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Phenotyping plants is an essential component of any effort to develop new crop
varieties. As plant breeders seek to increase crop productivity and produce more
food for the future, the amount of phenotype information they require will also
increase. Traditional plant phenotyping relying on manual measurement is laborious,
time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as
a high-throughput technology to measure morphological, chemical and physiological
properties of large number of plants. Several robotic systems have been developed to
fulfill different phenotyping missions. In particular, robotic phenotyping has the potential
to enable efficient monitoring of changes in plant traits over time in both controlled
environments and in the field. The operation of these robots can be challenging as a
result of the dynamic nature of plants and the agricultural environments. Here we discuss
developments in phenotyping robots, and the challenges which have been overcome
and others which remain outstanding. In addition, some perspective applications of the
phenotyping robots are also presented. We optimistically anticipate that autonomous
and robotic systems will make great leaps forward in the next 10 years to advance the
plant phenotyping research into a new era.

Keywords: autonomous robotic technology, agricultural robotics, phenotyping robot, high-throughput plant
phenotyping, computer vision

INTRODUCTION: ROBOTIC TECHNOLOGY IS VITAL FOR
HIGH-THROUGHPUT PLANT PHENOTYPING

Agriculture must produce enough food, feed, fiber, fuel, and fine chemicals in next century to meet
the needs of a growing population worldwide. Agriculture will face multiple challenges to satisfy
these growing human needs while at the same time dealing with the climate change, increased
risk for drought and high temperatures, heavy rains, and degradation of arable land and depleting
water resources. Plant breeders seek to address these challenges by developing high yielding and
stress-tolerance crop varieties adapted to future climate conditions and resistant to new pests and
diseases (Fischer, 2009; Furbank and Tester, 2011; Rahaman et al., 2015). However, the rate of crop
productivity needs to be increased to meet projected future demands. Advances in DNA sequencing
and genotyping technologies have relieved a major bottleneck in both marker assisted selection and
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genomic prediction assisted plant breeding, the determination of
genetic information for newly developed plant varieties. Dense
genetic marker information can aid in the efficiency and speed
of the breeding process (Wang et al., 2018; Happ et al., 2019;
Moeinizade et al., 2019). However, large and high quality plant
phenotypic datasets are also necessary to dissect the genetic
basis of quantitative traits which are related to growth, yield
and adaptation to stresses (McMullen et al., 2009; Jannink et al.,
2010; Phillips, 2010; Fahlgren et al., 2015; Tripodi et al., 2018;
Chawade et al., 2019).

Plant phenotyping is the quantitative and qualitative
assessment of the traits of a given plant or plant variety in a given
environment. These traits include the biochemistry, physiology,
morphology, structure, and performance of the plants at various
organizational scales. Plant traits are determined by both genetic
and environmental factors as well as non-additive interactions
between the two. In addition, variation in one phenotypic trait
(e.g., leaf characteristics) can result in variation in other plant
traits (e.g., plant biomass or yield). Therefore, phenotyping large
numbers of plant varieties for multiple traits across multiple
environments is an essential task for plant breeders as they work
to select desirable genotypes and identify genetic variants which
provide optimal performance in diverse and changing target
environments (Granier and Tardieu, 2009; Dhondt et al., 2013; Li
et al., 2014; Foix et al., 2015; Walter et al., 2015; Costa et al., 2019;
Pieruschka and Schurr, 2019).

Traditionally plant traits are quantified using manual and
destructive sampling methods. These methods are usually labor-
intensive, time-consuming, and costly. In addition, manual
sampling and analysis protocols generally involve many steps
requiring human intervention, with each step increasing the
chances of introducing mistakes. Often the plant and its organ
is cut at fixed time points or at particular phenological stages in
order to measure its phenotypic traits. This method destroys or
damages the plant at one time point, disallowing the temporal
examination of the traits for individual plants during the growing
season. For example, yield measurement (such as plant biomass
and grain weight) is invasive and more labor intensive compare
to the measurement of plant height and leaf chlorophyll content
(measured by a handheld sensor). As a result of the labor and
resource intensive nature of plant phenotyping, many plant
breeders rely solely on a single measurement most critical to their
efforts: yield. However, yield is considered as one of the most
weakly inherited phenotypes in crop breeding (Richards et al.,
2010; Furbank and Tester, 2011). The measurement of other traits
in addition to yield can increase the accuracy with which yield
can be predicted across diverse environments. Enabling high-
throughput and non-destructive measurements of plant traits
from large numbers of plants in multiple environments would
therefore lead to increases in breeding efficiency (McMullen
et al., 2009; Andrade-Sanchez et al., 2013; Fahlgren et al., 2015;
Foix et al., 2018; Vijayarangan et al., 2018; Ge et al., 2019;
Hassanijalilian et al., 2020a).

In recent years, high-throughput systems and workflows have
been developed to monitor and measure large populations of
plants rapidly in both greenhouse and field environments. These
systems combine modern sensing and imaging modalities with

the sensor deployment technologies (including conveyor belts,
ground and aerial vehicles, and field gantries) to enable fast
measurement and wide area coverage (Busemeyer et al., 2013;
Ge et al., 2016; Virlet et al., 2017; Hassan et al., 2019). Although
not fully autonomous, these systems represent the state of the art
in modern plant phenotyping with several advantages over the
traditional, manually collected phenotypic traits.

Robotic systems have been playing a more significant role
in modern agriculture and considered as an integral part of
precision agriculture or digital farming (Wolfert et al., 2017;
Chlingaryan et al., 2018; Zhang et al., 2019; Hassanijalilian et al.,
2020b; Jin et al., 2020; Pandey et al., 2021). The robots are
fully autonomous and do not need experienced operators to
accomplish farming tasks. This is the biggest advantage of the
robots compared to tractor-based systems (White et al., 2012).
Autonomous robots have taken over a wide range of farming
operations including harvesting [Arad et al., 2020 (sweet pepper);
Hemming et al., 2014 (sweet pepper); Lili et al., 2017 (tomato);
van Henten et al., 2002 (cucumber); Hayashi et al., 2010; Xiong
et al., 2020 (strawberry); Silwal et al., 2017 (apple)], pest and
weed control [Raja et al., 2020 (tomato and lettuce); Oberti
et al., 2016 (grape); Åstrand and Baerveldt, 2002 (sugar beet);
Blasco et al., 2002 (lettuce)], spraying [Hejazipoor et al., 2021
(Anthurium); Gonzalez-de-Soto et al., 2016 (wheat); Adamides
et al., 2017 (grape)], and pruning [Zahid et al., 2020 (apple);
Chonnaparamutt et al., 2009; Ishigure et al., 2013 (cedar and
hinko trees)]. Together with imaging and sensing, autonomous
robotic systems are also deemed essential and integral parts
for high-throughput plant phenotyping, as they will enhance
substantially the capacity, speed, coverage, repeatability, and cost-
effectiveness of plant trait measurements.

