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Previously, algae were recognized as small prokaryotic and eukaryotic organisms
found only in aquatic habitats. However, according to a recent paradigm shift,
algae are considered ubiquitous organisms, occurring in plant tissues as well as in
soil. Accumulating evidence suggests that algae represent a member of the plant
microbiome. New results indicate that plants respond to algae and activate related
downstream signaling pathways. Application of algae has beneficial effects on plant
health, such as plant growth promotion and disease control. Although accumulating
evidence suggests that secreted compounds and cell wall components of algae induce
physiological and structural changes in plants that protect against biotic and abiotic
stresses, knowledge of the underlying mechanisms and algal determinants is limited.
In this review, we discuss recent studies on this topic, and highlight the bioprotectant
and biostimulant roles of algae as a new member of the plant beneficial microbiome for
crop improvement.

Keywords: microalgae, microbiome, Chlorella, cyanobacteria, plant immunity, plant growth promotion (PGP),
biological control

INTRODUCTION

Algae is a group of ancient photosynthetic organisms ranging from prokaryotic cyanobacteria to
eukaryotic microalgae (Parker et al., 2008). Generally, algae are classified mainly depending on their
color, shape, and life cycle (Blaby-Haas and Merchant, 2019). Out of more than 800,000 species of
algae that exist in nature, only 5,000 have been characterized to date. Out of 5,000 species, only small
number of the algae species have been selected to determine their potential applications in plant
growth under defined growth conditions. Algae are broadly classified as micro- and macroalgae
based on size. Macroalgae indicates large aquatic photosynthetic plants that can be seen without
the aid of a microscope and can generally be divided into three groups: Green (Chlorophyta),
Red (Rhodophyta), and Brown-Kelps (Phaeophyta—related to Chromista). Microalgae comprise
representative genera, including Arthrospira, Chlorella, Dunaliella, Nostoc, and Aphanizomenon
(Elster, 2002). Prokaryotic microalgae, namely, cyanobacteria, play a critical role in the natural
ecosystem, particularly in plant–microbe interactions. However, the idea that algae are a member
of the plant-associated microbial community has long been debated (Berg et al., 2020).
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DEFINITION AND MEMBERSHIP OF THE
MICROBIOME

It is important to understand the definition of the microbiome
before discussing algae as a new member of the plant
microbiome, since microbe and microbiome are distinct
terminologies. Most scientists follow the definition of
microbiome first provided by Whipps et al. (1988), according to
which a microbiome “may be defined as a characteristic microbial
community occupying a reasonably well defined habitat which
has distinct physio-chemical properties. This term not only refers
to the microorganisms involved but also encompasses their
theater of activity” (Whipps et al., 1988). However, the definition
of microbiome has been revised several times in the last 20+
years to meet the technological and conceptual advances. “The
microbiome is defined as a characteristic microbial community
occupying a reasonable well-defined habitat which has distinct
physio-chemical properties. The microbiome not only refers to
the microorganisms involved but also encompass their theater
of activity, which results in the formation of specific ecological
niches. The microbiome, which forms a dynamic and interactive
micro-ecosystem prone to change in time and scale, is integrated
in macro-ecosystems including eukaryotic hosts, and here crucial
for their functioning and health” (Berg et al., 2020).

Many microbiologists less considered algae and protists as
members of the plant-associated microbiome (Longford et al.,
2019; Wilpiszeski et al., 2019). However, most microbiologists
agree that algae, except some macroalgae, are microorganisms
based on their size and characteristics. In this review, we
discuss only microalgae species, including both prokaryotic and
eukaryotic organisms. The ecological niche of algae had also been
debated. Here, we focus on algae as a member of the microbiome
and their beneficial effects on plant fitness. To meet the minimum
conceptual role, algae must exist on or around the plant surface
and inside plant tissues.

ALGAE AS MEMBERS OF THE SOIL
MICROBIOME

Because fresh and seawater were previously recognized as the
habitat of algae, most microbiologists did not consider that algae
could thrive in soil or on plant surfaces. However, more than
30 years ago, scientists investigated the distribution of algae in
soil (Davey, 1989, 1991; Davey and Clarke, 1991). Early studies
were conducted to identify cryptogrammic flora on the Antarctic
fellfield soil based on their chlorophyll contents and microscopic
observations. These studies revealed that Oscillatoriaceae was
the dominant family in the soil, up to a depth of 8 cm
below the soil surface (Davey and Clarke, 1991). Limitations
of the classification on algal species based on conventional
microbiological approaches, including isolation and in vitro
culture on artificial media, led to the development of molecular
techniques, including PCR-based 18S rDNA sequencing of the
algae community in the soil (Bérard et al., 2005; Bradley et al.,
2016; Khaw et al., 2020). In areas with harsh climatic conditions,
such as semi-arid steppes, warm deserts, and polar regions, the

algal community forms a biological soil crust along with other
microorganisms to protect against abiotic and biotic stresses
(Zhang et al., 2011; Pushkareva et al., 2016; Krug et al., 2020).
Algae were also identified as active microbes in agricultural fields
by 18S rDNA sequencing (Bérard et al., 2005). For instance, four
classes of algae were identified in soil samples collected from
a vegetable field (depth: 0–15 cm) in Nigeria: Chlorophyceae,
Cyanophyceae, Bacillariophyceae, and Euglenophyceae (Adesalu
and Olugbemi, 2015). Collectively, these studies suggest that algae
are distributed across diverse environments, ranging from polar
areas to agricultural fields. However, the interaction between land
plants and algae has not been studied intensively. To utilize algae
as plant health-promoting factors, it is important to understand
the ecological niche of algae.

ECOLOGICAL NICHE

Previously, freshwater and seawater were considered as the
ecological niches of algae, as described above. Considering
algae as a member of the plant microbiome (phytobiome) has
been debated because algae could not be isolated from the
rhizosphere, phyllosphere, or endosphere (Gantar and Elhai,
1999; Gantar, 2000; Treves et al., 2016; Zhu et al., 2018).
Moreover, the role of algae in plant fitness has not been
evaluated extensively by biochemical and molecular analyses.
Only recent studies demonstrate that algae are a member of
the phytobiome. For instance, Chlorella species are found in
the soil and on the plant leaf surface (Liu and Chen, 2016;
Treves et al., 2016; Zhu et al., 2018), and cyanobacteria, such
as Nostoc and Anabaena spp., were identified on the plant root
surface (Gantar et al., 1991, 1995; Spiller et al., 1993; Gantar
and Elhai, 1999; Gantar, 2000). However, recent microbiome
analysis using the DNA sequence-based metagenome technology
revealed that microalgae, including eukaryotic and prokaryotic
(cyanobacteria) species, must be considered as members of the
microbiome (Mendes et al., 2013; Xu et al., 2018). Microalgae
have also been identified in the soil and in plant tissues (Leach
et al., 2017). Previous studies on plant–algae interactions did
not demonstrate the beneficial effects of algae on plant growth
and defense. In this review, we focus on algae as a member
of the beneficial microbiome and on their beneficial effects on
plant health. Since the concept of ‘beneficial microbiome’ has
not been defined clearly (Berg et al., 2020), beneficial algae
could be categorized as having direct and indirect beneficial
effects on plant, similarly to other beneficial microbes (e.g.,
PGPR). The bacterial and fungal inoculants on seeds, seedlings,
and propagating plant materials secrete growth-enhancing
compounds directly, which mimic plant hormones and promote
increased plant growth and yield (Lugtenberg and Kamilova,
2009). The inoculants also promote plant growth by inhibiting
pathogenic and deleterious plant-associated microbes and by
activating plant innate immunity against plant pathogens; the
latter represents an indirect effect of beneficial bacteria and
fungi on plants. Another indirect effect of such inoculants
is modulation of the microbiome, referred to as microbiome
engineering (Dessaux et al., 2016). The direct and indirect effects
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of bacteria and fungi on plants are well known, but those of algae
are a new emerging concept. Here, we summarize the beneficial
effects of algae on crop plants in the greenhouse and field.

