contradictory, as the lighting parameters (e.g., photoperiod, intensity, and

quality) and environmental conditions vary among conducted experiments. This research

presents a global overview of supplemental LED lighting applications for greenhouse

tomato production deepened by a meta-analysis aimed at answering the following

research question: does supplemental LED lighting enhance the yield and qualitative traits

of greenhouse truss tomato production? Themeta-analysis was based on the differences

among independent groups by comparing a control value (featuring either background

solar light or solar + HPS light) with a treatment value (solar + supplemental LED light or

solar + HPS + supplemental LED light, respectively) and included 31 published papers

and 100 total observations. The meta-analysis results revealed the statistically significant

positive effects (p-value < 0.001) of supplemental LED lighting on enhancing the yield

(+40%), soluble solid (+6%) and ascorbic acid (+11%) contents, leaf chlorophyll content

(+31%), photosynthetic capacity (+50%), and leaf area (+9%) compared to the control

conditions. In contrast, supplemental LED lighting did not show a statistically significant

effect on the leaf stomatal conductance (p-value = 0.171). In conclusion, in addition

to some partial inconsistencies among the considered studies, the present research

enables us to assert that supplemental LED lighting ameliorates the quantitative and

qualitative aspects of greenhouse tomato production.
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INTRODUCTION

In greenhouse tomato (Solanum lycopersicum) production,
photosynthesis and carbon sequestration may be hindered by
cloud cover, shading systems, and variable solar radiation, as well
as by plant mutual shading (e.g., when high vertical stem training
or increased crop densities are used) (Zhang et al., 2015; Tewolde
et al., 2018). Considering the non-uniform distribution of solar
radiation around the world, limitations may also occur in cases of
high-latitude countries such as Canada, Japan, Norway, as well as
in the northern areas of China and the United States, where long
winters and lowDLIs (daily light integrals) may affect greenhouse
production (Garland et al., 2010; Deram et al., 2014; Sun et al.,
2015; Tewolde et al., 2016; Paponov et al., 2019). Supplemental
artificial lighting can be applied to increase greenhouse yields and
ensure stable year-round production regardless of environmental
conditions (Ohashi-Kaneko et al., 2007), even in regions with
high DLIs, such as the Mediterranean and Jordan Valley (Israel)
(Joshi et al., 2019; Paucek et al., 2020). Today, light-emitting
diode (LED) lamps represent the most advantageous artificial
lighting systems in terms of energy use efficiency, with foreseen
expectations for further reducing investments and running costs
in the near future (Olle and Viršile, 2013). Additional advantages
also involve the functional aspects of LEDs that make the
technology suitable for cultivation, particularly thanks to their
possible miniaturization, light weight, and limited radiant heat
emissions (Ibaraki, 2017). Accordingly, LED lamps can be used
in proximity to plant canopies without excessively increasing
the leaf temperature (Morrow, 2008), enabling inter-lighting
applications that reduce intracanopy shading conditions in high-
stem-density plants (Jokinen et al., 2012, Gómez and Mitchell,
2016a; Kumar et al., 2016; Hao et al., 2017).

LED application can enable the fine tuning of combinations
between light spectral compositions and light intensities, with
direct consequences not only on yield but also on structural
and physiological plant aspects (Ouzounis et al., 2015; Hao
et al., 2017; Ibaraki, 2017). In fact, the responses of plants
to light characteristics are regulated by photoreceptors that
reading specific wavelengths, intensities or photoperiods can
trigger signals that modify plant metabolism (Christie et al.,
2015). Accordingly, light environmental management can lead
to interesting commercial results. For instance, red light can
promote flower development (Liao et al., 2014), while the blue-
violet spectrum can increase plant protection from diseases
(Tokuno et al., 2012; Hui et al., 2017), preserving postharvest
conservation and food safety through the inactivation of
pathogen action (D’Souza et al., 2015). Moreover, specific light
spectra can improve the qualitative and nutraceutical aspects
of plants (Mempel and Wittmann, 2019), such as enhancing
antioxidant compound biosynthesis (e.g., flavonoids, ascorbic
acid) in various species (e.g., lettuce, basil, tomato) (Ebisawa
et al., 2008; Carvalho et al., 2016; Jiang et al., 2017; Pennisi et al.,
2019a,b).

Stomatal conductance is a specific physiological response
that is guided by light. The wavelength mainly involved in this
process is blue light (450 and 495 n), which is also implicated in
other mechanisms, such as phototropism, chloroplast migration,

photomorphogenesis, and chlorophyll production (O’Carrigan
et al., 2014b). Cryptochromes and phototropins are the main
photoreceptors stimulated by blue light (Christie et al., 2015);
these photoreceptors go through a phosphorylation process
and bind protein to trigger proton extrusion and K+ uptake
in stomatal guard cells, with the consequent cell turgidity
and stomatal opening enabling gas exchange (Roelfsema and
Hedrich, 2005: Shimazaki et al., 2007). Apparently, green and red
light may also play roles in gas exchange by inducing stomatal
closure, as green light may stop soluble uptake in guard cells
(Talbott et al., 2002), while red light may lead to K+ and
solute losses (Zeiger, 1990). In tomato plants, studies that have
applied blue, red, and green lighting in closed chambers seem
to confirm such observations (O’Carrigan et al., 2014b; Bian
et al., 2019), opening the possibility of integrating green LED
lighting to reduce drought stress in tomato plants (Bian et al.,
2019). However, it is important to consider that what is observed
in growing chamber experiments is not always transferable to
the processes occurring in productive systems, where different
environmental factors may affect plant responses.