In this paper, we reviewed the latest development of robotic
technologies in high-throughput plant phenotyping. We define
the robotic technologies as a system having three components:
(1) a sensing module that senses the target (plants or crops)
and its environment, (2) a computational module to interpret
the sensed information and form adaptive (or context-specific)
decisions, and (3) an actuation module to complete certain
desired operations (e.g., robotic probing, trait measurements, and
navigation). For example, the robot makes decision based on the
existing status of environment, obstacles, and plant geometry to
manipulate a robotic arm to locate an imaging system with less
occlusion and collision free close to plant organs, find appropriate
target point on the leaf and control the end-effector based on
the leaf angle for effective grasping, or accurately navigate the
ground-based vehicles between crop rows. With this definition,
systems like LemnaTec’s conveyor-based phenotyping platform
(Fahlgren et al., 2015; Ge et al., 2016) was not considered in the
review, because the plant movement usually follows a pre-defined
schedule and no adaptive decision is made during phenotyping.
Also not considered in this review are self-propelled ground
vehicles or unmanned aerial vehicles (Bai et al., 2016; Han et al.,
2018) that are merely used as a sensor deployment platform with
no automated path planning or navigation.

Different artificial intelligence (AI) technologies such as deep
learning, fuzzy logic, and genetic algorithms are actively used
for control of the phenotyping robots. In recent years, deep
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learning techniques has gained increased interest to guide robotic
manipulators and mobile platforms. In this regard, deep neural
networks (DNNs) are commonly used to detect different objects
in images such as crop rows, plant organs, soil, and obstacles.
DNNs are typically operate directly on raw images and actively
learn a variety of filter parameters during the training of a model
(Pound et al., 2017; Irshat et al., 2018). Aguiar et al. (2020)
presented a DNN models to detect the vine trunks as reliable
features and landmarks to navigate a mobile robot in a vineyard.
Parhar et al. (2018) used variation of Generative Adversarial
Network (GAN) to detect the stalk of sorghum in the field and
grasp it by a robotic manipulator.

There are three motivations behind writing this review paper.
Firstly, robotic technologies in agriculture have seen rapid
advancement recently with many emerging applications in plant
phenotyping. A timely review of the literature is warranted
to summarize the newest development in the field. Secondly,
there is large and growing interest from the plant breeding and
plant science communities in how these new technologies can
be integrated into research and breeding programs to improve
phenotyping throughput and capacity (Furbank and Tester, 2011;
Fiorani and Schurr, 2013; Araus and Cairns, 2014). Thirdly,
robotic phenotyping has advanced through cross-disciplinary
collaborations between engineers and plant scientists. Outlining
capabilities, goals and interests across these two very different
disciplines may help readers to identify research gaps and
challenges as well as provide insight into the future directions of
the plant phenotyping robotic technologies.

REVIEW: MANY INDOOR AND
OUTDOOR ROBOTS WERE DEVELOPED
TO MEASURE A WIDE RANGE OF PLANT
TRAITS

Phenotyping robotic systems have emerged to automate
the phenotyping process in different aspects. The robotic
manipulators and ground-based vehicles are used as platforms
to attach different sensors to collect data rapidly and with
higher repeatability. Robotic systems are deployed to collect and
measure the human-defined phenotypic traits (such as plant
height, and leaf area). Additionally, in some cases it is needed
to collect repeated measurements of plant traits within large
populations at several time points during a growing season.
Robotic systems are highly desirable in this scenario as they
provide the necessary speed and accuracy for this kind of
phenotyping tasks.

Robotic platforms for plant phenotyping applications can
be divided into two categories: those developed for indoor or
controlled environments (greenhouse or laboratory), and those
for outdoor environments (field) (Shafiekhani et al., 2017). In
controlled environment, plants are either placed in a fixed
position and the robot moves around the facility to interact with
the plants, or the plants are moved by conveyor belts or other
automated systems to a fixed location where the robot operates.
Often the robotic system does not need to touch the plants. The

robotic arm is equipped with RGB cameras or depth sensors
[Time of Flight (TOF) cameras or 3D laser scanners] to acquire
visible images or point cloud data. The morphological traits of
the plants are then estimated from the reconstructed 3D model
of the plants. Stem height and leaf length of corn seedlings were
measured using a robotic arm at a fixed position and a TOF
camera (Lu et al., 2017). Chaudhury et al. (2017) developed a
gantry robot system consisted of a 3D laser scanner installed on
the end-effector of a seven Degree of Freedom (DOF) robotic
arm to compute the surface area and volume of Arabidopsis
and barley. The settings of both robotic systems were unable
to position the vision system to capture images from the leaves
hidden by other leaves or the stem. This occlusion problem is
common in image-based phenotyping (Das Choudhury et al.,
2019). Even with imaging from multiple views (e.g., enabled by
rotating plants during image acquisition), occlusion can still be
substantial. The use of imaging systems carried by a robotic
manipulator can provide viable solution to this issue, due to
the flexibility of the robotic manipulator to position and orient
cameras at the best intended viewpoints. Wu et al. (2019)
proposed an automated multi-robot system, which comprised of
three robotic arms each equipped with a depth camera to obtain
the point cloud data of the plant (Figure 1A). Deep learning
based next-best view (NBV) planning pipeline was presented to
evaluate and select the next-best viewpoints to maximize the
information gain from the plant in data acquisition process. The
robotic arms then were manipulated based on the determined
optimal viewpoints. Their system was more efficient and flexible
compared to other robotic systems to address the occlusion issue.
The ability of the system to find the optimal viewpoints, however,
can be challenging, because its performance depends upon the
predictions produced by the trained deep networks. This means
that the best view-points may not be determined by the system if
the deep networks can not generate accurate predictions.

A second group of indoor plant phenotyping robots sought
to touch or probe plants or plant organs, in order to
extend the ability of robotic phenotyping from plant’s outward
morphological traits to innate physiological and biochemical
traits (Schulz and Baranska, 2007; Biskup et al., 2009). In this
sense, the phenotyping robot was designed to mimic humans
to manipulate plants and measure certain traits from targeted
plant organs (Figure 2). This type of the robotic systems usually
included a robotic gripper designed to attach specialized plant
sensors, and a vision module to segment the plant from the
background and find an appropriate point on the organs for
probing [Alenyà et al., 2011; Shah et al., 2016; Bao et al.,
2017 (Ficus plant)] or grasping process [Alenya et al., 2013;
Ahlin et al., 2016 (Anthurium, Pothos, and Dieffenbachia)].
A sensor-equipped robot was presented to measure physiological
parameters of the plant (Bao et al., 2019c). The sensor unit
including RGB, hyperspectral, thermal, and TOF cameras, and a
fluorometer were attached to a robotic arm. The robot measured
the reflectance spectra, temperature, and fluorescence by imaging
the leaf or placing probes with millimeter distance from the leaf
surface (Figure 1B). Two different plant phenotyping robotic
systems were introduced to measure leaf and stem properties
of maize and sorghum plants (Atefi et al., 2019, 2020). The
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FIGURE 1 | Plant phenotyping robotic systems for indoor environment: (A) A multi-robot system equipped with deep learning technique to determine optimal
viewpoints for 3D model reconstruction (Wu et al., 2019), (B) Sensor-equipped robot to measure the reflectance spectra, temperature, and fluorescence of leaf (Bao
et al., 2019c), (C) Robotic system to measure leaf reflectance and leaf temperate (Atefi et al., 2019), and (D) Robotic system for direct measurement of leaf
chlorophyll concentrations (Alenyá et al., 2014).