PLANT ROOT COLONIZATION AND
PARA-NODULE FORMATION

Many species, ranging from moss to angiosperms, exhibit
symbiotic interactions with algae (Meeks and Elhai, 2002; Santi
et al., 2013). To interact with plants, algae must colonize the plant
surface and cells within plant tissues, similar to other microbial
organisms involved in symbiotic and mutualistic interactions
with plants (Figure 1). Most examples of plant–algae interactions
involve prokaryotic algae, i.e., cyanobacteria (Gantar and Elhai,
1999; Gantar, 2000; Treves et al., 2016; Zhu et al., 2018).
Cyanobacteria can enter the plant through the stomata and
colonize the intercellular space, forming loops and intracellular
coils (Krings et al., 2009) (Figure 1). Anabaena spp. colonize
the roots of wheat and cotton plants (Karthikeyan et al., 2009;
Babu et al., 2015; Bidyarani et al., 2015) (Figure 1). Calothrix
sp. was also found on the root system of wheat (Babu et al.,
2015; Bidyarani et al., 2015). Beyond colonization of the root
surface, Tolypothvix sp. and Leptolyghya sp. were detected in
the intercellular space in Cycads plants (Cuddy et al., 2012)
(Figure 1). Thus, the algae–plant interactions represent another
example of a symbiotic relationship between the two organisms.
A good example of this relationship is colonization of monocots,
such as wheat and rice, by Nostoc spp. (Gantar et al., 1991; Ahmed
et al., 2010; Hussain et al., 2013, 2015). Gantar et al. (1991)
isolated diverse heterocystous nitrogen-fixing cyanobacteria,
including Nostoc, Anabaena, and Cylindrospermum, from plant
root and soil. Assessment of wheat seedling roots revealed two
types of association patterns: loose colonization of root hair by
Anabaena and tight colonization of the root surface within a
restricted zone by Nostoc (Gantar et al., 1991) (Figure 1).

In addition to the free-living lifestyle on the plant root surface,
Nostoc species also exist as endosymbionts in the flowering
land plant (angiosperm) Gunnera (Silverster and Smith, 1969;
Silvester, 1976; Lindblad et al., 1990). Cyanobacteria also form
symbiotic relationships with other plant species, including
bryophytes (e.g., Anthoceros), gymnosperms (e.g., Cycads), and
water fern (Azolla) (Braun-Howland and Nierzwicki-Bauer,
1990; Lindblad et al., 1990; Meeks and Rai, 1990). Among these
four multicellular plants, Gunnera L. develops well-organized,
unique organs named glands through symbiosis with Nostoc
(Bergman et al., 1992). Intriguingly, the glands of Gunnera are
morphologically similar to crown galls formed by Agrobacterium
tumefaciens. The detailed mechanisms by which the following
processes happen, have been elucidated as gland morphology, cell
penetration, intracellular colonization, hormogonium formation,
gland development, and host specificity. During symbiosis,
cyanobacteria influence nitrogen fixation and release, heterocyst
development, and consistence of symbiosis. Glands formed
by Nostoc on the stem of Gunnera plants are similar to
nodules formed by Rhizobium spp. and crown gall formed by
A. tumefaciens (Rasmussen et al., 1996). The Nostoc genome

does not contain homologs of the two Agrobacterium genes
required for T-DNA transfer-induced crown gall formation in
plants, indicating that the mechanism of gland formation is
distinct from that of gall formation. By contrast, the genome
of Nostoc harbors homologs of the Rhizobium nod-box genes
including nodEF, nodMN, and enoY. However, the induction of
other critical nod genes, including nodABC, nodD1, and nodD2,
and nod protein, could not be detected in Nostoc when treated
with acidic mucilage secreted by stem glands (Rasmussen et al.,
1996). These data indicate that Rhizobium–legume symbiosis is
distinct from Gunnera–Nostoc symbiosis.

Scientists have attempted to form nodule-like structures and
to functionally fix nitrogen in non-legume plants. Tchan and
Kennedy (1989) succeeded in developing nodule-like structures,
named para-nodules, using 2,4-dichlorophenoxy acetic acid (2,4-
D), a synthetic compound that mimics auxin, but they failed to
fix nitrogen using nitrogenase-containing bacteria. Inoculation
of Nostoc sp. strain 2S9B into the 2,4-D led para-nodule
increased the acetylene reduction capacity by more than threefold
compared with that of the untreated control (Gantar and Elhai,
1999) (Figure 1). In the absence of supplemental nitrogen, wheat
shoot growth could be increased by co-inoculation with 2,4-
D and Nostoc sp. strain 2S9B (Gantar and Elhai, 1999; Gantar,
2000). Similarly, para-nodule formation and nitrogen fixation
could also be induced in rice seedlings by treatment with 2,4-
D and Nostoc spp. (Nilsson et al., 2002). Two possibilities could
explain why para-nodules do not occur naturally in land plants
such as wheat and rice: (i) below-threshold levels of auxin, and
(ii) lack of Nostoc spp. colonization on the wheat and rice tissues
as the ecological niche (Figure 1). This can be used to identify
specific Nostoc spp. that elicit para-nodule formation in land
plants in near future. Intriguingly, unlike prokaryotic algae, it is
not reported that eukaryotic algae colonize on plant tissues.

