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Ascorbate (ASC) plays a critical role in plant stress response. The antioxidant role of 
ASC has been well-studied, but there are still several confusing questions about the 
function of ASC in plant abiotic stress response. ASC can scavenge reactive oxygen 
species (ROS) and should be helpful for plant stress tolerance. But in some cases, 
increasing ASC content impairs plant abiotic stress tolerance, whereas, inhibiting ASC 
synthesis or regeneration enhances plant stress tolerance. This confusing phenomenon 
indicates that ASC may have multiple roles in plant abiotic stress response not just 
as an antioxidant, though many studies more or less ignored other roles of ASC in 
plant. In fact, ACS also can act as the cofactor of some enzymes, which are involved 
in the synthesis, metabolism, and modification of a variety of substances, which has 
important effects on plant stress response. In addition, ASC can monitor and effectively 
regulate cell redox status. Therefore, we believe that ASC has atleast triple roles in 
plant abiotic stress response: as the antioxidant to scavenge accumulated ROS, as 
the cofactor to involve in plant metabolism, or as the regulator to coordinate the 
actions of various signal pathways under abiotic stress. The role of ASC in plant abiotic 
stress response is important and complex. The detail role of ASC in plant abiotic 
stress response should be analyzed according to specific physiological process in 
specific organ. In this review, we discuss the versatile roles of ASC in the response 
of plants to abiotic stresses.
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INTRODUCTION

Ascorbate (ASC, known as vitamin C) is an essential micronutrient for humans, and its 
deficiency can cause several serious diseases, such as scurvy (Baron, 2009; Carpenter, 2012). 
In plants, it also participates in many physiological processes, such as photosynthesis, cell 
division, and differentiation, and is crucial for plant growth and development and adaptation 
to stress (Nickle and Meinke, 1998; de Pinto et  al., 1999; de Pinto and De Gara, 2004;  
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Sun et  al., 2010; Gallie, 2013; Kromdijk et al., 2016; 
Akram et  al., 2017; Foyer et  al., 2020).

Ascorbate has a critical role in scavenging reactive oxygen 
species (ROS) in plants under abiotic stresses, such as high-
intensity light, high salinity, and drought. These stresses can 
cause ROS accumulation in plants, which severely damages 
cell composition and disturbs growth and development (Schieber 
and Chandel, 2014; You and Chan, 2015; Choudhury et  al., 
2017). As an antioxidant, ASC can effectively scavenge the 
accumulated ROS via direct or indirect pathways, and is thus 
critical for eliminating oxidative damage and enhancing abiotic 
stress tolerance in plants (Noctor and Foyer, 1998; Akram 
et  al., 2017; Hasanuzzaman et  al., 2019; Broad et  al., 2020a;  
Elkelish et al., 2020).

In addition to being an antioxidant, ASC can act as a 
cofactor of certain oxidases, such as the 2-oxoglutarate-
dependent dioxygenases (2-ODDs), and participates in the 
biosynthesis of several phytohormones (Prescott and John, 
1996; Arrigoni and De Tullio, 2002; Brisson et  al., 2012; 
Terzi et  al., 2015; Mir et  al., 2018; Bilska et  al., 2019). For 
example, it is a cofactor of the aminocyclopropane-1-carboxylic 
acid oxidases (ACOs) and 9-cis-epoxycarotenoid dioxygenases 
(NCEDs), key enzymes in the biosynthesis of the phytohormones 
ethylene and abscisic acid (ABA), respectively (Qin and 
Zeevaart, 1999; Brisson et  al., 2012; Houben and Van de 
Poel, 2019). Phytohormones play important roles in regulating 
plant responses to abiotic stresses. Hence, ASC participates 
in plant abiotic stress responses through phytohormone 
pathways (Chen et  al., 2014; Terzi et  al., 2015;  Bilska et  al., 
2019; Foyer et  al., 2020). Further, as a cofactor, it participates 
in epigenetic modification, and it regulates plant abiotic stress 
responses via epigenetic pathways (Chowrasia et  al., 2018; 
Song et  al., 2018).

Moreover, ASC has an important effect in cell signaling 
(Pignocchi and Foyer, 2003; Chen and Gallie, 2004; Foyer 
et  al., 2020). It plays a critical role in maintaining plant 
extracellular and intracellular redox homeostasis (Noctor 
and Foyer, 1998; Ding et  al., 2020). Plant redox homeostasis 
is involved in stress signal transmission, and has a profound 
effect on multiple signaling pathways, such as the ROS, 
ABA, and auxin signaling pathways (Noctor and Foyer, 1998; 
Arrigoni and De Tullio, 2002; Pignocchi et  al., 2006; Lima-
Silva et  al., 2012; Akram et  al., 2017; Zechmann, 2018; 
Bilska et  al., 2019; Foyer et  al., 2020). ROS produced by 
abiotic stress significantly influence the cell redox state. 
Changes in the cell redox state influence the ability of plants 
to respond to abiotic stress. Plants can respond rapidly and 
appropriately to such changes, to better adapt to various 
abiotic stresses, by monitoring their redox homeostasis 
(Potters et  al., 2010; Sierla et  al., 2013; You and Chan, 
2015; Choudhury et  al., 2017; Foyer, 2018; Waszczak et  al., 
2018; Farooq et  al., 2019; Foyer et  al., 2020). Based on its 
critical role in maintaining plant redox homeostasis, ASC 
can coordinate the actions of multiple signaling pathways 
in responses to abiotic stress, by modulating redox signaling 
(Pignocchi and Foyer, 2003; Akram et  al., 2017; 
Bilska et al., 2019; Foyer et al., 2020). In this review, we will 