Greenhouse tomatoes represent one of the most relevant
horticultural crops worldwide (Deram et al., 2014; FAO, 2018). In
intensive greenhouse tomato production, high-wire single-truss
training systems are normally applied to enable labor reductions,
multiple harvests and possible automation (Giniger et al., 1988;
Okano et al., 2001). Nonetheless, the high plant density required
for these systems can limit light penetration within canopies with
consequences on fruit quality and yield (Wada et al., 2006). In this
context, several studies have already reported the usefulness of
LED lighting system applications for qualitative and quantitative
improvements in greenhouse truss tomato production (Tewolde
et al., 2016; Dzakovich et al., 2017; Jiang et al., 2017; Kim
et al., 2019). However, inconsistencies among studies are also
present; non-significant effects of supplemental LED lighting,
especially on qualitative parameters (e.g., soluble solids, ascorbic
acid) (Lu et al., 2012b; Hao et al., 2016), have been found. In
most studies to date, researchers have integrated supplemental
LED lighting technologies either in greenhouses where no
supplemental lighting was formerly present or as additional
lighting sources in greenhouses where top artificial lights (e.g.,
high-pressure sodium lights, HPSs, lamps) were already installed
and in operation. Accordingly, this study aims to offer an
overview of the recent topic of supplemental LED lighting for
greenhouse tomato production through the use of a meta-
analysis as a statistical tool to summarize the results of published
studies and understand the effectiveness of supplementary LED
lighting in influencing the qualitative-quantitative aspects of
truss tomatoes. Consequently, the meta-analysis aims to answer
the following research question: does supplemental LED lighting
enhance the yield and qualitative traits of greenhouse truss
tomato production?

MATERIALS AND METHODS

Data Collection
Article collection was conducted during the first half of 2020
using online databases (e.g., Google Scholar and Scopus). The
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following search string was applied to identify publications:
LED AND supplemental light∗ AND tomato∗ AND greenhouse.
Only accessible published material in the English language was
collected, including scientific articles, conference papers, book
chapters, and thesis dissertations. The literature search results
were then filtered to reduce heterogeneity in the studies and
to include only Solanum lycopersicum species cultivated in
greenhouses with supplemental LED lighting or supplemental
LED lighting combined with HPS lamps. All cultivar types,
growing systems and greenhouse typologies were considered.
Given that the presence of solar radiation was a requisite of the
research question (targeting the effect of supplemental LEDs in
greenhouses), studies of indoor cultivation in which only artificial
lighting sources (e.g., indoor farming) were applied were not
considered in the research. Overhead, intracanopy and bottom
lighting supplies were all included, as well as nighttime, end-
of-the-day, and continuous lighting treatments. Only one case
of night-break lighting supply was excluded from the research
(Cao et al., 2016). Furthermore, studies reporting evaluations on
seedlings or transplants with short treatment periods were also
excluded; only mature and productive plants were considered to
accomplish the upstream objective of evaluating the qualitative
and quantitative effects of supplemental LED lighting on
tomato production.

The collected data included both general information related
to trial conditions and more specific data used in the meta-
analysis. In particular, the general data were represented by
intrinsic or environmental trial features (cultivar, location,
maximum and minimum temperatures, relative humidity,
nutrient solution electrical conductivity (EC) and pH, plant
density, greenhouse typology, and growing system), as well as
by the LED treatment characteristics (light spectrum, intensity
and photoperiod, treatment duration, and other eventual specific
experimental conditions, e.g., nighttime treatments). All these
general data were used in the descriptive statistical analysis and
to identify factors of heterogeneity among different experiments
during the meta-analysis. The natural lighting amount (e.g., DLI)
was not considered due to the scarcity of articles reporting this
information. The specific data referred to precise information
that was needed for the development of the meta-analysis,
including the treatment and control mean outcomes as well
as the sample size (or replicate number, in cases in which the
sample size was not available). Studies not reporting specific
data were not used for the meta-analysis development. The
outcomes, also called the effect sizes or response ratios [R]
(Hedges et al., 1999), used in the meta-analysis consisted of the
fresh fruit mass yield (yield, expressed as kg plant−1 of fresh fruit
mass), soluble solid content (TSS, expressed as ◦Brix), ascorbic
acid content (Asc, expressed as mg Asc 100 g−1 of fruit fresh
weight), chlorophyll content (Chl, expressed as Chl index), net
photosynthesis (PN, expressed as µmol CO2 m−2 s−1), stomatal
conductance (gs, expressed as mmol H2O m−2 s−1), and leaf
area (LA, expressed as m2 per plant). Only physiological and
vegetative outcomes directly influencing tomato productivity and
quality were considered, while other information (e.g., stem
diameter, internode length) was not investigated. Outcome values
were extracted from both tables and graphs, integrating textual

information in cases of general descriptive data relative to the
trials. Figure 1 shows the flow diagram applied for the data
selection and evaluation.