ALGAE AS A NEW MEMBER OF THE
BENEFICIAL PLANT MICROBIOME

Biological Control of Plant Pathogens
Algal species have been used intensively for biological control
of fungal pathogens (Figure 2 and Table 1). In tomato
and cotton, root-drench application of prokaryotic Anabaena
variabilis, Anabaena torulosa, Anabaena laxa, and Calothrix sp.
reduced damping-off symptoms caused by Pythium debaryanum,
Fusarium oxysporum, F. moniliforme, and Rhizoctonia solani
(Prasanna et al., 2008, 2013; Chaudhary et al., 2012) (Figure 2
and Table 1). Additionally, the eukaryotic Chlorella fusca protects
host plant against pathogenic fungi Colletotrichum orbiculare
and Botrytis squamosa in cucumber and Chinese chive (Lee
et al., 2016, 2017; Kim et al., 2018a). The cell extract or
filtered supernatant of cyanobacteria and Chlorella species
also exhibits biological control activity against F. oxysporum,
P. aphanidermatum, and Sclerotinia sclerotiorum in tomato,
pepper, and brinjal (Biondi et al., 2004; Kim and Kim, 2008;
Manjunath et al., 2010). Algae can suppress fungal disease via
two putative mechanisms. First mechanism involves inhibition
of fungal pathogen growth (Figure 2 and Table 1). For
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FIGURE 1 | Leaf and root colonization by cyanobacteria. (1) Cyanobacteria enter the leaf tissue through the stomata and colonize the intercellular space, forming a
cyanobacterial loop. (2) On the root surface, cyanobacteria exhibit two types of colonization pattern; in the root hair, filaments of Anabaena and Nostoc species form
loose colonies, and in the restricted zone on the root surface, specific Nostoc species form cyanobacterial colonies. (3) Co-inoculation with 2,4-dichlorophenoxy
acetic acid (2,4-D) (synthetic auxin) and Nostoc spp. increases para-nodule formation and nitrogen fixation. A large number of Nostoc spp. isolates colonize the root
endosphere and form para-nodules to fix nitrogen.

example, cyanobacteria Anabaena and Calothrix species showed
antagonistic activity against Fusarium spp., Pythium spp., and
Rhizotoctonia spp. in vitro (Chaudhary et al., 2012; Prasanna
et al., 2013, 2016), and eukaryotic C. fusca also inhibited the
growth of C. orbiculare hyphae in vitro and suppressed the
formation of appressorium on cucumber leaves (Lee et al.,
2016, 2017). The second mechanism involves activation of
plant immune responses. C. fusca treatment showed antagonistic
activity against C. orbiculare as well as the induction of defense-
related structural modifications such as cell wall thickness,
vesicle accumulation, and sheath formation, in cucumber leaves
(Kim et al., 2018b).

Microalgae species have also been used to control
pathogenic nematodes and insect pests (Sathiyamoorthy
and Shanmugasundaram, 1996; Choleva et al., 2005; Khan
et al., 2005, 2007; Bileva, 2013; Hamouda and El-Ansary,
2013) (Figure 2 and Table 1). Root treatment of tomato with
cyanobacteria such as Microcoleus vaginatus, Oscillatoria
chlorine, Aphanocapsa albida, Anabaena oryzae, Nostoc

muscorum, and Calothrix marchica reduced gall formation
caused by Meloidogyne arenaria and M. incognita (Khan
et al., 2005, 2007; Hamouda and El-Ansary, 2017). Soil-drench
application of Chlorella vulgaris extract (1 g per pot) reduced
infestation of grapevine roots by Xiphinema index by 2–3-
fold compared with the untreated control (Choleva et al.,
2005, 2007; Bileva, 2013). Foliar application of 0.01–0.1%
peptides extracted from the cyanobacterium Scytonema MKU
106 reduced the feeding frequency of a chewing insect,
Sylepta derogata, in cotton plants (Sathiyamoorthy and
Shanmugasundaram, 1996). The algae species can protect
host plant against pathogenic nematode and insect pests by
nematocidal or repellent activity rather than as plant immune
activation (Sathiyamoorthy and Shanmugasundaram, 1996;
Choleva et al., 2007).

Compared with fungal pathogens and insect pests, biological
control of bacterial pathogens using algae has remained largely
unknown until 2020, when we reported for the first time
the biological control of the bacterial pathogen Pseudomonas
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FIGURE 2 | Beneficial effects of algae on plants. In plants, prokaryotic microalgae such as Nostoc and Anabaena, and eukaryotic microalgae such as Chlorella, act
as biological control agents (1), abiotic stress tolerance enhancers (2), biofertilizers that promote plant growth and crop yield (3), and anti-aging agents that delay
senescence and enhance plant robustness (4).

syringae pv. tomato (Pto) by C. fusca in the model plant,
Arabidopsis thaliana (Lee et al., 2020a, Figure 2 and Table 1).
Foliar application of C. fusca culture (107 cells/ml) reduced
the population of Pto in Arabidopsis leaves by 10-fold. Further
investigation revealed that C. fusca and its determinant D-lactic
acid prime plant innate immunity against Pto (Lee et al., 2020a).
To the best of our knowledge, there have been no reports on
the biocontrol activity of algae against phytopathogenic viruses.

Therefore, testing the potential application of algae against plant
viruses is important.

Induced Tolerance Against Abiotic
Stresses
The application of algae-derived substances could also increase
tolerance against abiotic stresses (Figure 2 and Table 2). In
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TABLE 1 | Biological control of plant pathogens and insects using algal species.

Group Algae
species/consortia

Pathogen/insect type Pathogen/insect
name

Host plant Treatment method Product applied References

Prokaryotic
cyanobacteria

Anabaena variabilis
RPAN59, Anabaena
laxa RPAN8

Fungal pathogen Pythium debaryanum,
Fusarium oxysporum f.
sp. lycopersici,
Fusarium moniliforme,
and Rhizoctonia solani

Tomato Soil application Cell culture and filtered
supernatant

Chaudhary et al.,
2012; Prasanna
et al., 2013

Anabaena torulosa, A.
laxa, Calothrix sp.

Fungal pathogen R. solani Cotton Soil application Cell culture Prasanna et al.,
2016

Nostoc commune
FA-103

Fungal pathogen F. oxysporum f. sp.
lycopersici

Tomato Seed coating Cell extract Kim and Kim, 2008

Calothrix elenkenii Fungal pathogen Pythium
aphanidermatum

Tomato, chili,
and brinjal

Seed soaking Filtered supernatant Manjunath et al.,
2010

Nostoc strain ATCC
53789

Fungal pathogen Sclerotinia sclerotiorum Tomato Seed soaking Cell biomass and
methanolic extract

Biondi et al., 2004

Microcoleus vaginatus Pathogenic nematode Meloidogyne arenaria Tomato Root dipping Filtered supernatant Khan et al., 2005

Oscillatoria chlorina Pathogenic nematode M. arenaria Tomato Soil application Dried cell suspension Khan et al., 2007

Aphanocapsa albida,
Anabaena oryzae,
Nostoc muscorum, and
Calothrix marchica

Pathogenic nematode Meloidogyne incognita Tomato Soil application Aqueous extract Hamouda and
El-Ansary, 2013

Scytonema MKU 106 Chewing insect Helicoverpa armigera,
Heliothis larvae, and
Sylepta derogata

Cotton Foliar application Peptide extract Sathiyamoorthy
and
Shanmugasundaram,
1996

Eukaryotic green algae Chlorella vulgaris Pathogenic nematode M. arenaria and
Xiphinema indexin

Tomato, grape Soil application Dried cell extract Choleva et al.,
2005; Bileva, 2013