discuss the versatile roles of ASC as an antioxidant, cofactor, 
and regulator in plant adaptation to abiotic stress.

AS AN ANTIOXIDANT, ASC 
EFFECTIVELY SCAVENGES ROS AND 
ENHANCES ABIOTIC STRESS 
TOLERANCE

Under abiotic stress, plants produce ROS, such as hydrogen 
peroxide (H2O2), hypochlorous acid (HClO), ozone (O3), 
singlet oxygen (1O2), superoxide anion radicals (O2

−), hydroxyl 
radicals (OH−), perhydroxyl radicals (HO2

•), organic alkoxy 
(RO•), and organic peroxyl radicals (ROO•; Dumont and 
Rivoal, 2019; Dumanović et  al., 2020). The accumulated ROS 
induced by abiotic stress are harmful and must be  scavenged 
(Gill and Tuteja, 2010; You and Chan, 2015; Choudhury et al., 
2017; Nadarajah, 2020). By regulating ASC de novo synthesis 
or recycle regeneration (Figure  1), plants can effectively 
scavenge many kinds of ROS directly or indirectly, maintaining 
cellular redox homeostasis (Noctor and Foyer, 1998; Smirnoff 
and Wheeler, 2000; Gallie, 2013; Akram et  al., 2017; Bilska 
et  al., 2019; Hasanuzzaman et  al., 2019). ASC is thus critical 
in eliminating oxidative damage and enhancing abiotic stress 
tolerance. Photosynthesis can trigger a series of redox reactions 
that are accompanied by ROS production (Foyer, 2018; 
Khorobrykh et  al., 2020). Excessive accumulation of radical 
and non-radical ROS in chloroplasts under light stress can 
damage the plant photosynthetic system. ASC effectively 
scavenges both types of ROS in chloroplasts, thus helping 
plants to sustain photosynthesis (Ivanov and Khorobrykh, 
2003; Kramarenko et  al., 2006; Triantaphylidès et  al., 2008; 
Foyer, 2018; Khorobrykh et  al., 2020). The radical ROS O2

− 
can be  reduced to H2O2 by superoxide dismutase, and H2O2 
can be  then eliminated by ASC peroxidases (APXs) using 
ASC as an electron donor (Talla et  al., 2011; Ivanov, 2014). 
The non-radical ROS 1O2 can be  directly scavenged by ASC 
(Kramarenko et  al., 2006). In addition, 1O2 can oxidize 
carotenoids and tocopherols; the oxidized tocopherols and 
carotenoids can then be  reduced by ASC, indicating that 
ASC can scavenge non-radical ROS through directly and 
indirectly pathways (Veljovic-Jovanovic et al., 2001; Kramarenko 
et  al., 2006; Jahns et  al., 2009; Triantaphylidès and Havaux, 
2009; Ivanov, 2014). In the Arabidopsis ASC synthesis mutant 
vtc1, the activity of the ASC synthesis key enzyme GDP-mannose 
phosphorylase is impaired, causing it to have only about 
30% ASC of that in the wild type; it is therefore, much 
more prone to photooxidation and photoinhibition under 
light stress than the wild type (Conklin et  al., 1996; 
Veljovic-Jovanovic et  al., 2001; Ivanov, 2014). Similarly, the 
ASC synthesis mutant vtc2, which has only about 20% as 
much ASC as the wild type, exhibits decreased ROS scavenging 
ability and thus serious oxidative damage under high-intensity 
light (Müller-Moulé et  al., 2004). These results suggest that 
ASC is crucial in protecting the photosynthetic system from 
oxidative damage (Noctor and Foyer, 1998; Talla et  al., 2011; 
Ivanov, 2014; Khorobrykh et  al., 2020).
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Salinity, drought, and temperature stresses can cause ROS 
accumulation, resulting in severe oxidative damage (Cruz de 
Carvalho, 2008; Bhattacharjee, 2013; Choudhury et  al., 2017). 
ROS scavenging is critical for plants to cope with these stresses 
(Sato et  al., 2011; Lisko et  al., 2013; Shigeoka and Maruta, 
2014; Akram et al., 2017; Laxa et al., 2019; Broad et al., 2020a). 
Increasing ASC content by promoting ASC synthesis can enhance 
ROS scavenging ability and significantly improve plant stress 
tolerance (Hemavathi et  al., 2000; Wang et  al., 2011b, 2018; 
Zhang et  al., 2012; Lisko et  al., 2013; Ma et  al., 2014; Ali et 
al., 2019; Broad et  al., 2020a; Gaafar et  al., 2020). In contrast, 
disruption of ASC de novo synthesis significantly reduces plant 
stress tolerance (Conklin et  al., 1996; Noctor and Foyer, 1998; 
Huang et  al., 2005; Qin et  al., 2016; Wang et  al., 2018).