Meta-Analysis
The response ratio [R] considered in the meta-analysis was
represented by the influence of supplemental LED lighting on
the Yield, TSS, Asc, Chl, PN, gs, and LA of greenhouse-grown
tomato plants. Since each study accounted for more than one
treatment, each trial was examined as a separate observation (k).
Accordingly, each study could have more than one observation.
For instance, if an article compared two different supplemental
LED lighting treatments, one with a red spectrum and the
other with a blue spectrum, each treatment was considered an
individual observation. Each treatment value was compared with
a control value from the same article to perform a meta-analysis
based on the differences among independent groups. In the
current study, the applied control treatment may be of two types:
solar light only or solar light + HPS light. In the first case,
the control was compared with solar light + supplemental LED
light, while in the second case, the comparison involved solar
light + HPS light + supplemental LED light. Only observations
reporting a control, either with solar or solar + HPS light, were
used for the meta-analysis after a second selection phase. In one
case (Deram et al., 2014), the comparison between the control
and treatment showed extremely high values compared to other
results. In this case, the data were considered outliers and were
excluded from the meta-analysis.

The [R] of each observation was calculated as follows:

ln R = ln (R) =
ln mt

ln mc
= ln mt ln mc

where mt and mc represent the mean outcomes of the treatment
and control, respectively (Hedges et al., 1999; Borenstein et al.,
2009). Since most of the considered publications did not display
standard error (SE), variance (Var), or standard deviation (S)
values, an unweighted meta-analysis was applied to equally
weight each observation (McDaniel et al., 2014; Qin et al., 2015).
The data were analyzed using the online available software Meta-
Essential (Suurmond et al., 2017). A random effect model was
chosen for each response value (Yield, TSS, Asc, Chl, PN, gs,
and LA). The heterogeneity value (I2) was used to evaluate the
percentage of variation among studies (Hak et al., 2016). Cases
reporting I2 values higher than 25% were further investigated by
applying a subgroup analysis (Borenstein et al., 2009; Hak et al.,
2016). The subgroup analysis divided the observations into six
categories: solar light or solar light + HPS used as a control;
pure supplemental LED light or supplemental LED light + HPS;
artificial light supply (e.g., DLI ≥10 or <10mol m−2 d−1);
seasonality (whether the hours of natural light were increasing,
e.g., during spring in the Northern Hemisphere, or decreasing,
e.g., during fall in Northern Hemisphere, along the experiment);
photoperiod ≥16 or <16 h d−1; lighting supplied as intracanopy
or others. In the last case, “others” were intended to include
overhead, bottom or combined lighting supplies, which were
grouped together due to the low number of singular categories.
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FIGURE 1 | Flow diagram showing the steps of the study selection and analysis.

Hedges’ g was applied as the measurement of the effect size in the
meta-analysis model. The [R] value was accepted as significant
with a p-value < 0.05, considering a confidence interval (CI) of
95%. Since the results showed high heterogeneity, no publication
bias analysis was performed, assuming its absence (Hak et al.,
2016). A graphic representation of the study distribution per year
and country was realized using Gephi software (Bastian et al.,
2009) (Figure 2).

RESULTS

The literature search results are included in
Supplementary Material 1, attached as an Excel file to the
present manuscript. The preliminary literature search resulted
in 45 studies following the selection criteria. These publications
were used for the descriptive statistical analysis. The results
showed that the majority of trials took place in North America,
with 38% of the total cases (USA n = 9, Canada n = 8), while
Europe (Netherlands n = 8, Norway n = 3, Poland n = 2,
Belgium n= 1, Germany n= 1, and Italy n= 1) and Asia (Japan
n= 6, China n= 4, and South Korea n= 2) reported frequencies
of 35 and 27%, respectively. No cases were registered in other
continents. No collected publication was released before 2011,
and the collected studies showed the highest frequencies in 2019
(29%) and 2016 (18%) (Figure 2).

Although not always stated, most experiments were
conducted in technologically advanced greenhouses applying
soilless growing methods, and the studies often mentioned
controlled environmental systems. When reported, the highest-
frequency growing methods reported were substrate cultivation
on slabs (61% of 36 cases reported this growing method). Slab
materials were mainly represented by rockwool, although two
cases of coir use were also reported. Pot employment was also

registered, occurring for 22% of cited cases with sand, perlite,
vermiculite or peat applied as growing substrates. The use of
bags filled with substrate (peat, vermiculite or perlite) was also
identified in 3 out of 36 cases. Finally, only two soil-based
cultivation cases and one nutrient film technique (NFT) case
were reported.

Concerning the planting density, the 45 studies showed a
mean of ∼5 plants m−2, a mode of 2.7 plants m−2 and a median
of 2.7 plants m−2, with values ranging from 1.5 to 16.6 plants
m−2. The average maximum and minimum temperatures were
23 and 19◦C, respectively, while the average relative humidity
was 69%. The applied nutrient solutions had a mean EC value
of 2.4 dS m−1 and a mean pH value of 6. Different cultivars
of truss tomato were used in the trials (33), and the highest
recurrence was observed for Solanum lycopersicum cv Komeett
(De Ruiter, Amstelveen, The Netherlands), which was mentioned
in 10 publications.