Chlorella fusca Fungal pathogen Colletotrichum
orbiculare

Cucumber Foliar application Cell culture Lee et al., 2016,
2017; Kim et al.,
2018a

C. fusca Fungal pathogen Botrytis squamosa Chinese chives Foliar or soil application Cell culture Kim et al., 2018b

C. fusca Bacterial pathogen Pseudomonas syringae
pv. tomato

Arabidopsis Foliar application Cell culture/cell-free
supernatant

Lee et al., 2020a

Cyanobacteria–bacteria
consortia

Anabaena oscillarioides
and Bacillus subtilis

Fungal pathogen F. oxysporum, P.
debaryanum, P.
aphanidermatum, and
R. solani

Tomato Soil application Cell culture Dukare et al., 2011
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rice, extracellular products of the cyanobacterium Scytonema
hofmanni nullified the effects of salt stress (<5 g/ml NaCl)
on dry weight and length of shoot (Rodríguez et al., 2006).
Under high salt stress, tomato plants treated with 1% Dunaliella
salina hydrolyzate via spray application showed higher shoot
dry weight, root dry weight, and chlorophyll a and b content
than untreated plants (Arroussi et al., 2018), and soil treatment
with water-soluble extracts of Chlorella ellipsoida and Spirulina
maxima increased the total protein content of wheat grain
by 1.4-fold compared with the control (Abd El-Baky et al.,
2010). Moreover, treatment of fava bean plants with C. vulgaris
culture induced drought tolerance (Li et al., 2014). Abiotic
stress tolerance triggered by microalgae treatment is mostly
linked to production of reactive oxygen species (ROS) and
antioxidant activity in plants (Li et al., 2014; Arroussi et al.,
2018). In tomato and bean, foliar application of D. salina
extracts and C. vulgaris activated antioxidant enzymes such as
peroxidase (POD), superoxide dismutase (SOD), catalase (CAT),
and ascorbate peroxidase (APX) (Li et al., 2014; Arroussi et al.,
2018). Similarly, in bean plants, treatment with C. vulgaris culture
increased stomata closure frequency and water use efficiency,
thereby reducing transpiration and increasing drought tolerance
(Li et al., 2014). However, further investigation of exact molecular
mechanism and algal determinant for improving abiotic stress
tolerance in plant will be required.

Algae as Biofertilizers
Prokaryotic cyanobacteria have been applied to monocots and
dicots as biofertilizers to increase plant growth and crop yield
(Figure 2 and Table 3). For example, rice plants treated with
A. variabilis and Nostoc sp. VICCRI via root-drench application
showed greater plant height, leaf length, and grain yield than
inorganic fertilizer (Singh and Datta, 2007; Innok et al., 2009).
Inoculation with A. laxa and Calothrix elenkinii increased the
germination of coriander seeds and promoted root and shoot
growth in coriander, cumin, and fennel (Kumar et al., 2013).
Soaking of seeds in a solution of Spirulina platensis (2 × 104

cells/ml) increased the fresh and dry weight, height, and root
length of crop plants, including rocket, Bayam red, and Pak
choi, by 1.2–3-fold compared with the untreated control (Wuang
et al., 2016). In addition, filtrated supernatant of cyanobacteria
Calothrix sp., Hapalosiphon sp., Nostoc sp., and Westiellopsis sp.,
increased coleoptile and radicle length and seed germination in
wheat by 2. 7-, 2. 1-, and 1.1-fold, respectively, compared with
the sterile water control (Karthikeyan et al., 2009). Interestingly,
treatment with multiple species of nitrogen-fixing cyanobacteria
has a greater impact on plant growth, probably via synergistic
effects on nutrient production (Karthikeyan et al., 2007;
Paudel et al., 2012).

Similar to cyanobacteria, eukaryotic Chlorella spp. increased
the growth of Perilla, onion, lettuce, Chinese cabbage, radish,
turnip, and spinach plants when applied to roots and leaves (Kim
et al., 2012, 2018a) (Figure 2 and Table 3). Seed treatment with
C. vulgaris promoted germination and shoot and root weights
in lettuce, tomato, and cucumber (Faheed and Fattah, 2008;
Bumandalai and Tserennadmid, 2019). In the field, root-
drench application of Chlorella pyrenoidosa increased the
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TABLE 3 | Plant growth promotion following algal treatment.

Group Algae species Host plant Treatment Product applied References

Prokaryotic
cyanobacteria

Calothrix ghosei, Hapalosiphon
intricatus, Nostoc muscorum,
Westiellopsis prolifica, Calothrix
membranacea

Wheat Seed soaking Filtrated supernatant Karthikeyan et al.,
2009

Anabaena laxa and Calothrix
elenkinii

Coriander, cumin, and
fennel

Soil application Cell culture Kumar et al., 2013

Nostoc sp. VICCRI Rice Soil application Cell culture Innok et al., 2009

Anabaena variabilis Rice Soil application cell culture Singh and Datta,
2007

Eukaryotic green
algae

Chlorella vulgaris Wheat Foliar application Water soluble extract Shaaban, 2001a

C. vulgaris Maize Soil application Water soluble extract Shaaban, 2001b

C. vulgaris Lettuce Soil application Dried cell extract Faheed and Fattah,
2008

C. vulgaris, Scenedesmus
quadricauda

Tomato Hydroponic system Co-cultivation with
plant

Barone et al., 2019

C. vulgaris, S. quadricauda Sugar beet Hydroponic system Dried cell extract Barone et al., 2018

C. vulgaris Tomato and cucumber Seed soaking Cell culture Bumandalai and
Tserennadmid, 2019

Chlorella fusca Barely, wheat, lettuce,
pepper, melon,
cucumber, perilla,
onion, radish, and
turnip

Soil application Cell culture Kim et al., 2012

C. fusca Spinach Foliar or soil application Cell culture Kim et al., 2018b

Chlorella pyrenoidosa Soybean Soil application Cell culture Dubey and Dubey,
2010

Chlorococcum infusionum Tomato Hydroponic system Co-cultivation with
plant

Zhang et al., 2017

Nannochloropsis oculata Tomato Soil application Dried cell extract Coppens et al., 2016

Microalgae
consortia

Chlorella, Scenedesmus,
Chlorococcum, Chroococcus,
Phormidium, Anabaena,
Westiellopsis, Fischerella, and
Spirogyra

Wheat Soil application Cell culture Renuka et al., 2016

C. ghosei, H. intricatus, and Nostoc
sp.

Wheat Soil application Karthikeyan et al.,
2007

Nostoc, Anabaena, Westiellopsis,
Aulosira, and Scytonema

Rice Soil application Cell culture Paudel et al., 2012

Cyanobacteria–
other microbe
consortia

Unidentified cyanobacteria and
rhizobacteria

Wheat Soil application Cell culture Nain et al., 2010

Anabaena oscillarioides CR3,
Brevundimonas diminuta PR7, and
Ochrobactrum anthropi PR10

Rice Soil application Cell culture Rana et al., 2015

A. torulosa and Trichoderma viride Maize Soil application Extracted biofilms Sharma et al., 2020

shoot weight and grain yield of soybean plants by 70 and
53%, respectively, compared with control plants (Dubey and
Dubey, 2010). Cell extracts of C. vulgaris and dried biomass
suspension of Nannochloropsis oculata showed plant growth-
promoting activity in wheat, maize, tomato, and sugar beet
(Shaaban, 2001a,b; Coppens et al., 2016; Barone et al.,
2018). Interestingly, recent studies show that co-cultivation of
sugar beet and tomato plants with C. vulgaris, Chlorococcum
infusionum, and Scenedesmus quadricauda using the hydroponic
system simultaneously increases the biomass of both the

host plant and eukaryotic algal species (Zhang et al., 2017;
Barone et al., 2018, 2019).