Ascorbate regeneration via the ASC recycling pathway is also 
critical for plants to eliminate ROS damage and enhance abiotic 
stress tolerance (Sultana et al., 2012; Gallie, 2013; Caverzan et al., 
2014; Sofo et  al., 2015; Wang et  al., 2017; Balfagón et  al., 2018; 
Yeh et al., 2019; Broad et al., 2020b). APXs can effectively scavenge 
ROS with ASC, which is oxidized to monodehydroascorbate 
(MDHA); MDHA can then disproportionate to dehydroascorbate 
(DHA) and ASC (Smirnoff, 2000). ASC can be regenerated from 
MDHA and DHA by MDHA reductases (MDHARs) and DHA 
reductases (DHARs), respectively. Therefore, ASC regeneration 
can provide more ASC for ROS scavenging, and thus helps to 
maintain cell redox homeostasis and decrease oxidative damage 
under abiotic stress (Smirnoff, 2000; Chen et  al., 2003; Li et  al., 
2010; Qin et  al., 2011; Sultana et  al., 2012; Gallie, 2013; Sofo 
et al., 2015; Lin et al., 2016; Broad et al., 2020b; Xiang et al., 2020). 
Drought  can induce the expression of ASC recycling genes and 

thus, which enhances plant drought tolerance (Eltayeb et  al., 
2007; Gallie, 2013; Sofo et  al., 2015; Diaz-Vivancos et  al., 2016; 
Shan et al., 2018; Broad et al., 2020b). In tomato, the overexpression 
of LeMDAR improves the temperature stress tolerance of transgenic 
plants, whereas LeMDAR knockdown has the opposite effect 
(Li et  al., 2010). In transgenic tobacco, the overexpression of 
DHAR in chloroplasts clearly enhances ROS scavenging capacity 
and improves plant cold tolerance (Le Martret et  al., 2011). 
Similarly, the overexpression of DHAR enhances salt tolerance 
in rice, Arabidopsis, and tobacco (Kwon et  al., 2003; Ushimaru 
et  al., 2006; Le Martret et  al., 2011; Sultana et  al., 2012). On 
the contrary, deficiency of cytosolic DHAR impairs Arabidopsis 
abiotic stress tolerance (Yoshida et al., 2006). In summary, de novo 
synthesis and regeneration of ASC are both critical for plants 
to decrease ROS accumulation, eliminate oxidative damage, and 
enhance stress tolerance.

AS A COFACTOR, ASC PARTICIPATES 
IN ABIOTIC STRESS RESPONSES BY 
REGULATING THE METABOLISM AND 
CHEMICAL MODIFICATION OF CELL 
COMPONENTS

As discussed above, ASC can directly scavenge ROS as the reducible 
substrate of antioxidant enzymes such as APXs (Chen et al., 2014). 
In addition, it can act as a cofactor of violaxanthin de-epoxidase 
(VDE) to indirectly eliminate ROS (Mu et al., 2002; Müller-Moulé 
et  al., 2004; Jahns et  al., 2009; De Tullio, 2012; Yang et  al., 2017). 

FIGURE 1 | Ascorbate (ASC) effectively scavenges reactive oxygen species (ROS), eliminates oxidative stress, and enhances abiotic stress tolerance in plants via 
de novo ASC synthesis and recycling.
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VDE uses ASC as a substrate to reduce the xanthophyll pigment 
violaxanthin to zeaxanthin, which is able to dissipate excess 
excitation energy in the photosystem II light harvesting complex 
and protect the photosynthesis system from photooxidative stress 
(Jahns et al., 2009; Saga et al., 2010; Vidal-Meireles et al., 2020). 
Therefore, ASC deficiency inhibits zeaxanthin accumulation, 
resulting in serious photooxidative damage and impairing plants’ 
tolerance of abiotic stresses (Müller-Moulé et  al., 2003, 2004; 
Plumb et  al., 2018).