systems consisted of a TOF camera, a four DOF robotic
manipulator, and custom-designed grippers to integrate the
sensors to the robotic manipulator. Image-processing and deep-
learning based algorithms were presented to find the grasping
point on leaves and stem. An optical fiber cable (attached to
a spectrometer) and a thermistor were used to collect leaf
hyperspectral reflectance and leaf temperature simultaneously.
The stem diameter was measured by a linear potentiometer
sensor. Leaf hyperspectral reflectance was used to build predictive
models for leaf chlorophyll content, water content, N (nitrogen),
P (phosphorus), and K (potassium) concentrations (Figure 1C).
Alenyà Ribas et al. (2012) mounted a SPAD meter to a robotic
arm to directly measure leaf chlorophyll concentrations of
Anthurium White, Anthurium Red, and Pothus (Figure 1D).
Quadratic surface models were applied to segment leaves from
infrared-intensity images and depth maps captured by a TOF
camera. The estimation issues of probing point caused by
poor leaf-fitting model reduced the probing success rate of the
robotic system (82%).

Although controlled environments can make it easier to grow
plants and quantify their phenotypic traits, because environment
plays a large role in determining plant traits, plants grown in
controlled environments show many differences from plants
grown in field conditions. Therefore, with the exception of a
growing range of horticultural crops where production occurs
in control environments, for many crops the assessment of
phenotypic responses in field conditions provides more directly
actionable information for crop improvement. A wide range of
platforms have been developed for field-based high-throughput
plant phenotyping [Montes et al., 2007; White et al., 2012;
Gao et al., 2018 (soybean); Weiss and Biber, 2011 (detection
and mapping of maize plants); Jenkins and Kantor, 2017 (stalk
detection of sorghum); Iqbal et al., 2020 (plant volume and
height); Smitt et al., 2020 (fruit counting of sweet pepper and
tomato)]. These robotic systems are guided between crop rows
and moved toward plants. This creates several new challenges
for both navigation and data collection which are absent when
robotic phenotyping is conducted in control conditions. Factors
like temperature, sunlight, wind, and unevenness of soil surface,

can negatively impact the performance of the system. Therefore,
the hardware and software of the robotic system must be designed
to be resilient to the unique challenges of operating in field
conditions. In the field plants are always stationary, necessitating
that (1) phenotyping robots move to the plants rather than vice
versa, (2) all components of the phenotyping robot including the
vision system, robotic arm, and sensors as well as power supplies
be carried by a robotic mobile platform, and (3) this platform
be capable of navigation whether through global positioning
system (GPS) data and/or employing sensors to perceive its local
environment to guide navigation.

Unmanned ground vehicle (UGV) robotic systems employ
a range of sensor types including light detection and ranging
(LIDAR) and cameras [RGB, TOF, near infrared (NIR), and
stereo vision] for data collection. They can be installed on a fixed
stand within the overall mobile platform, or affixed a robotic
arm to increase the number of diversity of positions from which
sensor data can be collected. Different techniques such as 3D
reconstruction, image processing, and machine learning are used
for data analysis and quantify morphological traits. Existing UGV
robotic systems have been employed to measure plant height,
plant orientation, leaf angle, leaf area, leaf length, leaf and stem
width, and stalk count of various species such as maize, and
sorghum, sunflower, savoy cabbage, cauliflower, and Brussels
sprout (Jay et al., 2015; Fernandez et al., 2017; Baweja et al.,
2018; Choudhuri and Chowdhary, 2018; Vázquez-Arellano et al.,
2018; Vijayarangan et al., 2018; Bao et al., 2019b; Breitzman et al.,
2019; Qiu et al., 2019; Young et al., 2019; Zhang et al., 2020),
count the cotton bolls (Xu et al., 2018), architectural traits and
density of peanut canopy (Yuan et al., 2018), berry size and color
of grape (Kicherer et al., 2015), and shape, volume, and yield
estimation of vineyard (Lopes et al., 2016; Vidoni et al., 2017).
A compact and autonomous TerraSentia rover equipped with
three RGB cameras and a LIDAR was demonstrated to acquire
in-field LIDAR scans of maize plants to extract their Latent Space
Phenotypes (LSPs) (Gage et al., 2019). They were inferred from
the images using machine learning methods (Ubbens et al., 2020)
and contained information about plant architecture and biomass
distribution. Shafiekhani et al. (2017) introduced a robotic system
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FIGURE 2 | Manual measurements of leaf reflectance (left), leaf temperature (middle), and chlorophyll content (right) (Atefi et al., 2019).

(Vinobot) including a six DOF robotic arm with a 3D imaging
sensor mounted on a mobile platform. The Vinobot collected
data in order to measure plant height and leaf area index (LAI) of
maize and sorghum (Figure 3A). The authors reported that the
use of a semi-autonomous approach created most of challenges
for navigation of the system. In this approach, the alignment of
the robot with the crop rows was required before autonomously
moving between the rows and collecting data from the plants.

Measurements of some biochemical and physiological
properties require a direct contact between sensors and plants.
Measuring these properties therefore requires a robot capable
of grasping or touching plant organs. Grasping plant organs in
turn requires a dexterous robotic arm as well as onboard sensors
and algorithms capable of reconstructing the 3D geometry of the
target plant. Robotanist, a UGV equipped with a custom stereo
camera, was established to measure stalk strength of sorghum
(Mueller-Sim et al., 2017; Figure 3B). A three DOF robotic arm
along with a special end-effector was mounted on Robotanist.
The end-effector consisted of a rind penetrometer that was
modified by attaching a force gauge and a needle. When the
stalk was grasped by the end-effector, the needle and force gauge
were pushed into the stalk to accomplish the measurement.
The authors suggested to develop algorithms using laser scan
and navigation camera data to improve the performance of the
navigation system to reliably work under taller sorghum canopy
and throughout the entire growing season. Abel (2018) attached
a spectrometer to the robotic manipulator of Robotanist to
capture spectral reflectance measurements of leaves and stems
of sorghum. Random sample consensus (RANSAC) method was
used for leaf and stem detection. A machine learning approach
was applied to estimate the chlorophyll content of leaves, and
moisture and starch contents of stems from reflectance spectra.
Two factors reduced the grasping success rate of leaves (68%).
First, the grasping process was failed because the wind moved
the leaves and changed the position of the grasping point.
Second, the occlusion and overlapping affected the performance
of the segmentation algorithms to detect more leaves in the
images. Chen et al. (2021) developed a robotic system including
LeafSpec (invented at Purdue University) attached to a robotic
manipulator to collect hyperspectral images of maize leaves in
the field (Figure 3C). The robot slid the LeafSpec across the
leaf from the beginning to tip to acquire hyperspectral images

of entire leaf. The system predicted leaf nitrogen content with
R2 = 0.73.