Plant Anti-aging Agents
Treatment with algae or algal solution also affect plant senescence
(Figure 2 and Table 2). The ability to prolong plant development
and delay the onset of age-related phenotypes is economically
important in crop science and critical for fundamental plant
research (Lim et al., 2007; Shahri and Tahir, 2014). During
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initial development of this anti-aging method, treatment with
beneficial bacteria such as Pseudomonas spp. and Bacillus spp.
was used to delay plant senescence (Ali et al., 2012; Carlson
et al., 2015; Kuan et al., 2016; Naing et al., 2017). Interestingly,
spray and irrigation application of C. vulgaris culture prolonged
the shelf-life of strawberry, lettuce, beet, and kale (Kim et al.,
2014). In addition, we reported that root-drench application
of the cell-free supernatant of C. fusca, Chlorella sp. HS2 and
Chlorella sp. ABC001, delayed shoot and flower senescence
by up to 4 weeks in the ornamental flowering plant Erinus
alpinus (Lee et al., 2020b). Given that other beneficial bacteria
modulate ethylene signaling in plants (Ali et al., 2012; Carlson
et al., 2015; Kuan et al., 2016; Naing et al., 2017), it is
possible that microalgae suppress the ethylene signaling or
biosynthesis pathway in plants. The detailed mechanism by
which Chlorella mediates anti-aging effects in plants is, however,
largely unknown.

ALGAL DETERMINANTS OF PLANT
HEALTH

Inhibitory Compounds Effective Against
Pathogenic Microbes and Insect Pests
Like classic bacterial biocontrol agents, beneficial algae produce
antimicrobial compounds that suppress bacterial and fungal
plant pathogen (Figure 3). For example, 4,4′-dihydroxybiphenyl,
norharmane prokaryotic algae Nodularia spp. and Nostoc
spp. and Nostoc insulare produces 4,4′-dihydroxybiphenyl,
norharmane, and diterpenoids, which exhibit antibacterial
activity against Escherichia coli and Pseudomonas aeruginosa,
Bacillus subtilis, B. cereus, Staphylococcus epidermdis (Jaki et al.,
2000; Volk and Furkert, 2006). In addition, cyanobacteria
Anabaena spp., Chlorella spp., and Scenedesmus spp., produced
siderophore as micronutrient ferric and copper ion chelators
(McKnight and Morel, 1980; Goldman et al., 1983; Benderliev,
1999; Benderliev et al., 2003). Siderophores produced by
microbes, especially such as Pseudomonas spp., were known
as antimicrobial compounds and biological control agents
in plants via chelating ferric iron, which can compete with
bacterial pathogens for iron ions (Kloepper et al., 1980; Duijff
et al., 1993; Lemanceau and Alabouvette, 1993). On the other
hand, prokaryotic algae cyanobacteria can produce fungal cell
wall-degrading enzymes including chitosanase, β-1,4-glucanase,
β-1,3-glucanase, and benzoic acid, which can suppress growth
of Fusarium sp., Penicillium sp., and Candida sp. (López
et al., 2002; Chaudhary et al., 2012; Natarajan et al., 2012;
Prasanna et al., 2013, 2016). Thus, further identification of
microalgal antimicrobial compounds, and their biological control
activity, is needed.

In addition to antimicrobial substances, cyanobacteria
also produce pesticidal and nematocidal secondary
metabolites, referred to as cyanotoxins (Hamouda and
El-Ansary, 2017) (Figure 3). Cyanotoxins function as
neurotoxins and hepatotoxins in animals (Sathiyamoorthy
and Shanmugasundaram, 1996; Holajjer et al., 2013). The

neurotransmitter-mimicking cyanotoxin, anatoxin-a, binds
to eukaryotic nematode receptors and triggers continuous
muscle contraction, causing muscle fatigue, and immobility
(Carmichael, 1994; Dow and Swoboda, 2000; Mankiewicz
et al., 2003). Moreover, cyanobacteria Microcystis spp. produce
hepatotoxins including microcystins and nodularin (Holajjer
et al., 2013), which inhibit the host metabolic system; for
example, nodularin produced by Nodularia spumigena inhibit
protein phosphatase activity in animal cells (Ohta et al., 1994).
Additionally, cyanobacteria also produce peptide toxins that
act as repellents (Sathiyamoorthy and Shanmugasundaram,
1996); for example, Anabaena and Scytonema species produce
a low molecular weight (<12 kDa) peptide toxin (Konst
et al., 1965; Sathiyamoorthy and Shanmugasundaram, 1996).
Interestingly, Scytonema-derived peptide toxin acts as a repellent
due to its strong smell, and reduces the population size of
chewing insects Helicoverpa armigera and Stylepta derogate on
cotton leaves (Sathiyamoorthy and Shanmugasundaram, 1996).
Collectively, these reports suggest that algal substances can
inhibit phytopathogenic bacteria, fungi, pests, and nematodes
directly. However, most of these algal compounds exhibit
antagonistic activity against phytopathogens only in vitro. Thus,
it is important to verify the activity of purified algal compounds
in planta.

Plant Hormone-Mimicking Compounds
The plant growth-promoting microalgae, including
prokaryotic cyanobacteria and eukaryotic microalgae, produce
phytohormones such as auxin and cytokinin, which affect plant
growth and development (Werner et al., 2001; Benjamins and
Scheres, 2008).

Auxin regulates plant developmental processes including
gametogenesis, embryogenesis, seedling growth, vascular
patterning, and flower development (Hamann et al., 2002;
Dimitrov and Zucker, 2006; Pagnussat et al., 2009). Auxins,
including indole-3-acetic acid (IAA), indole-3-butyric acid
(IBA), indole-3-propionic acid (IPA), and 3-methylindole, have
been detected in diverse microalgae species (Misra and Kaushik,
1989; Mazur et al., 2001; Stirk et al., 2002, 2013; Karthikeyan et al.,
2009; Hashtroudi et al., 2013). Interestingly, algal auxin seems
to positively regulate plant–algae interactions (Figure 3). IAA
produced by Nostoc species promotes plant growth in wheat and
rice; a Nostoc mutant lacking the IAA biosynthesis gene, which
encodes indole pyruvate decarboxylase, failed to promote plant
growth (Hussain et al., 2013, 2015). In addition to plant growth
promotion, algal auxin is also tightly linked with the ability of
microalgae to colonize host roots (Ahmed et al., 2010; Hussain
et al., 2013, 2015). Auxin production in Leptolyngbya sp. MMG-
1, Chroococcidiopsis sp. MMG-5, and Synechocystis sp. MMG-8,
was increased during their colonization of plant roots (Ahmed
et al., 2010). Strikingly, the lack of indole pyruvate decarboxylase
significantly reduced colonization of rice and wheat roots by
Nostoc species (Hussain et al., 2013, 2015). Collectively, algal
auxin might act as a putative signaling molecule that mediates
plant–microalgae interactions.