In addition to being a reducing substrate, ASC, also as a 
cofactor, is involved in the enzymatic reactions of several types 
of oxidases, such as 2-ODDs, glyceraldehyde-3-phosphate 
dehydrogenase, and cysteine oxidase (Jung and Wells, 1997; 
Shikita et  al., 1999; Smirnoff, 2000; Arrigoni and De Tullio, 
2002; Hedden and Thomas, 2012; Kawai et  al., 2014). Among 
these, 2-ODDs are involved in various metabolic processes, 
such as protein hydroxylation and phytohormone synthesis 
and metabolism. These metabolic processes have important 
effects on plant abiotic stress responses, as well as on growth 
and development (Höller et al., 2015; Alegre et al., 2020; Broad 
et  al., 2020b; Foyer et  al., 2020). In humans, the role of ASC 
in scurvy is well understood. This disease is due to the lack 
of collagen, a protein critical for the structure of the extracellular 
matrix in humans. The collagen residues, hydroxyproline and 
hydroxylysine, are essential for its structural function. These 
residues are formed by peptidyl prolyl hydroxylases, which 
are 2-ODDs that need ASC as their cofactor (Myllyla et  al., 
1984; Myllyharju, 2003). In plants, there are several prolyl 
hydroxylases, such as prolyl 3-hydroxylase (P3H) and prolyl 
4-hydroxylase (P4H), which can catalyze the hydroxyproline 
of polypeptides (Gorres and Raines, 2010). As in humans, 
plant prolyl hydroxylases also require ASC as their cofactor 
(Tiainen et  al., 2005). Plant prolyl hydroxylases are involved 
in plant abiotic stress responses (Vlad et  al., 2007; Asif et  al., 
2009; Iacopino and Licausi, 2020). They can be  induced by 
hypoxia, and regulate the expression of hypoxia-responsive 
genes (Hieta and Myllyharju, 2002; Asif et  al., 2009).

More importantly, several 2-ODDs, such as ACOs, NCEDs, 
and GA20 oxidases, are key enzymes for the synthesis of the 
phytohormones ethylene, ABA, and gibberellin (GA), respectively 
(Lange, 1994). These phytohormones are critical for plant stress 
responses, growth, and development (Wang et al., 2013; Colebrook 
et  al., 2014; Sakata et  al., 2014; Verma et  al., 2016; Ciura and 
Kruk, 2018; Sahu and Kar, 2018). ASC participates in regulating 
plant abiotic stresses by regulating phytohormone synthesis 
(Sadak et  al., 2013; Dinler et  al., 2014; Terzi et  al., 2015). For 
example, in wheat, ASC enhances salt tolerance by prompting 
the synthesis of GAs, indole acetic acid (IAA), zeatin, and 
brassinosteroids (BRs; Sadak et  al., 2013). In tomato, higher 
amounts of reduced ASC contribute to induce ethylene synthesis, 
which further regulates fruit ripening and stress responses 
(Ioannidi et al., 2009). ASC can enhance maize drought tolerance 
by improving ABA synthesis, to decrease water loss and osmotic 
stress resistance (Terzi et  al., 2015). Under heat stress, ASC 
can also enhance maize heat tolerance by decreasing ABA and 
IAA content, and increasing salicylic acid (SA) content 
(Dinler et  al., 2014). Plants can coordinate the biosynthesis of 

different phytohormones to regulate growth and development 
processes, and thus adapt to internal and external conditions 
(Gururani et  al., 2015; Verma et  al., 2016; Ciura and Kruk, 
2018; Sahu and Kar, 2018). GAs and ABA can be  antagonistic 
in regulating plant growth and stress tolerance (Xu et al., 2015). 
ABA can suppress GA synthesis in tobacco seed embryos, thereby 
inhibiting germination. ASC can alter ABA and GA synthesis, 
thereby regulating plant growth and development processes and 
abiotic stress tolerance (Sadak et  al., 2013; Dinler et  al., 2014; 
Akram et  al., 2017). Exogenous ASC can induce GA synthesis 
in tobacco seed embryos, and restore germination by counteracting 
the inhibitory effect of ABA on germination (Ye et  al., 2012). 
In response to abiotic stresses, rice plants can increase ABA 
content and suppress GA synthesis to delay germination, via 
ASC (Liu et  al., 2010). In Arabidopsis, ASC deficiency disrupts 
the synthesis of several hormones, such as ABA, GA, and SA, 
and alters flowering time and stress tolerance (Pastori et  al., 
2003; Barth et  al., 2004, 2006; Huang et  al., 2005). The ASC 
deficient mutant vtc1 exhibits not only decreased stress tolerance, 
but also accelerated flowering, due to the enhanced SA synthesis 
under long-day condition. In contrast, under short-day condition, 
vtc1 exhibits delayed flowering and more rapid senescence, via 
the inhibition of GA synthesis and the accumulation of ABA 
(Pastori et  al., 2003; Barth et  al., 2004, 2006). These results 
indicate that ASC may regulate plant growth and development, 
enabling plants to adapt to abiotic stresses, by coordinating 
phytohormone synthesis (Barth et  al., 2006; Xu et  al., 2015).