Other autonomous ground-based systems were presented
to measure both morphological and biochemical/physiological
attributes. A visible and near infrared (VIS/NIR) multispectral
camera was mounted on a mobile robot called “Thorvald I” to
measure the normalized difference vegetation index (NDVI) of
wheat from multispectral images (Burud et al., 2017). The robot
then modified to a new version called “Thorvald II” to have better
performance for phenotyping tasks (Grimstad and From, 2017;
Figure 3D). BoniRob was proposed as an autonomous robot
platform including spectral imaging and 3D TOF cameras which
can be used to measure plant parameters such as plant height,
stem thickness, biomass, and spectral reflection (Ruckelshausen
et al., 2009; Biber et al., 2012; Figure 3E). Underwood et al.
(2017) introduced a ground-based system (Ladybird) for row
phenotyping of grain and legume crops (wheat, faba bean, lentil,
barley, chickpea, and field pea) (Figure 3F). Crop height, crop
closure, and NDVI were determined after processing the data
from the LIDAR and the hyperspectral camera. Flex-Ro, a multi-
purpose field robotic platform was used for high-throughput
plant phenotyping to measure phenotyping traits of soybean
(Murman, 2019; Figure 3G). Three sets of sensors were installed
on Flex-Ro to collect data from crop rows. For each set, a passive
fiber optic cable, a RGB camera, an ultrasonic distance sensor,
and an infrared radiometer were used to measure NDVI, canopy
coverage, canopy temperature, and height.

Table 1 summarizes the indoor and outdoor robotic systems
which could successfully measure plant traits for different crops.

Figure 4 gives summary statistics regarding the plant
phenotyping robotic systems that is discussed in this section.
It can be seen that the robotic phenotyping research targeted
maize and sorghum more than other species (soybean, wheat,
barley, chickpea, pea, faba bean, lentil, cabbage, cauliflower,
cotton, peanut, sunflower, grape, tomato, sweet pepper, and
Arabidopsis) (Figure 4A). Maize and sorghum are two of the
most economically important and highly diverse cereal crops
with vast numbers of accessions (Zhao et al., 2016; Bao et al.,
2019b). Therefore, more attention was devoted to breed Maize
and sorghum to produce food, animal fodder, and biofuel.
Moreover, the available genetic resources for these crops required
the phenotyping data to map their genotypes to phenotypes and
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FIGURE 3 | Plant phenotyping systems for outdoor environment: (A) Vinobot: robotic system including six DOF robotic manipulator and a 3D imaging sensor
mounting on a mobile platform to measure plant height and LAI (Shafiekhani et al., 2017), (B) Robotanist: UGV-based robotic system equipped with a three DOF
robotic manipulator and a force gauge for stalk strength measurement (Mueller-Sim et al., 2017), (C) A robotic system to slide LeafSpec across entire leaf to collect
its hyperspectral images (Chen et al., 2021), (D) Thorvald II: VIS/NIR multispectral camera mounted on a mobile robot to measure NDVI (Grimstad and From, 2017),
(E) BoniRob: autonomous robot platform using spectral imaging and 3D TOF cameras to measure plant height, stem thickness, biomass, and spectral reflection
(Biber et al., 2012), (F) Ladybird: ground-based system consisted of a hyperspectral camera, a stereo camera, a thermal camera, and LIDAR to measure crop
height, crop closure, and NDVI (Underwood et al., 2017), and (G) Flex-Ro: high-throughput plant phenotyping system equipped with a passive fiber optic, a RGB
camera, an ultrasonic distance sensor, and an infrared radiometer for the measurement of NDVI, canopy coverage, and canopy height (Murman, 2019).

thus crop yield improvement. Accordingly, there has been an
emerging need for phenotyping robots to automatically measure
the phenotypic traits. Regarding the plant structure, maize, and
sorghum have similar morphology. Their leaves are arranged
alternately on each side of the stem that has cylindrical/elliptic-
cylinder shape and is positioned in the middle part of the plant.
This plant structure provides less complexity for the robotic
system to distinguish between the stem and leaves and extract
their features. Figure 4B shows that the height, width, and
volume of plant/canopy are three main (morphological) traits
that more frequently measured by the robotic systems than other
traits, each of them being ≤ 5% (leaf length, leaf width, leaf angle,
leaf area, leaf reflectance, leaf chlorophyll content, leaf/canopy
temperature, LAI, plant/canopy NDVI, stem reflectance, stalk
strength, stalk count, berry size, and fruit count). Two reasons
can be considered for the frequent measurements of these
phenotypic traits. Firstly, the plant architectural traits (such as
plant height) are the most common and important parameters
for field plant phenotyping since they have significant effects
on light interception for photosynthesis, nitrogen availability,
and yield (Barbieri et al., 2000; Andrade et al., 2002; Tsubo and
Walker, 2002). Consequently, by studying and then manipulation
of the plant architecture, the crop productivity will be increased.

Secondly, as it was discussed in this section, the robot just needs
non-contact based sensors (RGB camera or depth sensor) to
collect data from the plants. Then, by analyzing the 2D images
or creating plant 3D models, the aforementioned plant traits can
be estimated in either ways: (1) the correlation between the pixel
counts in the images and the ground truth measurements, or
(2) extracting the distance/volume in real world from the depth
sensor data. Hence, the measurement of these morphological
properties is less challenging for the phenotyping robots using
simple sensors and algorithms. In addition to the more frequent
measurements of stem height and width (of maize and sorghum),
these properties were also measured more accurately by the
robotic systems because they are less affected by the plant
morphology (Figure 4C). The first step to extract the stem height
and width is to detect the stem and segment it from other
plant organs. The morphology of maize and sorghum (alternately
arranged leaves, and cylindrical-shaped stem in the middle)
provides more hints for stem detection and segmentation.
Moreover, the height and width can be measured as linear
measurements. Accordingly, these two stem properties can be
measured with less complexity and higher accuracy. Figure 4D
illustrates that non-contact based sensing systems (such as RGB,
stereo vision, and multispectral cameras, and LIDAR) were
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FIGURE 4 | Summary statistics of the phenotyping robotic systems: (A) Targeted plants, (B) Plant/canopy traits measured by the robots, (C) Average accuracy (R2)
to measure the phenotypic traits, (D) Robot vision/sensing systems, and (E) Robot software systems.