Cytokinin promote division and differentiation of plant cells,
especially in apical and axillary meristems, and development of
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FIGURE 3 | Algal determinants that act as plant protectants and stimulants. (A) Inhibitory compounds. Cyanobacteria reduce the population of pathogenic bacteria,
fungi, and insect pests by producing antibiotic and pesticidal compounds. Cyanobacteria-derived 4,4′-dihydroxybiphenyl, norharmane, and diterpenoids exhibit
antibacterial activity, and microalgal siderophores inhibit bacterial growth through iron (Fe) competition. In addition, cyanobacterial cell wall-degrading enzymes such
as chitosanase, β-1,4-glucanase, and β-1,3-glucanase reduce fungal infection. Cyanotoxins such as anatoxin, microcystin, and nodularin can protect the host plant
against insect pests. (B) Phytohormones. Microalgae-derived phytohormone-mimicking compounds modulate plant growth, immunity, and abiotic stress tolerance.
Plant growth regulators such as auxin and cytokinin increase plant growth and development as well as crop yield. Algae species also produce jasmonic acid (JA),
salicylic acid (SA), and ethylene (ET), which act as major defense-related hormones in land plants. In addition, microalgae also produce abscisic acid (ABA), a central
regulator of abiotic stress tolerance. (C) Nutrition. Nitrogen-fixing cyanobacteria promote plant growth by supplying macronutrients such as nitrogen, phosphorus,
and potassium. Additionally, microalgae-derived vitamins, including vitamins B1, B2, B3, and B12, elicit plant immune response against phytopathogens.
(D) Polysaccharides. Polysaccharides extracted from cyanobacteria and eukaryotic microalgae increase immunity and abiotic stress tolerance of the host plant.
(E) D-lactic acid. Exogenous application of D-lactic acid produced by Chlorella elicits plant immunity via activation of D-lactate metabolism and production of
mitochondrial reactive oxygen species (ROS). Algal D-lactic acid might also enhance abiotic stress tolerance in host plant by regulating ROS production.
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gynoecium, and female gametophyte (Marsch-Martínez et al.,
2012; Cheng et al., 2013; Schaller et al., 2014). Cytokinin
compounds, including trans-zeatin, cis-zeatin, zeatin riboside,
dihydrozeatin riboside, topolin, and zeatin-o-glucoside, were
produced by many microalgae species (Stirk et al., 2002, 2013;
Tsavkelova et al., 2006; Hussain et al., 2010; Hussain and
Hasnain, 2011). Similar with auxin, algal cytokinin also positively
regulated plant growth promotion and root colonization
(Figure 3). Knockout mutant of the cytokinin biosynthesis gene,
which encodes isopentenyl transferase, in the plant growth-
promoting cyanobacterium Nostoc AHM-12 failed to increase
plant growth, and significantly reduced root colonization in rice
and wheat (Hussain et al., 2013). Thus, in addition to auxin,
understanding the molecular basis of how algal-derived cytokinin
influence plant–algae interactions will be an interesting topic for
future research.

In addition to growth-promoting phytohormone, defense-
related hormones such as jasmonic acid (JA), salicylic acid (SA),
and ethylene (ET) are produced by algae species (Rodgers et al.,
1979; Kreslavsky et al., 1997; Tsavkelova et al., 2006; Natarajan
et al., 2012). Plant immunity can be activated systemically by
PGPR, depending on JA, SA, and ET signaling (Pieterse et al.,
1998, 2014; De Meyer et al., 1999; Kloepper et al., 2004; van
Loon et al., 2006) (Figure 3). In addition, algae treatment can
also induce activation of defense hormone signaling in host
plant. Foliar application of the supernatant of C. fusca activates
SA and JA signaling upon pathogen inoculation in Arabidopsis
(Lee et al., 2020a). Similarly, treatment with liquid extracts of
eukaryotic Tetraselmis sp., D. salina, N. gaditana, Aphanothece
sp., and A. maxima induce the accumulation of the JA precursor,
linolenic acid, in tomato (Mutale-joan et al., 2020). Thus, plant
immunity triggered by algae is tightly involved in activation of
defense-related hormonal signaling.

Polysaccharides
Algae produce diverse polysaccharides as cell wall components.
Given their medical and cosmetic applications, algal
polysaccharides are recognized as important substances
(Figure 3). To utilize polysaccharides to improve plant health,
studies have been conducted to gain molecular insight into the
role of agal polysaccharides in plant protection (Arroussi et al.,
2018; Farid et al., 2019). Bacterial and fungal polysaccharides
such as lipopolysaccharides (LPSs) and EPSs are plant immune
elicitors (Erbs and Newman, 2003; Park et al., 2008). Sulfated
EPSs produced by D. salina increase salt stress tolerance,
expression of genes encoding antioxidant enzymes (CAT, POD,
and SOD), and accumulation of JA precursor in tomato (Arroussi
et al., 2018). Crude polysaccharides extracted from Chlorella
vulgaris, Chlorella sorokiniana, and Chlamydomonas reinhardtii
increase expression of PR genes and genes encoding antioxidant
enzymes such as β-1,3-glucanase, APX, and POD in tomato
plants (Farid et al., 2019).

In addition to immune activation, algal polysaccharides can
also improve the growth and abiotic stress tolerance of host
plants. The application of algal polysaccharides extracted from
cyanobacterium S. platensis and A. platensis, and eukaryotic
D. salina and Porphorydium sp. promoted shoot and root growth

in in tomato and pepper (Elarroussia et al., 2016; Rachidi
et al., 2020). Moreover, spray treatment of polysaccharides
extracted from D. salina increased the shoot dry weight, and
root dry weight of tomato plants by 1.8- and 5. 5-, respectively,
under high salt stress compared with untreated plants (Arroussi
et al., 2018), implying that algal polysaccharides enhance
salt tolerance. Compared with microalgae polysaccharides,
macroalgal polysaccharides such as carrageenans and beta-
glucans (laminarin, ulvan, and fucan) mainly function as
biostimulants and bioprotectants (Mercier et al., 2001; Sangha
et al., 2010, 2015; Vera et al., 2012; Ghannam et al., 2013;
Shukla et al., 2016; Pettongkhao et al., 2019; Zou et al., 2019).
However, the structure of microalgal polysaccharides is largely
unknown. Thus, to elucidate the mode of action of microalgal
polysaccharides in plants, it is important to identify the main
determinant(s) in crude polysaccharide algal extracts.