Additionally, ASC may participate in abiotic stress responses 
via epigenetic pathways. For humans, Chung et al. (2010) found 
that ASC causes widespread DNA demethylation in embryonic 
stem cells. In cultured animal cells, ASC can enhance 
5-hydroxymethylcytosine (5hmC) generation as a cofactor for 
ten-eleven-translocation (TET) dioxygenase, a type of 2-ODD, 
which catalyzes the oxidation of 5-methylcytosine (5mC) into 
5hmC (Dickson et  al., 2013; Minor et  al., 2013). The 
demethylation of genomic 5mC catalyzed by TET dioxygenase 
can lead to expression of the reprogramming gene (Young 
et  al., 2015). Jumonji C (JMJC) histone demethylases, which 
are also 2-ODD enzyme, have an important role in histone 
demethylation. The activity of the JMJC enzymes KDM2A and 
KDM3A (JHMD2A) was correlated with the amount of ASC 
present (Tsukada et  al., 2006). The histone demethylation 
regulated by ASC is important for regulating the chromatin 
state, somatic cell reprogramming, and gene expression (Wang 
et  al., 2011a; Song et  al., 2017; Zhang et  al., 2019). Lu et  al. 
(2008) showed that the function of histone demethylases, which 
are characterized by JMJC-type enzymes in plants, is similar 
to that in animals. In rice, histone demethylation has been 
shown to be  critical for plant development and responses to 
abiotic stress (Chowrasia et al., 2018; Song et al., 2018). Although 
it has not been confirmed that TET catalyzes DNA demethylation 
in plants, genome-wide mapping of 5hmC in three rice cultivars 
revealed that 5hmC is present in significant amounts in the 
rice genome (Wang et  al., 2015). Xue et  al. (2019) showed 
that TET dioxygenase has an important role in the demethylation 
of the green alga genomic 5mC, indicating the TET-catalyzed 
DNA demethylation may occur in plants.
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Further, ASC can regulate gene expression by modifying 
transcription factor hydroxylation. In animals, P4H can catalyze 
the hydroxylation of the transcription factor hypoxia-inducible 
factor-1α (HIF-1α). The hydroxylation of two proline residues 
of HIF-1α leads to its ubiquitination and degradation; in 
contrast, when these two proline residues are non-hydroxylated, 
HIF-1α is transferred to the nucleus and activates the expression 
of downstream genes (Schofield and Ratcliffe, 2004; Frost et al., 
2021). Similar to the function of P4H in animals, prolyl 
4-hydroxylase (AtP4H) in Arabidopsis can hydroxylate proline-rich 
peptides, and enhance the transcription of hypoxia-responsive 
marker genes under hypoxia treatment (Asif et  al., 2009). In 
summary, as an enzyme cofactor, ASC participates in abiotic 
stress responses by modifying plant cell composition, coordinating 
phytohormone biosynthesis, and regulating gene expression via 
epigenetic pathways (Figure  2).

AS A REGULATOR, ASC MANIPULATES 
STRESS SIGNAL TRANSDUCTION AND 
COORDINATES ABIOTIC STRESS 
RESPONSES

In addition to acting as an antioxidant and cofactor, ASC also participates 
in plant abiotic stress responses as a regulator of plant cell signaling 
(De Gara et al., 2010; Choudhury et al., 2017; Waszczak et al., 2018;  
Bellini and De Tullio, 2019; Farooq et  al., 2019; Alayafi, 2020). 

ASC greatly influences the actions of multiple signaling pathways, 
including the ROS and phytohormone signaling pathways. ASC 
thus integrates the actions of multiple signal pathways, and 
coordinates plant abiotic stress responses, by regulating the 
plant cell redox state (Pastori et al., 2003; Lima-Silva et al., 2012; 
Chen et al., 2014; Bellini and De Tullio, 2019; Bilska et al., 2019;  
Yu et  al., 2019).

Reactive oxygen species play an important role in plant abiotic 
stress responses (Zhang and Guo, 2012; You and Chan, 2015; 
Nadarajah, 2020). In addition to causing oxidative damage, ROS 
can act as signaling molecules in activating the responses of 
plants to abiotic stresses (Foyer and Noctor, 2003; Finkel, 2011; 
Baxter et al., 2014; Schieber and Chandel, 2014; Choudhury et al., 
2017; Hasanuzzaman et  al., 2020). Therefore, the regulation of 
ROS homeostasis is critical for plants to adapt to abiotic stresses 
(Suzuki and Katano, 2018; Nadarajah, 2020). Plants can effectively 
manipulate cell ROS homeostasis under abiotic stress by regulating 
de novo ASC synthesis, or via ASC recycling regeneration (Wang 
et  al., 2010; Gallie, 2013; Sofo et  al., 2015; Noshi et  al., 2017; 
Bilska et  al., 2019; Broad et  al., 2020b; Guo et  al., 2020). In 
addition to scavenging the accumulated ROS to eliminate oxidative 
damage, ASC can control ROS signal transduction by regulating 
ROS homeostasis (Chen and Gallie, 2004; Pignocchi et  al., 2006; 
De Tullio et  al., 2013; Cobley et  al., 2015; Bellini and De Tullio, 
2019; Foyer et al., 2020). Unlike the enzymes involved in de novo 
ASC synthesis, which mainly serve to eliminate oxidative damage 
and maintain normal physiological and biochemical activation 
in plants, the enzymes that perform ASC metabolism and 
regeneration are also critical in regulating cell redox signals 
(Fotopoulos et  al., 2006; Bellini and De Tullio, 2019).