used more in phenotyping robots compared to contact-based
sensors (chlorophyll meters, spectrometers, thermistors, and
linear potentiometers). This can be explained by the fact that the
majority of the robotic systems were developed to measure the
morphological traits or some physiological properties. To achieve
these goals, the phenotyping robots are required to use the 2D
images/3D models of plants using non-contact based sensors.
Among the non-contact sensors, the sensor-fusion based systems
(including RGBD/stereo vision cameras, RGB camera + LIDAR,
RGB + TOF cameras, spectral imaging + TOF camera) and
depth sensors (TOF camera, LIDAR, laser scanner, and ultrasonic
sensor) were commonly used as vision/sensing systems for the
phenotyping robots. The key is to acquire depth information as
a vital parameter to manipulate a robotic arm to grasp the plant
organs, navigate a mobile robot between crop rows, and measure
plant properties (such as height, width, and volume). Sensor-
fusion based systems were employed by phenotyping robots more

often than depth sensors. The reason would be that these sensors
prepare the plant color/spectral information along with the depth
information. Consequently, by acquiring more information, the
plant can be effectively segmented from the background and the
plant properties can be effectively measured. Regarding the robot
software system, it can be found that Robot Operating System
(ROS) is one the most popular systems to develop the software
of the phenotyping robots (Figure 4E). ROS is an open source
system that provides services, libraries, and tools for sensors-
actuators interface, software components communication, and
navigation and path planning1. Different manufacturers of robot’s
hardware provide ROS drivers for their products such as imagery
systems, sensors, actuators, robotic manipulators, and mobile
platforms. This allows the researchers to develop the phenotyping
robotic systems more efficiently.

1https://www.ros.org/
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Regarding the platform of the mobile phenotyping robots,
most of the mobile platforms were developed by researchers
(86%) and few off-the-shelf robots were used (14%). The custom-
designed platform offers potential to meet specific conditions
regarding soil, weather, and plant which vary with experimental
site and phenotyping task. Moreover, the researcher has more
control on modifying the hardware and software. Based on
the reviewed papers, most of the mobile platforms used four
wheels/legged-wheels (88%) as their driving system compared
with tracked mechanism (12%). In the wheeled-vehicles, the
wheels can be independently steered (good maneuverability)
which provides high flexibility with respect to control and
navigation (desired orientation angle and rotation speed) of the
vehicles between the crop rows in the field. Moreover, the vehicle
can move faster using (legged) wheels and has high ground
adaptability (crop height, and irregular and sloped terrain)
using legged-wheels. However, the tracked-vehicles create more
traction and less pressure on soil (work better in wet soil and less
soil compaction), and can drive over rough terrain and obstacles
easier than the wheeled-vehicles (Bruzzone and Quaglia, 2012).
Accordingly, a hybrid locomotion system can be developed
with the combination of legged-wheels and tracked systems.
Therefore, this platform can use the advantages of the both
driving systems to accomplish phenotyping tasks more effectively
and efficiently.

PHENOTYPING ROBOTS FACE SEVERAL
CHALLENGES

There are several outstanding challenges in the development of
robotic systems for plant phenotyping. Some of these challenges
related to segmentation (vision systems) and grasping (robotic
manipulators) are shared or at least similar for both indoor
and outdoor phenotyping robots. Other challenges, particularly
those related to navigation are specific to outdoor robotic
phenotypic applications.

Complex and Deformable Nature of
Plants Represents a Major Issue for
Robot’s Vision and Sensing System
The UGV or robotic manipulator equipped with contact/non-
contact based sensing systems offer a great potential to measure
plant phenotypic data compare to non-autonomous robotic
sensing systems. For example, the UGV equipped with stereo
vision camera can move between crop rows and collect images
from the canopy or individual plant. The image data can be
analyzed immediately or can be processed later to extract plant
properties. The long-term measurement of the plant traits can
provide useful knowledge for crop modeling purposes over time
(Duckett et al., 2018). Another example would be the robotic
manipulator equipped with a hyperspectral imaging system.
The robotic arm can move around the plant to locate the
sensor close to the plant organs. With this proximal sensing,
more phenotyping information can be acquired about the

organs. However, the robotic vision/sensing technologies for the
phenotyping task encounter different challenges.

Various imaging technologies are utilized as vision systems of
the robots. Visible imaging/RGBD camera are commonly used
technologies that rely on the color/texture information of an
object. Images are processed to segment plant organs and identify
desirable targets for grasping. The identification and localization
of different plant organs (such as leaves, stems, flowers, and fruits)
is one of the major problems in computer vision, due to complex
structure and deformable nature of plants. The overlap between
the adjacent leaves or leaf-stem causes occlusion; even though
leaf and stem have different architecture, they share similarities
in color and texture. Accordingly, it is difficult to distinguish
occluded leaves or stem in the image. The morphology of
plants (shape and size) varies dramatically across different plant
species and even within a single species different varieties or
the same variety grown in different conditions may exhibit
radically different morphology. In this regard, the software of
the robotic system should cover a wide range of scenarios and
possibilities to be able to respond and adapt appropriately to day-
to-day changes in the same plant or differences between plants
within the same experiment. Additionally, non-uniform imaging
conditions (lighting and background) make it more complex to
find an appropriate color space and optimal approach for the
segmentation purposes (Zhang et al., 2016; Narvaez et al., 2017;
Qiu et al., 2018; Bao et al., 2019a).

Multispectral/hyperspectral and thermal imaging systems are
sensitive to illumination since the reflectance from the plant
organ is depend on its distance and orientation toward the
light source/incident radiation and camera. Moreover, multiple
reflectance and also shade will occur due to the curvature nature
and complex geometry of plant (Li et al., 2014; Mishra et al., 2017;
Qiu et al., 2018). To deal with these issues, researchers introduced
different technical solutions. Behmann et al. (2016) combined the
hyperspectral image with 3D point cloud (using a laser scanner)
of sugar beet to create hyperspectral 3D model. Then, it was used
to quantify and model the effects of plant geometry and sensor
configuration. Finally, the geometry effects in hyperspectral
images were weakened or removed using reflectance models.
Shahrimie et al. (2016) used inverse square law and Lambert’s
cosine law along with Standard Normal Variate (SNV) for maize
plants to remove the distance and orientation effects.

Robotic Control System Needs to Deal
With Dynamic and Unstructured
Environment
The size and orientation of the plant organs are constantly
changing across their growth stages. Therefore, the lack of needed
DOF or enough workspace of the robotic manipulator are the
limitations for the robots to grasp the plant organs and sense their
properties successfully. The robotic arm cannot reach the organs
if they are out of its workspace. In addition, a robot arm with less
flexibility (DOF) might not able to properly adjust the angle of its
end-effector in grasping process.