In total, 161 supplemental LED lighting treatments were
observed within the 45 collected publications. Of those
treatments, 57% applied intracanopy LED lighting, 8% applied
bottom lighting, 17% applied overhead lamps, 13% applied a
combination of supply methods (e.g., intracanopy + overhead
lighting), and 6% of cases did not clearly report the type
of lighting supply. Furthermore, 20% of revised observations
applied a combination of LED and HPS lighting as the
supplemental treatment. Regarding the daily lighting duration,
the mean photoperiod used was 15 h d−1, while the mode and
median durations were both 16 h d−1. Within the collected
literature, two extreme cases of 24 h of continuous lighting and
2 h of end-of-the-day lighting were also found. The average
photosynthetic photon flux density (PPFD) and DLI supplied
through lighting were also registered, showing values of 165
µmolm−2 s−1 and 9.5molm−2 d−1, respectively, while themode
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FIGURE 2 | Graphical distribution of 45 selected studies grouped by country and publication year.

and median were 160 and 165 µmol m−2 s−1 for PPFD and 11.5
and 9.8mol m−2 d−1 for DLI, respectively. Spectral compositions
occurred in numerous combinations and ratios depending on
the trial. The absolute frequencies of the red, blue, white, far-
red, and UV spectral components were registered separately,
and each component was counted each time it appeared in
a treatment independently from the combinations. The count
resulted in red light supplies recurring in 128 cases, while light
in the blue, white and far-red spectra were adopted 115, 24
and 20 times, respectively. UV application was only used 3
times, while green light occurred once. Both UV and green light
were always applied in combination with other light spectral
components. Furthermore, 68% of the reviewed observations
used a combination of red and blue diodes, while monochromatic
red or blue diodes were applied in 6 and 2% of total observations,
respectively. The average duration of treatments was 5 months,
with the durations ranging from 2 to 8 months.

After a second selection phase, 10 studies not reporting any
control, as well as one outlier case concerning the reported
yield values (Deram et al., 2014), were excluded from the
meta-analysis. This selection resulted in 31 studies, and 100
total observations were used for the further analyses. The
results revealed the generally positive effects of supplemental

LED lighting, although different tendencies and significances
were observed depending on the evaluated [R] (Figure 3).
PN (k = 45) and Yield (k = 68) were the parameters most
affected by supplemental LED treatments, reporting the highest
standardized mean differences (Hedges’ g) of 2.70 and 1.75,
respectively. Both response ratios were significantly influenced
by supplemental lighting, with one-tailed p-values < 0.001.
Conversely, gs (k = 26) showed a standardized mean difference
of 0.83, although no significant effect was reported (p = 0.171).
Asc (k = 20) and TSS (k = 38) presented standardized mean
differences of 0.81 and 0.34, with significant p-values of 0.001
and <0.001, respectively. Finally, Chl (k = 40) and LA (k = 38)
recorded similar values, showing Hedges’ g values of 0.74 and
0.75, respectively, while the p-values were <0.001 for both cases.
Figure 3 displays a summary of the combined effect sizes.

The I2 value, which describes the percentage of variation
among studies, was the main investigated factor used to
understand the heterogeneity in the results (Hak et al., 2016). In
particular, fruit yield (Yield) showed a heterogeneity of 89.18%.
The qualitative effects, measured as TSS and Asc, reported
I2 values of 29.27 and 75.97%, respectively. The physiological
parameters showed I2 values equal to 91.66% for gs, 91.15%
for PN, and 73.23% for Chl. Finally, the LA heterogeneity
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FIGURE 3 | Forest plot showing the combined effect sizes and main meta-analysis parameters of the investigated response ratios (Yield, Yield; TSS, soluble solid

content; Asc, ascorbic acid content; Chl, chlorophyll content; PN, photosynthetic capacity; gs, stomatal conductance; LA, leaf area). Numbers within brackets refer to

k response ratios. The meta-analysis parameters are the effect size value (Hedges’g), low and high confidence intervals (CI), and tests of the null hypothesis (one-tailed

p-value and z-value) (Hak et al., 2016).

TABLE 1 | Heterogeneity evaluation of response ratios.

Q pq I2 T2 T

Yield 619 <0.001 89.18 3.45 1.86

TSS 52.31 0.049 29.27 0.10 0.31

Asc 79.07 <0.001 75.97 0.86 0.93

gs 299.70 <0.001 91.66 4.07 2.02

PN 497.14 <0.001 91.15 4.18 2.05

Chl 145.67 <0.001 73.23 0.76 0.87

LA 185.33 <0.001 80.04 1.09 1.05

Yield, Yield; TSS, soluble solid content; Asc, ascorbic acid content; Chl, chlorophyll content; PN, photosynthetic capacity; gs, stomatal conductance; LA, leaf area.

Q, The heterogeneity parameters are the weighted sum-of-squared differences between the observed effects and the weighted-average effects; pq, the test of the null hypothesis; I
2,

the measure of the proportion of observed variance that reflects the real differences in the effect size; T2 and T, the measure of the dispersion of the true effect sizes between studies in

terms of the scale of the effect size (Hak et al., 2016).

was 80.04%. The other parameters explaining heterogeneity are
reported in Table 1.

All response ratios showed high heterogeneity, with I2 values
>25%. Accordingly, a subgroup analysis was performed for
each outcome. Low heterogeneity was observed for Yield in
cases of light supplies different from intracanopy supplies (I2

= 18.7%) and cases using solar + HPS lighting as controls
(I2 = 12.7%); for TSS in cases with increased natural lighting
(I2 = 21.2%) and lighting supplies other than intracanopy
supplies (I2 = 0.0%); and for Chl in cases with decreased
natural lighting (I2 = 0.0%). Table 2 shows the I2 heterogeneity
values identified for each [R] value and subgroup, as well
as the percentages of each subgroup both relative to the
single response ratios and to the total number of meta-
analysis observations. Cases not reporting a sufficient number
of observations (k ≥ 5) within each subgroup division were
not reported.