ASC peroxidases, which are critical enzymes in ASC 
metabolism, play an important role in both ROS scavenging 
and manipulating the activity of various cell signaling pathways. 
APXs are distributed in various organs and are involved in 
sustaining cellular redox homeostasis (Bonifacio et  al., 2011; 
Chen et  al., 2014; Maruta et  al., 2016; Yu et  al., 2019). In 
Arabidopsis, the deficiency of APX6 activity decreases the 
content of reduced ASC in the seed, and promotes DHA 
accumulation, which disrupts cell redox homeostasis and 
further affects the action of ROS, ABA, and auxin signaling 
pathways (Chen et al., 2014). Similarly, silencing of Arabidopsis 
thylakoid membrane-bound APX disturbs the expression of 
downstream genes in the H2O2 signaling pathway of 
chloroplasts (Maruta et  al., 2012, 2016).

Ascorbate oxidases (AOs), which also oxidize ASC to 
MDHA, are involved in cell signal transduction (Szarka et al., 
2004; Pignocchi et  al., 2006; Li et  al., 2007, 2017; De Tullio 
et  al., 2013; Bellini and De Tullio, 2019; Pan et  al., 2019). 
Unlike APXs, which are located in various parts of plant 
cells, AOs are mostly located in the cell wall, and oxidize 
apoplastic ASC (Pignocchi et al., 2006; De Tullio et al., 2013). 
In the apoplast, MDHA arising from ASC oxidation by AOs 
can be  converted to DHA and rapidly transported into the 
cytoplasm, where it can then be recycled into ASC by DHARs. 
In contrast, the reduced ASC in the cytoplasm can be transferred 
to the apoplast, resulting in ASC exchange between the apoplast 
and cytoplasm. This DHA-ASC exchange is critical for 

FIGURE 2 | As a cofactor of various oxidases, ASC regulates plant growth 
and development and abiotic stress responses, enhancing plant abiotic stress 
tolerance, via multiple pathways.
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maintaining redox homeostasis  in both the apoplast and 
cytoplasm (Sanmartin et  al., 2003; Fotopoulos et  al., 2006; 
De Tullio et  al., 2013; Gallie, 2013; Pan et  al., 2019; Foyer 
et al., 2020). Under abiotic stress, the DHA flux from apoplastic 
oxidization of ASC increases rapidly and disrupts the balance 
of the redox state in the apoplast and cytoplasm; this acts 
as a signal to initiate a response to adverse environmental 
conditions (Horemans et  al., 2000; Sanmartin et  al., 2007). 
The expression of AOs can be  induced by abiotic stresses, 
and their expression level has an important effect on plant 
abiotic stress tolerance (Esaka et  al., 1992; Li et  al., 2017; 
Pan et  al., 2019). Another difference between APXs and AOs 
is that APXs oxidize ASC by using H2O2, whereas AOs consume 
ASC by using O2. The oxidized ASC (DHA) can further 
produce various metabolites by AOs under plant apoplastic 
conditions. Among these products, some may delay APXs 
action and inhibit ROS scavenging. Moreover, some products, 
such as 2,3-diketogulonate, produce H2O2 by AOs or 
non-enzymatical pathway (Parsons and Fry, 2012; Kärkönen 
et al., 2017; Dewhirst and Fry, 2018; Smirnoff, 2018; Dewhirst 
et  al., 2020). Therefore, unlike APXs, which use ASC to 
scavenge ROS and eliminate oxidative damage, AOs consume 
ASC to accelerate the accumulation of ROS in apoplast. Thus, 
the overexpression of AOs decreases abiotic stress tolerance, 
due to the enhanced activities of AOs both disrupting the 
normal stress signal flux from the apoplast to the cytoplasm 
and increasing the oxidative damage from the accumulated 
ROS (Fotopoulos et  al., 2006; Garchery et  al., 2013). The 
role of AOs in regulating the activity of cell signaling pathways 
has been demonstrated by the discovery of close links between 
AOs and ROS signaling in the stress response, growth, and 
development of cotton (Li et  al., 2007, 2017; Pan et  al., 2019; 
Yu et  al., 2019). The expression of the cotton AO genes 
GhAO1 and GhAO1A can modulate apoplastic ROS homeostasis 
and hormone signaling, which affects not only plant stress 
tolerance, but also cell elongation and leaf senescence, 
respectively (Li et  al., 2007, 2017; Pan et  al., 2019).

Ascorbate regeneration is also involved in regulating plant 
signaling. DHARs are responsible for the regeneration of ASC 
from DHA, which plays an important role in transmitting 
abiotic stress signals (Chen and Gallie, 2004; Rahantaniaina 
et  al., 2017). For example, DHAR-overexpression in the stoma 
of tobacco promotes the production of reduced ASC and 
decreases plant drought tolerance; because it blocks guard cells 
from responding to ABA and H2O2 signaling, and keeps stomatal 
opening and increases water loss (Chen and Gallie, 2004). In 
contrast, suppressing DHAR expression in stoma promotes 
H2O2 accumulation, which triggers ABA and H2O2 signaling, 
promoting stomatal closure and decreasing water loss; suppressing 
DHAR activity in the stoma can therefore enhance drought 
tolerance (Chen and Gallie, 2004; Gallie, 2013).