Field-based robots need to navigate between crop rows and
then turned to the next row safely and autonomously. To achieve
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this task, the crop rows and obstacles should be detected to
build a map of the surrounding area. Then, their position and
orientation relative to the vehicle will be found to compute an
optimal path and avoid unexpected obstacles. Finally, adequate
action will be determined to steer the wheels and guide the system
around the field. However, the uncontrolled and unstructured
field environment creates challenges for accurate navigation and
control of the robot (De Baerdemaeker et al., 2001; Nof, 2009;
Bechar and Vigneault, 2016; Shamshiri et al., 2018). GPS is a
common method for robot navigation. However, the tall plant
canopy affects on the accuracy of GPS for navigation purposes
as the canopy blocks the satellite signals to the GPS receiver.
Hence, the information provided from other sensors along with
GPS is also required to detect the obstacles, precisely guide
the phenotyping robot, and minimize the damage to the robot
and plants. The UGV based phenotyping robots can facilitate
the data fusion of GPS and other sensors since the robot can
equipped with various sensors (such as LIDAR, RGB/stereo
vision cameras) and also precisely control their location (Duckett
et al., 2018). Nonetheless, varying ambient light conditions,
changing crop growth stages (size, shape, and color), and similar
appearance between crops and weeds are common factors that
fail visual navigation. In these situations, RGB sensor-based
systems usually cannot find a stable color-space or plant features
to detect different objects. Incomplete rows and missing plants
can cause errors to compute distance between the robot and
plants using range sensors. Different soil properties (soil types
and moisture) and terrain variation (even, uneven, flat, slope) are
other factors that influence robot dexterous manipulation, wheel-
terrain interaction, wheel slip, and steering control algorithms
(Åstrand and Baerveldt, 2005; Grift et al., 2008; Li et al., 2009;
Shalal et al., 2013).

After navigating the robot between the rows, a suitable
path should be selected for the robotic manipulator with
minimum collisions inside a plant or canopy to reach and
grasp the targets delicately. However, robots operate in extremely
complex, dynamic, uncertain, and heterogenous real world
condition. In this situation, visual occlusion of a plant by others
caused by high plant density should be taken into account
for target identification and segmentation. In addition, the
target information will be affected by sunlight and wind. For
instance, TOF/RGBD cameras use infrared light to measure
distance. Since the sunlight has infrared wavelengths and wind
moves the targets, the location of the target in 3-dimensional
space might not be accurately measured (Andújar et al., 2017;
Narvaez et al., 2017; Qiu et al., 2018; Li et al., 2020a).
Consequently, the obstacle-avoidance path-planning algorithm
cannot be determined correctly. Another example would be
when the targets are seen shinier or darker because of specular
reflection or shade.

Issues With Robot Software for
Phenotyping Robotic System
Development
Two main drawbacks present in many robot software are: (1)
the lack of support for certain functional packages (of open

source software) and (2) real-time constraints (Barth et al., 2014;
Park et al., 2020). For the first issue, it can be supposed that a
phenotyping robot is developed by researchers to accomplish a
phenotyping task. They create the robot library and share their
codes with the (open source) software community. However, by
ending the project, there is no guarantee to fix the bugs and
update the codes. In the case of other researchers might start
similar research using the shared codes, it might be problematic
to make the research forward because of the lack of support
for the robot library. The second challenge is the real-time
constraints that causes system malfunction due to latency. One
example would be when a UGV moves between crop rows to
measure plant traits. If the robot cannot satisfy the real-time
constraints, the robot will have delay to identify the obstacles
or adjust its position relative to the crop rows. Accordingly,
the robot could hit the obstacles and the plants and this
causes the physical damage to the robot or plants. Regarding
ROS, although ROS1 has real-time constraints, however the
community is actively working on software improvement.
For example, RT-ROS supports the real-time communication
that leads to performance enhancement of ROS1 (Wei et al.,
2016). It is obvious that by growing the ROS community,
sophisticated libraries and packages will be developed for more
plant phenotyping applications.

Other Challenges: Managing Big Data,
Reliable Power Source, Durability Under
Harsh Environment, and High Cost
The phenotyping robot collects massive volumes and various
types of data (such as images, multi/hyperspectral data) taken
by different sensors from large population of plants. The robot
needs to analyze large quantities of data in real-time for suitable
action/decision-making process. In addition, the large-scale
phenotypic data could be stored properly for the benefit of future
research. Therefore, managing and analyzing the big data as a
result of high-throughput, robotically collected plant traits is an
emerging issue for the phenotyping robot.

The field-based mobile robots need to be equipped with
reliable power sources to provide energy for the vehicle carriage
weight, distance traveled, and different electrical components
such as sensors for data collection. Batteries are commonly used
for this purpose. The problems with batteries are: (1) limited
operating time that prevents the robots to work for long time and
accomplish large-scale missions, and (2) need to recharge which
typically takes a long time.

Another challenge is the durability and stability of these
robotic systems under harsh outside environment caused by
extreme temperature, high humidity, strong sunlight, and dust.
These harsh conditions can cause damages for the components
of the robotic system and accordingly will have negative effects
on the robot’s performance.

The cost of phenotyping robots (in general agricultural robots)
is still high and this makes limitations for wide-spread use
of the robots. In most cases the phenotyping robotic systems
are developed for research purposes and the robots are not
commercially available yet. Both the hardware and software
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systems were restricted to a very specific condition and could
not be transferred to a different scenario. This leads to high
R&D (research and development) cost that can not be spread
over multiple units. However, more general purpose phenotyping
robots can be developed and commercialized in the future and
their cost will be reduced substantially. Moreover, with the
consistent trend of price reduction of electronics, sensors, and
computers, the robotic systems will become cost-effective enough
to be more widely used for phenotyping tasks.

POTENTIAL IMPROVEMENTS OF
PHENOTYPING ROBOTS

Sensors and Controllers Fusion
Technique Can Improve the Performance
of Robot
Sensing-reasoning, and task planning-execution are two essential
functions for autonomous phenotyping robots. They sense the
environment, apply an appropriate control algorithms, make
decision, and act in real-time to perform the phenotyping tasks
(Grift et al., 2008; Bechar and Vigneault, 2016). The design
of the phenotyping robot and its control algorithm needs to
be optimized to achieve successful operation in continuously
changing environment. To reach this purpose, the phenotyping
robots need to employ advanced technology to cope with the
dynamic and unstructured environment. The emerging sensor
technologies such as sensor fusion increase the robot capabilities
and yield better results (Grift et al., 2008). Sensor fusion
allows the robot to combine information from a variety of
sensing modules to form better decision for navigation and path
planning, as well as increase the capacity of sensing to gather
more information from the plants. For example, Choudhuri
and Chowdhary (2018) measured the stem width of sorghum
with 92.5% accuracy using RGB data. However, they achieved
higher accuracy (98.2%) after combining RGB + LIDAR data.
Kim et al. (2012) could successfully navigate an unmanned
weeding robot using sensor fusion of a laser range finder
(LRF) and an inertial measurement unit (IMU). The robot
also needs more sophisticated and intelligent algorithms to
accomplish different subtasks such as sensing, navigation, path-
planning, and control. Different control strategies such as
genetic algorithm (GA), fuzzy logic (FL), neural network (NN),
reinforcement learning (RL), and transfer learning (TL) can
be integrated to develop such robot algorithms (Shalal et al.,
2013). Therefore, a robust controller will be provided for the
phenotyping robot since the robot control system can use the
merits of both technologies (combining two control strategies).
Batti et al. (2020) studied the performance of fuzzy logic
and neuro-fuzzy (NN + FL) approaches to guide a mobile
robot moving between the static obstacles. The authors found
that neuro-fuzzy controller provide better results for robot
navigation compare to fuzzy logic controller. Although several
different autonomous phenotyping robots were developed,
more research is needed to adapt and improve the advanced
technologies to overcome the robot limitations to accomplish the

phenotyping tasks, and also increase the autonomy level of the
phenotyping robots.