DISCUSSION

The worldwide distribution of the 45 identified studies showed
a prevalence of trials in countries of the boreal hemisphere
occurring at latitudes above 43◦N, falling within the temperate
climatic zone (Fischer et al., 2012). Geographical latitude is
one of the main factors constraining daily solar radiation
during the year, thus affecting the minimal light requirements
of most horticultural crops (∼2.34 kWh m−2 d−1, which
translates to ∼8.5 MJ m−2 day−1) and, consequently, affecting
climatic suitability for greenhouse cultivation (Castilla and
Baeza, 2013). Accordingly, supplemental lighting can be
particularly appropriate to guarantee better light distributions
and longer cultivation spans in high-tech greenhouses in
northern countries, although useful applications were also
observed within the Mediterranean area (Paucek et al., 2020).
Although Mediterranean greenhouse cultivation is mainly
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TABLE 2 | Subgroup analysis reporting heterogeneity (I2) and percentage (P) by response ratio (Yield, Yield; TSS, soluble solid content; Asc, ascorbic acid content; Chl, chlorophyll content; PN, photosynthetic

capacity; gs, stomatal conductance; LA, leaf area) and total percentage (Tot P) of subgroups considering 104 total observations used in the meta-analysis.

Yield TSS Asc gs PN Chl LA Tot

(k = 68) (k = 38) (k = 20) (k = 26) (k = 45) (k = 40) (k = 38) (k = 104)

I2 (%) P(%) I2 (%) P (%) I2 (%) P (%) I2 (%) P(%) I2 (%) P (%) I2 (%) P(%) I2 (%) P(%) Tot P (%)

Control type

Solar light 92.2 69.1 - 97.4 - 85.0 - 100.0 - 97.8 - 90.0 79.8 86.8 80

Solar + HPS 12.7 30.9 - 2.6 - 15.0 - 0.0 - 2.2 - 10.0 77.5 13.2 20

Lamp type

LED 92.6 64.7 - 94.7 - 80.0 - 92.3 - 93.3 75.1 87.5 78.9 86.8 76

LED+HPS 28.9 35.3 - 5.3 - 20.0 - 7.7 - 6.7 49.9 12.5 67.5 13.2 24

DLI

<10 76.9 52.9 34.4 44.1 81.6 45.0 88.1 65.4 87.6 55.6 81.1 50.0 72.5 50.0 42

>=10 93.2 47.1 36.7 55.9 71.2 55.0 93.7 34.6 92.2 44.4 56.9 50.0 83.5 50.0 58

Photoperiod

<16 80.8 35.3 45.5 41.9 84.4 45.0 92.8 34.6 90.3 37.8 88.5 30.0 35.8 34.2 30

>=16 91.1 64.7 28.6 58.1 71.3 55.0 91.4 65.4 90.4 62.2 43.2 70.0 84.9 65.8 70

Natural light

Decreasing 86.6 30.5 52.9 33.3 84.9 38.9 91.2 28.0 95.8 27.0 0.0 16.1 - 11.1 30

Increasing 91.2 69.5 21.2 66.7 67.7 61.1 90.4 72.0 83.2 73.0 66.2 83.9 - 88.9 70

Light supply

Intracanopy 91.9 72.1 36.9 84.2 - 80.0 92.6 62.2 92.9 68.9 73.4 57.5 86.7 57.9 77

Others 7.4 27.9 0.0 15.8 - 20.0 84.7 30.8 81.6 31.1 71.7 42.5 45.0 42.1 23

I2 values <25% are reported in bold.
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characterized by applications of low-tech solutions (Fernández
et al., 2018), some examples of technologically advanced high-
density greenhouse farms also exist in this region (Meneses
and Castilla, 2009; Tuzel and Oztekin, 2014). In these
cases, supplemental lighting may be applied to improve off-
season production. Indeed, research on the application of
supplemental LED lighting in the Mediterranean region has
already demonstrated the capability of this technology to
improve yields and anticipate the ripening of truss tomatoes
during spring and summer (Paucek et al., 2020), although further
research should be conducted in the fall season. Furthermore, it is
important to consider thatMediterranean greenhouse cultivation
can suffer from excessive sun radiation and temperatures
during summertime, making external shading a necessary
technique to ensure good internal growing conditions (Castilla
et al., 2002). However, sunlight screening may also reduce
plant photosynthesis, especially in cases of low-cost permanent
solutions (e.g., whitewashing) (Garcia et al., 2011). Tewolde
et al. (2018) demonstrated the feasibility of supplemental
LED inter-lighting on tomato production in cases of shading
cover applications, obtaining the same qualitative-quantitative
performances as those observed in the naturally lighted control.
Although LED use was identified as an effective artificial lighting
source for horticultural purposes (Heuvelink and Gonzalez-Real,
2007; Gupta and Agarwal, 2017), research on greenhouse-grown
tomato production using supplemental LED lighting seems to be
relatively recent, as evidenced by the higher number of studies
published during the last 5 years (Figure 2). Nevertheless, earlier
studies on seedlings and transplants are also present (Brazaityte
et al., 2009; Suzuki et al., 2009), though they were not considered
within this research.