The ratio of ASC to DHA (ASC/DHA ratio) plays an 
important role in transmitting plant cellular redox signal 
(Pignocchi and Foyer, 2003; Chen and Gallie, 2004; De Tullio 
et  al., 2013; Sierla et  al., 2013; Cobley et  al., 2015). ROS 
functions are closely related to their concentrations. At low 
concentrations, they act as signaling molecules to activate the 

plant stress response system to cope with adverse condition, 
whereas at high concentrations, they cause oxidative damage 
to plants (Schieber and Chandel, 2014; Choudhury et  al., 
2017). According to the ROS content, plants take different 
measures to deal with ROS (Figure 3). When ROS are present 
at low levels, and act as signaling molecules, plants can utilize 
ROS to transmit the cellular redox state signal, by using ASC 
to negatively regulate the ROS signaling. In contrast, when 
ROS are present at high levels, plants use ASC to scavenge 
ROS, to avoid the oxidative damage caused by ROS, and use 
the ASC-DHA redox couple to transmit the cellular redox 
state signal (Noctor and Foyer, 1998; Smirnoff and Wheeler, 
2000; Potters et  al., 2010; Schieber and Chandel, 2014; 
Choudhury et  al., 2017). The ASC/DHA ratio is therefore 
central for plants to transfer abiotic stress signals caused by 
adverse environmental conditions (de Pinto et al., 1999; Foyer 
and Noctor, 2003; Eastmond, 2007; Anjum et  al., 2014; Foyer 
et  al., 2020). The ASC/DHA ratio can affect the action of 
auxin- and calcium-ion signaling, and further affect the abiotic 
stress response (Pignocchi and Foyer, 2003; Yamamoto et  al., 
2005; Fotopoulos et al., 2006; Pignocchi et al., 2006; Sanmartin 
et  al., 2007). The low ASC/DHA ratio in the apoplast inhibits 
the response of plants to auxin, which is due to the inhibition 
of auxin signal transduction across the plasma membrane 
(Barbier-Brygoo et  al., 1989; Pignocchi and Foyer, 2003; 
Pignocchi et  al., 2006). DHAR deficiency decreases the ASC/
DHA ratio and impairs SA signaling in Arabidopsis 
(Rahantaniaina et  al., 2017). Under copper stress, impaired 
DHAR expression substantially decreases the ASC/DHA ratio 
and blocks the MAPK signaling pathway, in order to cope 
with copper stress (Rodríguez-Rojas et  al., 2019). Therefore, 
a high ASC/DHA ratio can represent a strong ability to cope 
with abiotic stress. For instance, in Arabidopsis, impaired 
MDAR4 function decreased the AsA/DHA ratio without affecting 
the ASC content, but substantially impaired plant oxidative 
stress tolerance (Eastmond, 2007). In tobacco, SA can elevate 
DHAR activity and increase the ASC/DHA ratio, which can 
prompt the scavenging of ROS accumulated by abiotic stress, 
and thus enhance plant salt tolerance (Yan et  al., 2018).

The question arises of how the roles of ASC in scavenging 
ROS and regulating ROS signal under abiotic stresses can 
be  distinguished. Before answering this question, it is necessary 
to analyze the role of ASC in plant abiotic stress responses. 
Studies have shown that ACS plays a double role in the response 
to abiotic stress, and in growth and development (De Tullio, 
2012). As Bellini and De Tullio (2019) discussed for the role of 
ASC under ozone treatment, there is no evidence that ASC 
content or the activity of ASC regeneration enzymes is related 
to the antioxidant capacity of plants. Although high ASC content 
or strong ASC regeneration capacity is considered to improve 
plant abiotic stress tolerance, there are many cases in which 
enhancing ASC content or regenerating enzyme activity decreases 
plants abiotic stress tolerance. The importance of ASC in 
transmitting abiotic stress-related signals may well explain why 
ASC enhances ROS scavenging ability, but results in decreased 
plant abiotic stress tolerance (De Tullio et  al., 2013). ROS cause 
oxidative damage, but also play an important role in activating 
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the responses of plants to stresses (Foyer and Noctor, 2003; 
Finkel, 2011; Baxter et al., 2014). “Hormesis” refers to a phenomenon 
in which low levels of the stressor induce optimal plant growth, 
whereas higher levels of the same stressor damage plants (Oliveira 
et  al., 2018). Enhanced ROS scavenging ability disrupts the 
generation of ROS signals, which are responsible for the 
transmission of abiotic stress signals under low ROS levels. 
Inhibition of the ROS signaling pathway severely delays or impairs 
plant “hormesis” effect, and decreases plants abiotic stress tolerane 
(Calabrese and Mattson, 2017; Agathokleous et  al., 2019).