Internet of Robotic Things (IoRT):
Technology to Manage Big Data for
Phenotyping Robots
Internet of Things (IoT) technologies are helpful to send lots
of data collected by different sensors over Internet in a real-
time manner. The Internet-of-Robotic-Things (IoRT) is the
confluence of autonomous robotic systems with IoT which is
an emerging paradigm that can be employed for phenotyping
robots (Grieco et al., 2014; Ray, 2016; Batth et al., 2018;
Saravanan et al., 2018; Afanasyev et al., 2019). Mobile robots
can use IoT to transfer and store a large amount of phenotypic
datasets to a central server. By sending the data via IoT,
the robots do not need to frequently move to a place and
physically upload the collected data to a local server/computer.
Moreover, plant breeders/scientists can visualize the data using a
mobile device (a tablet or a smartphone) or an office computer
and therefore the performance of plants and changes in crop
growth and development can be remotely inspected in different
regions of the field in a real-time fashion. Another attractive
aspect of using IoRT is to send commands to robots to
accomplish phenotyping tasks. For instance, an operator can
remotely control the greenhouse robotic manipulator systems
via Internet any time from his home/office to collect phenotypic
data. Another example is when the close inspection of an
area in a field is necessary after analyzing the drone-based
image data; therefore, commands can be sent via Internet to
deploy mobile robots in this regard. Several mobile robots
can work together to operate more efficiently to achieve
a specific task.

Solar Panels and Hydrogen Fuel Cell:
Renewable Power Sources for
Phenotyping Robots
Solar panels and hydrogen fuel cell are two technologies that
produce clean, renewable, and sustainable energy. A solar panel
consists of many small units called photovoltaic cells which
convert sunlight into electricity. The maintenance cost of the
solar panel is low since it does not have moving parts (no
wear) and it just need to clean the cells. The hydrogen fuel cell
comprised a pressurized container to store hydrogen. The fuel
cell is an electrochemical device that takes oxygen from the air
and combines hydrogen with oxygen to produce electricity. Re-
fueling time of a hydrogen fuel cell is very short (5 min or less)
and its cells are fairly durable.

Based on the advantages of solar panels and hydrogen
fuel cell, both technologies can be used as renewable
power sources for different components of the phenotyping
robots (Underwood et al., 2017; Quaglia et al., 2020).
However, there is not a wide range of application of these
technologies for the phenotyping robots. The cost of both
technologies is high. For solar panels, the efficiency of
the system drops in cloudy and rainy days. In addition,
more solar panels are needed to produce more electricity

Frontiers in Plant Science | www.frontiersin.org 11 June 2021 | Volume 12 | Article 611940

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-611940 June 19, 2021 Time: 18:6 # 12

Atefi et al. Robotic Technologies for Plant Phenotyping

which requires a lot of space. For hydrogen fuel cell, there
are relatively few places to re-fuel the cell. Nevertheless,
both technologies are constantly developing which can be
assumed to reduce their cost and improve their efficiency to
produce electricity.

PERSPECTIVE APPLICATIONS OF
ROBOTIC PHENOTYPING

Phenotyping Robots Has Great Potential
to Measure Other Plant Properties
Section “Review: Many Indoor and Outdoor Robots Were
Developed to Measure a Wide Range of Plant Traits” introduced
the robotic systems for indoor and outdoor applications to
measure several different plant traits. However, other leaf/stem
characteristics are also reliable indicators to detect the symptoms
of biotic/abiotic stresses and monitor the plant health during
a growing season. Stomatal conductance, gas exchange, and
chlorophyll fluorescence of leaves are indicative of their water
status, photosynthesis, and chlorophyll content (Castrillo et al.,
2001; Ohashi et al., 2006; Li et al., 2020b). Stem sap flow
and lodging resistance can provide useful information about
plant water use and stem strength (Cohen et al., 1990; Kong
et al., 2013). These aforementioned phenotypic traits are still
measured manually. On the other hand, new clip-on sensor
system can be presented to measure them automatically. The
system includes a custom-designed gripper/clip combined with
novel sensor(s) (Afzal et al., 2017; Palazzari et al., 2017).
The design of these sensing systems is important since the
accuracy and robustness of trait prediction models depend on
the phenotypic data quality (Würschum, 2019). The design
of the gripper and DOF of the robotic manipulator should
allow a good and gentle contact between the sensing unit
and the leaf/stem. Sometimes a vacuum mechanism attached
to a soft gripper can hold the leaf/stem and help the sensing
unit for effective contact and collect accurate data with less
damage to the plant organs (Hayashi et al., 2010; Hughes et al.,
2016; Zhang et al., 2020). Moreover, autonomous robots should
gather data with minimum error (high signal to noise ratio).
Therefore, sensors with high signal to noise ratio should be
selected and accurately calibrated. In addition to the accuracy,
the robots should rapidly (short execution time) accomplish
their missions. Deep reinforcement learning (DRL) technique is
an accurate and reliable method to find an optimal path with
nearest and collision avoidance route. This technique can be
adopted by phenotyping robots to manipulate a robotic arm
for grasping process or to navigate a mobile robot between
crop rows (Zhang et al., 2015; Zhang et al., 2019; Duguleana
and Mogan, 2016; Franceschetti et al., 2018; Taghavifar et al.,
2019). Although the robotic phenotyping is mainly focusing
on leaf and stem, it can be utilized for other plant organs
such as inflorescences (spike, panicle, and tassel), flowers,
fruits, and roots.

The morphometric parameters of inflorescence are highly
correlated with yield and grain quality (Leilah and Al-Khateeb,

2005; Gegas et al., 2010). Several studies discussed about
using image-based techniques (2D images/3D reconstruction)
to extract architectural traits such as length and width of
inflorescence, inflorescence volume (weight), grain shape and
size, grain angle, and number of grains, and number of flowers
(Faroq et al., 2013; Crowell et al., 2014; Gage et al., 2017; Rudolph
et al., 2019; Sandhu et al., 2019; Xiong et al., 2019; Zhou et al.,
2019). In such applications to measure the morphological traits,
a robot with LIDAR/camera can be useful to automatically take
images/point cloud data from different views of the inflorescence.
The physiological traits are indicator for stress or disease.
For instance, the temperature of the spikes was used for
detecting the plant under the water stress (Panozzo et al., 1999).
Conceivably, a robotic arm equipped with a temperature sensor
can grasp the spike and insert the sensor into spikelets to record
their temperature.