High-tech solutions characterized by the use of soilless
cultivation systems, controlled climates and high plant densities
were mainly adopted in the evaluated trials. Although not always
mentioned, some studies reported high-wire growing methods
based on plant lowering, allowing for production throughout
several seasons (Kubota et al., 2018). This training system,
in association with advanced protected growing technologies,
can ensure increased productivity despite flourishing vegetation
causing inner canopy shading (Hamamoto and Yamazaki,
2009) and light quality modifications that occur due to
both greenhouse cladding materials and shading items (Kittas
et al., 1999; Petropoulos et al., 2019). An economic analysis
demonstrated that these highly productive systems, together
with efficient lighting technologies, can make supplemental
lighting more effective for greenhouse tomato production than
for the production of other species (Kubota et al., 2016).
With reference to both the technical and environmental aspects
of trial management, the analysis of the results showed that
most supplemental LED lighting studies followed the optimal
growth conditions suggested for intensive greenhouse tomato
production (Schwarz et al., 2014; Kubota et al., 2018). For
instance, rockwool was found to be the most-applied growing
substrate, as is commonly observed in greenhouse tomato soilless
cultivation systems (Kubota et al., 2018). The environmental
growth conditions also followed the recommendations for the

fruit production phase, suggesting a mean temperature of 21–
18◦C, with nutrient solutions featuring ECs of 2.7–4.0 dS m−1

and a pH value of 5.8 (OMAFRA, 2001). When a supplemental
LED lighting system is adopted, temperature management
becomes a key factor. Dueck et al. (2011) observed that tomato
plants grown under LED lighting receive less radiative energy
than when other lamp typologies (such as HPS lamps) are
used, thus requiring more thermal heat during cold seasons
to maintain an optimal temperature within the greenhouse.
On the other hand, Verheula et al. (2019) pointed out that
the addition of supplemental LED inter-lighting to HPS lamps
can increase the temperature by 1–2◦C, leading to increased
ventilation requirements for greenhouse production during
summer. Furthermore, considering that the lifespans of LED
lamps are halved when the working temperature increases by
10◦C, a cooling system may also be necessary (Nelson and
Bugbee, 2014; Hinov et al., 2019). The average planting density
value adopted in the considered studies was higher than the
suggested greenhouse standards (2.5 plants m−2 for northern
Europe) (Kubota et al., 2018), even reaching 16.6 plants m−2 in
some studies (Song et al., 2016; Johkan et al., 2017). Elevated
planting densities may negatively affect light absorption in
tomato plants (Sarlikioti et al., 2011), but the use of supplemental
lighting can compensate for the lower light availability caused
by an increased planting density, also enabling higher annual
production compared to systems with lower planting densities
(Dorais et al., 1991).

The lighting distribution is a fundamental factor associated
with optimizing the effectiveness of supplemental lighting
systems. Traditionally, overhead lamps were used in greenhouse
production systems, resulting in increased upper leaf interception
and intracanopy shading (Gomez et al., 2013). Although an
overhead lighting supply may be preferred by growers due
to both its easy installation in greenhouses and reduced
labor requirements for crop management (Gunnlaugsson and
Adalsteinsson, 2005), intracanopy lighting can increase light
interception within a canopy, enhance light use efficiency thanks
to better lighting distribution and maintain the photosynthetic
capacities of lower leaves (Trouwborst et al., 2011). The efficacy
of intracanopy lighting on tomato production has already been
ascertained by using HPS and fluorescent lamps (Gunnlaugsson
and Adalsteinsson, 2005; Lu et al., 2012a), although its feasibility
for technological uptake emerged only after the introduction
of low-surface-temperature LEDs (Hao et al., 2012; Guo et al.,
2016). In our research, the majority of considered trials applied
intracanopy LED lighting alone, sometimes combined with
overhead HPS lamps. However, few cases of overhead LED
lighting alone against a control were also registered. Although not
statistically significant differences could be observed, intracanopy
lighting tended to have a larger impact on yield than overhead
lighting alone when compared to the controls. Finally, LEDs can
also be applied as below-canopy lighting. Supplemental lighting
strategies have been shown to increase photosynthesis both
below and within the canopy. However, two studies comparing
intracanopy light with below-canopy lighting found that the
latter technology can promote CO2 assimilation and stomatal
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conductance by providing stable light penetration even at low
canopy levels (Song et al., 2016; Johkan et al., 2017).