Ascorbate may induce a biphasic response in plants under 
abiotic stresses. In ABA- and ROS-mediated stress responses, 
ASC exhibits this biphasic response to environmental stress 
(De Tullio, 2012). ABA may play a dual role in regulating 
plant ROS levels under abiotic stress. In the early stage of 
stress response, ABA promotes ROS production and activates 
ROS signaling, thereby helping plants to respond rapidly 
to adverse environmental conditions (Kwak et  al., 2003; Liu 
et  al., 2010; Sahu and Kar, 2018). In contrast, during the 
late stage of stress adaptation, ABA activates the de novo 
synthesis and regeneration of ASC to scavenge the accumulated 
ROS and thus eliminate oxidative damage, to enhance plant 
abiotic stress tolerance (Zhang et al., 2020). This may explain 
why ABA inhibits ASC synthesis and accelerates ROS 
accumulation in some circumstances (Jiang and Zhang, 2002; 
Kwak et al., 2003; Yu et al., 2019), but induces ASC synthesis 
and ROS scavenging in others (Jiang and Zhang, 2002; 
Zhang et  al., 2020). Therefore, we  hypothesize that ASC 
plays a more important role in regulating plant stress signal 
transduction at low cellular oxidation levels, and a more 
critical role in scavenging ROS at high cellular oxidation 
levels (Figure  3). In fact, in some cases, ASC may play 
different roles at the same time. In the apoplast, ASC does 
not protect cell wall components from oxidative damage, 
instead being involved in external signal transduction. ASC 
can act as a cofactor to keep iron (Fe) in the Fe2+ state 
and protect 2-ODDs from oxidative damage (Myllyla et al., 1984; 

Kivirikko and Pihlajaniemi, 1998; Wu et  al., 2000; 
Hoffart et  al., 2006). In summary, ASC can integrate the 
actions of multiple signaling pathways by modulating the 
cell redox state; this integration is critical in abiotic stress 
responses. The role of ASC in cell signal transduction is 
related to its cellular location, the ROS concentration, and 
the stage of the plant stress response (Figure  3).

DISCUSSION AND CONCLUSION

Antioxidation is traditionally considered as the primary role 
of ASC in plant responses to abiotic stresses (Noctor and 
Foyer, 1998). However, ASC has been shown to act as an 
enzyme cofactor or regulator of cell signaling, coordinating 
phytohormone synthesis, and the actions of various signaling 
pathways, thereby adjusting plant growth and development 
processes and stress responses in adaptation to ever-changing 
internal and external conditions (Arrigoni and De Tullio, 2002; 
De Tullio, 2012; Bellini and De Tullio, 2019; Foyer et al., 2020).

Ascorbate plays multiple roles in abiotic stress responses. 
First, as an antioxidant, ASC directly or indirectly scavenges 
the ROS produced by abiotic stress, to eliminate oxidative 
damage and enhance plant abiotic stress tolerance (Figure  1). 
Second, as a cofactor, it regulates the synthesis and metabolism 
of various cell components, including phytohormones, thereby 
profoundly influencing the integration of plant stress responses 
and growth and development processes (Figure  2). Third, it 
can regulate the activities of various signaling pathways 
(Figure  3). In responding to abiotic stress, plants effectively 
coordinate the actions of various signaling pathways, such as 
hormone, ROS, and MAPK signaling pathways, by quickly 
regulating cellular redox signaling via ASC (by altering the 
ASC/DHA ratio), thereby rapidly responding and adapting to 
abiotic stresses (Pastori et  al., 2003; Ye et  al., 2012; Smirnoff, 
2018). Notably, the roles of ASC in plant responses to abiotic 
stress should be  analyzed according to its specific cellular 

FIGURE 3 | Ascorbate regulates the cellular redox state, thereby coordinating various signaling pathways, to enhance plant adaptability to abiotic stress.
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location, the cellular ROS content, and the stage of the stress 
response (Zechmann, 2018).

Ascorbate is a complex and multifaceted cellular compound, 
with many functions that remain to be  elucidated in plants. 
Although its central role in regulating plant redox signals has 
been well described, the mechanisms by which it regulates 
the cell redox status to coordinate the balance between cell 
redox signaling and ROS scavenging remain unknown. The 
fluctuation of the ASC/DHA ratio has important effects on 
growth and development processes and plant adaptation to 
abiotic stresses; nonetheless, it remains unclear what regulatory 
mechanisms and pathways are involved in maintaining the 
dynamic balance of ASC/DHA ratio (Yamamoto et  al., 2005; 
Tripathi et al., 2012; Foyer et al., 2020). In addition, in animals, 
ASC participates in regulating gene expression, is involved in 
DNA and histone demethylation, and alters the cell cycle via 
epigenetic pathways (Blaschke et  al., 2013; Xue et  al., 2019). 
However, its role in DNA demethylation in plants remains 
unclear. Further studies on the effects and roles of ASC in 
the plant epigenome will expand the understanding of this 
important micronutrient.
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