D-lactic Acid
D-lactic acid is a major compound produced by Chlorella
species (Gruber et al., 1974; Lee et al., 2020a). Recently, D-
lactic acid in the supernatant of C. fusca was identified as a
determinant of plant immunity against Pseudomonas syringae pv.
tomato DC3000 in Arabidopsis (Lee et al., 2020a) (Figure 3).
Especially, foliar application of D-lactic acid primed production
of ROS after flagellin 22 (flg22) treatment in Arabidopsis (Lee
et al., 2020a). Primed ROS production by D-lactic acid might
be correlated with D-lactate oxidation and mitochondrial ROS
(mtROS) production. D-lactic acid is metabolized by the D-lactate
dehydrogenase (D-LDH), which localizes to the intermembrane
space of mitochondria (Atlante et al., 2005; Welchen et al.,
2016). Activation of D-LDH correlates strongly with activation
of mitochondrial antioxidant enzyme (Husic and Tolbert, 1987).
In Arabidopsis, exogenous application of D-lactic acid increases
expression of D-LDH, cytochrome c oxidase subunit 2 (COX2),
and alternative oxidase 1 (AOX1) in flg22-treated Arabidopsis
(Lee et al., 2020a). These mitochondrial antioxidant enzymes
might be activated to catalyze mtROS produced by D-lactic acid.
Thus, microalgal-derived D-lactic acid enhances plant innate
immunity and production of mtROS in plant.

The activation of D-LDH by D-lactic acid can also affect
abiotic stress tolerance via methylglyoxal (MG) detoxification
(Figure 3). MG is a cytotoxic compound generated as a byproduct
of glycolysis, which accumulates under abiotic stress conditions
(Maurino and Engqvist, 2015). To detoxify the accumulated MG,
plants activate the expression of D-LDH, which encodes the
last enzyme in the MG detoxification pathway (Maurino and
Engqvist, 2015). Recently, studies showed that D-LDH-mediated
MG detoxification correlates with abiotic stress tolerance in yeast,
sorghum, and rice (An et al., 2017; Jain et al., 2018, 2020; Bhowal
et al., 2020). In sorghum, the expression of D-LDH1–4 genes was
activated under heat, cold, salt, and drought stress conditions
(Bhowal et al., 2020). In rice, D-LDH RNA interference (RNAi)
plants were more sensitive to salt stress (200 mM NaCl) than
wild-type plants (An et al., 2017). However, overexpression
of D-LDH2 conferred tolerance to multiple abiotic stresses,
including salt stress, oxidative stress, osmotic stress, and heat
stress in rice plants (Jain et al., 2020). Thus, microalgae-derived
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D-lactic acid might alleviate abiotic stress tolerance in plants via
D-LDH-mediated MG detoxification.

Plant Macro- and Micronutrients
Algae have been utilized as a source of macro- and micronutrients
for plants (Figure 3). Microalgae cyanobacteria possess
specialized cells called heterocysts, which can fix atmospheric
nitrogen (Singh and Bisoyi, 1989; Gantar et al., 1993; Karthikeyan
et al., 2007; Babu et al., 2015). Thus, inoculation of soil with
nitrogen-fixing cyanobacteria enhanced plant growth by
increasing the availability of nitrogen, carbon, and vitamins
(Tripathi et al., 2008; Prasanna et al., 2009; Renuka et al.,
2016). In addition, application of microalgae consortium
comprising Chlorella, Scenedesmus, Chlorococcum, Chroococcus,
Phormidium, Anabaena, Westiellopsis, Nostoc, Aulosira,
and Scytonema to soil enhanced the content of available
nitrogen, phosphorus, and potassium (Paudel et al., 2012;
Renuka et al., 2016).

Algae also secrete vitamins, which promote plant growth and
plant immunity (Havaux et al., 2009; Goyer, 2010) (Figure 3).
Previously studies show that bacteria-derived vitamins B1, B2,
and K3, act as elicitors of plant immunity against pathogenic
fungi, bacteria, and viruses, and that biotin, thiamine, cobalamin,
pantothenic acid, and niacin produced by bacteria enhance plant
growth (Strzelczyk et al., 1991; Ahn et al., 2005; Taheri and Hofte,
2007; Liu et al., 2010; Taheri and Tarighi, 2010; Song et al.,
2013). Cyanobacteria such as Spirulina, Anabaena, Microcystis,
Nostoc, Phormidium, Oscillatoria, Chroococcus, and eukaryotic
algae such as Euglrena, also produce thiamine (vitamin B1),
riboflavin (vitamin B2), folic acid, ascorbic acid, nicotinic acid
(vitamin B3), cyanocobalamin (vitamin B12), and vitamin E
(Robbins et al., 1951; Koptera, 1970; Aaronson et al., 1977; Shah
and Vaidya, 1977; Gupta et al., 2013). In addition, the extract of
N. muscorum and Hapalosiphon containing vitamin B-complex
(including cyanocobalamin, niacin, pantothenic acid, and folic
acid) increases coleoptile length and leaf length in rice (Misra
and Kaushik, 1989). Since land plants lack vitamin B12, their
growth is supported by beneficial microbes containing vitamin
B12 (Watanabe and Bito, 2018). Similarly, as beneficial microbes,
microalgal species can also alleviate vitamin B deficiency in
host plants. Further investigation of the effects of algae-derived
macro- and micronutrients in plants is needed.

INTERACTION BETWEEN MICROALGAE
AND OTHER MICROBES IN THE PLANT
MICROBIOME

Algae benefit plants through several mechanisms. In order to
consider microalgae as part of the plant microbiome, it is
necessary to understand the interactions between microalgae and
other plant microbiota. Interestingly, previous reports showed
the synergism between algae and bacteria during co-inoculation
of plants. A mixture of cyanobacteria and plant-associated
eubacteria or fungi additively or synergistically improves the
growth and health of diverse crop plants (Tables 1, 3) (Nain et al.,
2010; Dukare et al., 2011; Rana et al., 2015; Sharma et al., 2020).

Soil inoculation with a mixture containing the cyanobacterium
Anabaena oscillarioides and plant growth-promoting bacteria
Brevundimonas diminuta and Ochrobactrum anthropi improved
rice yield by 1.2-fold compared with the control (Rana et al.,
2015). Treatment with a biofilm comprising A. torulosa and the
plant growth-promoting fungus Trichoderma viride increased the
seed germination rate and radicle length in maize (Sharma et al.,
2020). In addition, the combined application of Anabaena spp.
and B. subtilis reduced the severity of fungal disease caused by
Fusarium, Pythium, and Rhizoctonia by twofold compared with
the control (Dukare et al., 2011).