Deram et al. (2014) observed that the responses of plants to
supplemental lighting also depended on the spectral components
of the lighting system adopted. Red and blue wavelengths, alone
or combined in different ratios, were mainly used in the studies
evaluated in our research. In general, red light was mostly
efficient in enhancing photosynthesis (McCree, 1971; Kaiser
et al., 2019a), while blue light was shown to play an important
role in controlling plant morphology, biomass accumulation
and stomatal conductance (Ménard et al., 2005; Johkan et al.,
2010; Ieperen et al., 2012). Monochromatic lighting may be less
effective than a combination of red and blue light, since combined
blue light can mitigate the so-called “red light syndrome” (seen
with monochromatic red lighting), which manifests itself in
reduced leaf growth and decreased stomatal conductance and
photosynthetic capacity (Miao et al., 2019). Lu et al. (2012b)
observed the effects of monochromatic supplemental lighting on
greenhouse truss tomato plants, showing higher yields in cases
of red light application compared to pure blue light application.
However, good results were also obtained by using white light
containing both red and blue spectral regions in addition to
an abundant presence of green light, which may favor light
penetration within a canopy and be particularly suitable for
single-truss growing systems (Lu et al., 2012b). Deram et al.
(2014) and Kaiser et al. (2019a) highlighted the effectiveness of
red and blue combinations for tomato production, suggesting
red:blue = 4 and red:blue = 1.2–2.4 as optimal ratios for yield
improvement, respectively. Kaiser et al. (2019b) also evaluated
the partial replacement of red:blue LED lights with different
percentages of green light (7, 20, and 39%) in cases of greenhouse
tomato production with supplemental artificial lighting. The
results showed that the highest studied green percentage (39%),
which was similar to the sunlight spectrum, showed the best
effects on plant biomass and yield, suggesting that plants may
use sunlight-combined wavelengths more efficiently for growth
than other wavelength combinations (Kaiser et al., 2019b). The
far-red wavelength was also investigated by several studies on
greenhouse tomato supplemental LED lighting (Pepin et al.,
2014; Hao et al., 2015, 2016; Gómez and Mitchell, 2016b; Song
et al., 2016; Dzakovich et al., 2017; Fanwoua et al., 2019; Ji
et al., 2019; Kalaitzoglou et al., 2019; Kim et al., 2019, 2020;
Zhang et al., 2019). The far-red ratio, particularly the red:far-
red ratio, influences phytochrome regulation and has effects on
plant architectural development, flower induction, germination,
photosynthetic capacity, and nutrition (Demotes-Mainard et al.,
2016). Zhang et al. (2019) evaluated the effects of different
durations of the far-red lighting supply (namely, 0.5, 1.5, or 12 h
day−1) on greenhouse tomato cultivation, concluding that even
when adopting the lowest supply time, plant stem elongation
was stimulated, thus enhancing light penetration within the
canopy. Kalaitzoglou et al. (2019) also highlighted similar far-red-
induced morphological and productive effects on tomato plants,
although pointing out the necessity for long-term far-red supplies
during the day to obtain optimal performances. Furthermore, far-
red light may also improve the hedonic perception of tomato
fruit (Kim et al., 2020), despite the potential reduction of

resistance to Botrytis cinerea (Ji et al., 2019). Finally, Hao et al.
(2018) investigated the effects of UV light on tomato yield and
did not confirm any significant increase compared to other
wavelengths. It should be noted that UV light is traditionally
not considered within photosynthetic active radiation (PAR),
although recent studies have also attributed the capacity of UV
light to foster photosynthesis and growth in plants, e.g., in basil
(Dou et al., 2019). Moreover, Tokuno et al. (2012) demonstrated
the effectiveness of supplemental UV LED radiation in reducing
phytopathological diseases in greenhouse tomato plants. Further
research should also specifically target the effect of UV radiation
on inducing secondary metabolite production in greenhouse-
grown tomato plants, as already observed in several crops
(Schreiner et al., 2014).

In addition to lighting quality, the intensity and photoperiod
of lighting are also fundamental aspects. Deram et al. (2014)
investigated different supplemental LED lighting intensities (135,
115, and 100 µmol m−2 s−1), although no statistically significant
differences in plant productivity were observed. However, studies
on light intensity are still limited, and further investigations
of the optimization of plant photosynthetic responses while
minimizing energy costs are needed (Weaver et al., 2019).
Concerning the photoperiod, the tomato is a photosensitive
species with an optimal photoperiod identified at ∼14 h d−1

(Dorais et al., 1996; Demers et al., 1998; Demers and Gosselin,
2000). Continuous lighting (24 h d−1) for 5–7 weeks may
improve tomato plant growth and tomato yield, while a longer
supply period can have negative effects, likely caused by
accumulations of sucrose and starch affecting the maximum
quantum efficiency of photosystem II (PSII) with consequent leaf
chlorosis (Demers et al., 1998; Demers and Gosselin, 2000; Velez-
Ramirez et al., 2017). However, the alternation of red and blue
continuous LED lighting was reported to reduce plant injuries,
with potential applications for long-term yield improvements
(Lanoue et al., 2019). Additionally, the period of the day (daytime
or nighttime) in which additional lighting is supplied may affect
plant production. Particularly, Tewolde et al. (2016) confronted
daytime vs. nighttime (applying light from 4:00 am to 4:00 pm in
the case of daytime supply and from 10:00 am to 10:00 pm for
nighttime treatment) supplemental LED lighting applications,
reporting a significant increase in yield, as well as of soluble solids
and ascorbic acid, during wintertime in the case of nighttime
supply and also observing better cost-effectiveness of nighttime
supply compared to diurnal applications.

The meta-analysis results showed that the application of
supplemental LED lighting on greenhouse tomato plants has
a statistically significant tendency toward enhancing Yield,
TSS, Asc, Chl, PN, and LA, while no significant results were
observed for gs (Figure 3). With reference to Yield, although
the tendency revealed a global positive effect (with an average
yield increase of +40% from the control conditions), some
studies reported negative or equal output values compared
with their control treatments. These inconsistencies may be
attributed to different trial management aspects and should be
considered to obtain the best tomato cultivation performance
using supplemental LED lighting. Tewolde et al. (2016) observed
that daytime LED inter-lighting during summer may reduce
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tomato yield compared to a solar light control, probably due
to the excessive temperature and radiation around the mid-
canopy area caused by lamps. A similar effect was also observed
by Verheula et al. (2019), equally pointing out the need for
ventilation during summer, although with lower energy savings.
Additionally, Gómez et al. (2016) reinforced these observations,
concluding that supplemental LED lighting may not be a feasible
solution during summer even when a root cooling system
is used.