Several properties of fruits such as water content, sugar
content, chlorophyll, carotenoid, soluble solid, acidity, and
firmness are measured for fruit quality assessment. The
spectroscopy/spectral imagery are non-destructive and high-
throughput methods to estimate these qualitative parameters
(Berardo et al., 2004; ElMasry et al., 2007; Shao and He, 2008;
Wu et al., 2008; Nishizawa et al., 2009; Penchaiya et al., 2009;
Ecarnot et al., 2013; Guo et al., 2013; Dykes et al., 2014; Wang
et al., 2015; Mancini et al., 2020). However, a robotic system
can be presented to monitor the dynamics of these attributes
for hundreds of growing fruits per day. For example, a portable
spectrometer can be attached to the robot’s end-effector. After
detecting the fruit on the plant, the robot can grasp the fruit and
gather its spectral data to further infer its quality parameters.

Since the root has functional roles in resource acquisition,
the characteristics of root provide valuable information about
plant physiological and ecosystem functioning (Mishra et al.,
2016). In traditional root phenotyping, two different methods
are used to acquire images from root (in the soil or soil-free
or transparent media). In first method, a camera is mounted
on a tripod and moved by a human around the root, and
in the second method camera(s)/sensor(s) are set in fixed
point(s) and root (plant) is rotated (Atkinson et al., 2019).
This is a tedious task and some root information (such as
fine branches) might be lost due to less flexibility of the
system to take up close images from the complex architecture
of root. Consequently, automated root phenotyping systems
can facilitate and improve the traditional root phenotyping in
terms of efficiency and effectiveness with acquiring fast and
precise measurements (Wu et al., 2019). Here, the “plant to
sensor” system can be used to examine vast number of roots
(or plants) without the need of huge space of greenhouse
facility. In this system, the root (or plant) is moved toward a
robotic manipulator (equipped with camera/sensor) and located
on a rotation table. In each step angle of the table, the root
is rotated and stopped in front of the robotic system. Then,
the robotic manipulator moves the camera around the root
and gather close proximity data from different views (positions
and angles). Therefore, more detailed information of root
can be captured due to high resolution sensing offered by
the robotic system.
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FIGURE 5 | (A) Mobile Agricultural Robot Swarms (MARS) for seeding process (The European Coordination Mobile Agricultural Robot Swarms (MARS). PDF file.
November 11, 2016. http://echord.eu/public/wp-content/uploads/2018/01/Final-Report-MARS.pdf), (B) UAV-UGV cooperative system to measure environmental
variables in greenhouse (Roldán et al., 2016).

Robots in Greenhouses Complement the
Image-Based Phenotyping
Automatic greenhouses such as LemnaTec (LemnaTec GmbH,
Aachen, Germany) monitor plants using image-based technique.
While it has shown great potential to measure and predict the
plant traits, many hurdles cannot be handled by this technology.
It needs to efficiently manage “big data” problems and also
postprocess images to characterize the plant traits. Moreover, this
approach is not sufficient for early detection of stress/disease
with internal symptoms. Furthermore, this method requires
direct measurements using sensors to calibrate and validate
of its models to extract the phenotypic traits from images
(Madden, 2012; Mutka and Bart, 2015; Singh et al., 2016; Lee
et al., 2018). Hence, several robotic arms with different sensors
can be integrated to the greenhouse for real-time and direct
measurement of the chemical/physiological traits. Basically,
plants are transported by an automatic conveyor belt and stopped
in front of each robotic system. Then, the system uses “sensor-to-
plant” concept (Lee et al., 2018) in which the robot moves toward
the plant to take measurements before sending it through the
imaging chambers. These stationary robotic systems are designed
to operate in indoor environment. Moreover, several robots can
be presented to collect data from a specific plant. It is difficult
to develop a general prototype that are broadly applicable for
different conditions (Mutka and Bart, 2015; Wu et al., 2019).
However, the software and hardware of the robots should be
adapted to other species and field-phenotyping applications. The
challenge for both type of robots (indoor/outdoor) would be
continuously collect and save large amount of data.

Swarm Robot Is a New Frontier to
Efficiently Accomplish Complex
Phenotyping Tasks
Swarm robotics is a new frontier technology which has potential
application for proximal sensing of plants, and data/sample
collection in a large field. A swarm robotics system composed of
large numbers of autonomous robots that are coordinated with

local sensing and communication, and a decentralized control
system (Brambilla et al., 2013; Bayındır, 2016; Blender et al., 2016;
Chamanbaz et al., 2017; Figure 5A). The application of swarm
robots has some advantages which is suitable for large scale tasks.
Since swarm robotics has large population size, the tasks can be
decomposed using parallelism and can be completed efficiently
and consequently it would save time significantly. Moreover, the
swarm robots can achieve the distributed sensing that means they
can have a wide range of sensing in different places at the same
time (Navarro and Matía, 2012; Tan and Zheng, 2013).

Both UAV and UGV by itself have been successfully employed
in plant phenotyping tasks. The coordination between UAV and
UGV enables a new breakthrough application of UAV/UGV
cooperative systems to achieve a common goal more effectively
and efficiently (Arbanas et al., 2018; Vu et al., 2018). Both vehicles
in this cooperative team share complementarities according to
their capabilities that allow them to operate in the same field and
work together to fulfill phenotyping missions. In this manner, the
UAV can fly to quickly obtain overview of the fields beyond the
obstacles; whereas the UGV can continuously patrols in the field
with large payload capabilities of different sensors and robotic
arms (Chen et al., 2016; Roldán et al., 2016; Figure 5B). In the
context of UAV-UGV cooperation, an obstacle map of the field
will be provided by the UAV for UGV path planning. Based on
their communication and the map, the UGV can move rapidly
between the crop rows for up-close plant investigation.

CONCLUDING REMARKS

Autonomous robotic technologies have the potential to
substantially increase the speed, capacity, repeatability, and
accuracy of data collection in plant phenotyping tasks. Many
robotic systems are successfully developed and deployed in both
greenhouse and field environments, tested on a variety of plant
species (row crops, specialty crops, and vineyards), and capable
of measuring many traits related to morphology, structure,
development, and physiology. Many technical challenges remain
to be addressed regarding sensing, localization, path planning,
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object detection, and obstacle avoidance. Intensive research is
needed to overcome these limitations of phenotyping robots
and improve their speed, accuracy, safety, and reliability.
Collaborations among different disciplines (such as plant science,
agricultural engineering, mechanical and electrical engineering,
and computer science) are imperative. With this transdisciplinary
research, more efficient and robust sensing and control systems
will be developed for intelligent plant phenotyping robots.
Sophisticated sensor modules can be developed using sensor-
fusion techniques. Regarding the control systems, multiple
intelligent algorithms (such as different AI algorithms) can
be combined to design more powerful controllers. These
developments can potentially overcome the issues caused by
changing environmental parameters, and complex structure of
plants. Moreover, the suitable sensing and control systems yield
better performance for accurate object detection (mainly for
plants and crops, but also for humans, animals and other
obstacles coexisting in the environments), path planning, and
navigation. Sufficient funding from the public and private sources
is the key to fuel the high-risk research in intelligent phenotyping

robots in a sustainable way. We are optimistic that, in the
next 10 years, we will see great leaps forward in autonomous
and robotic technologies in plant phenotyping, enabled by the
confluence of the rapid advancements in sensing, controllers, and
intelligent algorithms (AIs).
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