The interaction between microalgae and other
microorganisms might be governed by interspecific exchange
of metabolites (Gonzalez and Bashan, 2000; Kazamia et al.,
2012; Kim et al., 2014). Plant-associated rhizobacteria or fungi
support the growth and root colonization of microalgae species
by providing secondary metabolites such as vitamin B12,
siderophores, volatile compounds, N-acylhomoserine lactone,
and EPSs (Gobler et al., 2007; Choix et al., 2012; Kazamia
et al., 2012; Santos and Reis, 2014; Amavizca et al., 2017; Cho
et al., 2019; Sharma et al., 2020). In turn, microalgae provide
photosynthates, including fixed carbon, as nutrient sources for
soil-borne microbes (Gobler et al., 2007; Kazamia et al., 2012).
Taken together, these studies imply that exogenous microalgae
can interact with other soil–borne microbes in plant microbiome,
as do traditional plant-associated bacteria and fungi.

RHIZOSPHERE MICROBIOME
ENGINEERING WITH ALGAE

Modification of the rhizosphere using microalgae, including
cyanobacteria and eukaryotic microalgae, will potentially allow
us to engineer and change the structure and effectiveness
of the rhizosphere microbiome, thereby improving plant
health. Previously, the effect of soil algae diversity on plants
was investigated by application of a commercial proprietary
suspension of microalgae called GOgreen R© (Hastings et al., 2014).
Four algal groups, including green algae (Chlorophyta), blue–
green algae (Cyanophyta), yellow–green algae (Xanthophyta),
and diatoms (Bacillariophyta), are mainly found in soil (Paul
and Clark, 1989). The application of GOgreen R© to maize roots
under field conditions increased the number and diversity of
diatoms and reduced the soil pH with a pH higher than 7. Since
the connection between species diversity and their influence
on ecological function is unclear, the authors measured two
indicators of soil quality: organic matter content (OM) and cation
exchange capacity (CEC). The values of OM and CEC were
improved significantly by algae treatment (Hastings et al., 2014).
In addition, inoculation of rice plants with the cyanobacterium
Calothrix elenkenii increased the bacterial population diversity
in the microbiome by 10-fold (Priya et al., 2015). Fatty acid
methyl ester analysis and 16S rRNA sequencing data indicated
that Bacillaceae was the most abundant bacterial group induced
by cyanobacteria inoculation. Moreover, C. elenkenii inoculation
increased the shoot length, root length, fresh weight, and dry
weight of plants as well as enhanced the level of plant hormones
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(IAA and ABA), chlorophyll, and antioxidant enzymes (POD,
polyphenol oxidase [PPO], and PAL). However, direct evidence
based on experiments using the gnotobiotic system was not
provided. In the line of this study, more direct approaches
were also attempted. Next-generation sequencing of 16S rRNA
amplicons was conducted to determine the effect of C. vulgaris
application on bean root microbiota (Kublanovskaya et al.,
2019). Interestingly, no significant changes were detected in
bacterial diversity in the bean rhizosphere upon the application
of C. vulgaris. Algae-mediated microbiome engineering for
promoting plant health is in its infancy. Fine-tuning microbiome
engineering for keystone taxa that affect plant growth and
health is necessary, and algae and their products can be utilized
for this purpose.

A synthetic microbiome comprising algae and bacteria
represents a promising tool for the sustainable development of
soil fertility, water preservation, and plant growth, especially
under stress conditions (Nain et al., 2010; Rana et al., 2015;
Perea et al., 2018). A consortium of eukaryotic microalgae,
cyanobacteria, and bacteria will provide organic carbon for
plant growth (Belnap, 2003; Bashan and de-Bashan, 2010), fix
atmospheric nitrogen (Issa et al., 2001; Pointing and Belnap,
2012), and promote seedling survival (Godínez-Alvarez et al.,
2012). Detailed investigation of the algae–bacteria network
and their effect on the plant microbiome is required to
maximize plant growth and protect plants against pathogens
(Krug et al., 2020).

POTENTIAL APPLICATIONS OF ALGAE

The beneficial effects of algae on plants and agriculture have
been described above. Large-scale production of algae has been
optimized for improving human health; however, the application
of algae for large-scale crop cultivation has not been elucidated.
We summarized the determinants of algae that augment plant
growth and immunity, and classified these determinants as
secreted products and the cell itself (Figure 2). The inoculation
of plants with cell wall components such as glucans, increased
plant growth and activated plant defense responses (Mercier
et al., 2001; Sangha et al., 2010, 2015; Vera et al., 2012; Ghannam
et al., 2013; Shukla et al., 2016; Pettongkhao et al., 2019;
Zou et al., 2019, Figure 3). The products secreted by algae
can be harvested in large amounts when algae are grown in
liquid media. D-lactic acid was recently identified as an algal
determinant that elicits plant immune response against bacterial
pathogens (Lee et al., 2020a, Figure 3). Additionally, plant
defense hormone-mimicking compounds, such as JA, benzoic
acid and ET, were also detected in algae culture (Rodgers et al.,
1979; Kreslavsky et al., 1997; Tsavkelova et al., 2006; Natarajan
et al., 2012, Figure 3). These defense hormones strongly activate
plant defense when supplied exogenously. Cell and cell envelope
components of algae can be used for limited applications in
the greenhouse and field to reduce the high production cost,
although these products demonstrate high efficacy (Choleva et al.,
2005, 2007; Dubey and Dubey, 2010; Bileva, 2013; Coppens et al.,
2016). Products secreted in the liquid culture of algae also show

a great potential for application in the field (Shaaban, 2001a,b;
Barone et al., 2018; Mutale-joan et al., 2020). Generally, large-
scale production of algae, mostly by heterotrophic cultivation,
is performed to harvest algal cells (Lee et al., 2020a). The cell-
free components are considered waste products that need to be
detoxified. If the cell-free extracts can be reused for plants, their
potential applications will increase greatly.

However, several issues must be addressed prior to application
of algae on crop plants. First, the potential harmful effects of
cell-free extracts of algae should be evaluated and eliminated. In
many cases, algae produce toxic compounds during cultivation.
For instance, at high concentrations, 2,4-D (auxin) acts as a
herbicide (Marth and Mitchell, 1944). Thus, quality control of
the liquid culture of algae is critical. Second, production of algal
determinants should be optimized for large-scale production.
Third, formulation of cell-free extracts should be carefully
considered. The cell-free extract could simply be applied by
drench application or by using the drip-irrigation system.
However, the delivery of a large volume of extract is problematic.
Therefore, the extract should be vaporized and purified using
chemical and physical procedures, and the final product showing
high effectiveness should be used for agricultural applications.
Furthermore, granulation of determinants is similar to that of
other agricultural products such as fertilizers and agrochemicals.
Finally, the specific procedure how to isolate effective algae in
plant health improvement also must be developed in near future.

Previously, algae were not considered as a member of the
beneficial plant microbiome. However, with recent progress in
metagenome analysis, algae are now recognized as important
members of the plant microbiome. While microbes such as
bacteria and fungi have been used to improve plant fitness, new
data indicate that algae also promote plant growth and act as
biological control agents against pathogens by directly inhibiting
pathogen growth and activating plant immune responses.
Thus, algae represent a new bioactive material that can be
utilized as biofertilizers and plant protectants, which implies
that algae should be classified as a member of the beneficial
plant microbiome.
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