Looking at qualitative parameters, while most of the analyzed
studies associated supplemental lighting with positive effects
(increasing TSS by 6% and Asc by 11%), some inconsistent
results were also found. Accordingly, Dzakovich et al. (2015,
2017) reported that supplemental lighting did not increase
the TSS values. Similarly, supplemental lighting on tomato
plants was not associated with increased TSS values or Asc
contents (Lu et al., 2012b) or with the sugar or acid contents,
according to Gautier et al. (2005). However, it is important
to consider that in addition to light access, other factors may
affect the qualitative parameters of tomato fruits (e.g., genotype,
environmental conditions, nutrient solution EC) (Kubota et al.,
2012; Dzakovich et al., 2015; Ouzounis et al., 2016). Furthermore,
it must be acknowledged that the parameters used for the purpose
of this research (e.g., TSS and Asc) do not entirely describe
tomato fruit quality from a sensorial or nutraceutical standpoint.
For instance, due to the scarcity of studies, some qualitative
aspects (e.g., antioxidant content) were not evaluated in the
present research. Further research on the antioxidant response to
supplemental LED lighting is therefore needed, also considering
that a potential increase in carotenoids induced by using far-red
light has already been reported (Hao et al., 2016).

In this study, the leaf response to supplemental LED lighting
was evaluated in terms of Chl, PN, LA, and gs. As already
presented within the results (Figure 3), the response ratios [R]
for Chl, PN, and LA globally reported statistically significant
increases when supplemental LED lighting was applied (on
average, increasing Chl by 31%, PN by 50%, and LA by 9%).
Additionally, for these parameters, however, inconsistencies
were observed among studies. In particular, Kim et al. (2019)
observed reductions in Chl and LA in plants treated with low
red:far-red levels for long durations, which may be attributed
to major biomass allocations in reproductive structures during
plant growth and development. Other authors also observed
non-statistically significant differences in both the chlorophyll
content and total leaf area (Jiang et al., 2017) or in the
leaf area only (Gómez and Mitchell, 2016b) when applying
supplemental lighting treatments. No statistically significant
effect of supplemental LED lighting application on PN was
observed by Gajc-Wolska et al. (2013) or by Gómez et al.
(2016) compared to the control conditions. From the meta-
analysis, a non-significant effect of supplemental lighting on gs
was observed, possibly suggesting that excessive light irradiance
could also lead to stomatal closure (O’Carrigan et al., 2014a).

The evaluation of heterogeneity among the studies showed
high values for each response ratio [R] (Table 1). Such results
were, however, expected, considering not only the variability
in trial management (e.g., diverse locations and technologies,

light qualities, intensities, growing systems, etc.) but also the
absence of common meta-data protocols for data collection and
presentation. The last can be seen as one of the main issues
hindering the development of agricultural meta-analyses, and
this challenge should be overcome by always presenting all the
statistical values needed for a meta-analysis evaluation (e.g., the
standard error, standard deviation, variance, and sample size),
as well as by applying common measurement methods (Eagle
et al., 2017). The lower heterogeneity observed for TSS than
for the other factors may be attributed to different measuring
systems or units, while the other evaluated effect sizes utilized
different measurement standards that required unit conversions
in some cases. Concerning the subgroup analysis, most of the
confronted group showed high heterogeneity, indicating the
absence of influences determined by specific trial characteristics.
However, low heterogeneity was observed for Yield in cases of
lighting supplies different from intracanopy lighting or pure
HPS lamps used as controls, for TSS in cases of increased
natural light or other lighting supplies, and for Chl in cases
of decreased natural lighting. Accordingly, the analysis revealed
common trends of results in these specific subgroups. However,
further targeted assumptions regarding the effect of specific LED
lighting features (e.g., decreasing or increasing natural sunlight;
intracanopy or other light supplies) on the combined effect sizes
cannot be hypothesized due to the absence of homogeneity in the
confronted group.

CONCLUSION

Despite some limitations commonly occurring in agricultural
meta-analyses, the research conducted herein revealed that
supplemental LED lighting may be effective in improving the
quantitative and qualitative aspects of greenhouse-grown truss
tomato production. Significant positive results were observed
for both direct qualitative-quantitative parameters (Yield, TSS,
Asc) and crop photosynthetic properties (Chl, PN, LA),
while only stomatal conductance (gs) was not significantly
affected by supplemental LED lighting. Further research is
needed regarding product quality, particularly focusing on the
unexplored effects of LED lighting on nutraceutical properties
and organoleptic features. Moreover, most studies considered
herein applied red and blue spectra, although preliminary
studies have also introduced promising results by applying
UV or green light. Finally, the collected studies were mainly
concentrated in the northern part of the boreal hemisphere,
where the presence of technologically advanced greenhouses,
as well as some favorable environmental conditions due to
lower temperatures and sun radiation, have induced the wide
uptake of horticultural LED technology. However, interesting
applications may also be hypothesized for milder climates such
as those of the Mediterranean area, in which supplemental
LED lighting could improve the quantitative and qualitative
aspects of greenhouse tomato plants both during the off-season
and when extremely hot summers occur and intensive shading
is needed.
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