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Traditional phenotyping techniques have long been a bottleneck in breeding programs
and genotype- phenotype association studies in potato, as these methods are labor-
intensive and time consuming. In addition, depending on the trait measured and metric
adopted, they suffer from varying degrees of user bias and inaccuracy, and hence
these challenges have effectively prevented the execution of large-scale population-
based field studies. This is true not only for commercial traits (e.g., yield, tuber size,
and shape), but also for traits strongly associated with plant performance (e.g., canopy
development, canopy architecture, and growth rates). This study demonstrates how the
use of point cloud data obtained from low-cost UAV imaging can be used to create
3D surface models of the plant canopy, from which detailed and accurate data on
plant height and its distribution, canopy ground cover and canopy volume can be
obtained over the growing season. Comparison of the canopy datasets at different
temporal points enabled the identification of distinct patterns of canopy development,
including different patterns of growth, plant lodging, maturity and senescence. Three
varieties are presented as exemplars. Variety Nadine presented the growth pattern
of an early maturing variety, showing rapid initial growth followed by rapid onset of
senescence and plant death. Varieties Bonnie and Bounty presented the pattern of
intermediate to late maturing varieties, with Bonnie also showing early canopy lodging.
The methodological approach used in this study may alleviate one of the current
bottlenecks in the study of plant development, paving the way for an expansion in the
scale of future genotype-phenotype association studies.

Keywords: high throughput phenotyping, plant breeding, unmanned aerial vehicles, canopy structure, potato,
crop growth and development, crop surface models

INTRODUCTION

Potato (Solanum tuberosum L.) is the fourth most important food crop in the world and is regarded
as one of the highest yielding crops amongst the staple foods (Birch et al., 2012). In order to
feed a growing population under changing climatic conditions, the demand for high yielding and
stress tolerant varieties is expected to increase (Birch et al., 2012). While on one hand breeders
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and biotechnologists have focussed on engineering and breeding
crop plants for achieving higher yields and quality, on the
other the aim is to maintain agricultural productivity under
changing environmental conditions by combating abiotic and
biotic stresses.

Breeding programs have traditionally focused on
commercially important traits, the major one being yield.
Plant performance, along with economic yield, has been shown
to be strongly associated with traits related to plant growth and
development. These include plant architecture, leaf structure and
vascular architecture as some of the major traits that determine
overall crop performance (Mathan et al., 2016). Thus, in order to
meet the increase in demand for high yielding and stress tolerant
crops, it is necessary to expand breeding programs to encompass
traits linked to plant growth and development (Prashar et al.,
2013; Yang et al., 2017). Engineering developmental and growth
traits with the aim of improving plant performance and yield
requires a thorough understanding of the underlying genetics,
which can be linked with quantitative phenotypic assessments.
In the last few decades there has been major developments
in genomic and genotyping technologies allowing faster and
cheaper creation of complete genetic profiles (Wang et al., 2018),
but despite these advances there are few genomics-assisted
breeding programs.

One of the major current limiting factors in modern breeding
programs is the acquisition of large-scale phenotypic assessment
under natural conditions in the field for performance traits.
Most of these evaluations have been conducted in controlled
environments until very recently (Anithakumari et al., 2011;
Khan et al., 2015). However, results from such environments may
poorly predict what happens under field conditions (Prashar and
Jones, 2014; Williams et al., 2017; Yang et al., 2017). Furthermore,
such studies frequently use only a small number of genotypes,
and thus may fail to detect Quantitative Trait Loci (QTL) with
small effect sizes. In addition, greater precision in phenotypic
data collection allows the increase in selection accuracy in
breeding, which is a function of heritability, which increases
with increased repeatability and thus rate of genetic gain also
increases (Araus et al., 2018). Phenotypic evaluation for the
genetic study of performance related traits therefore requires
large-scale field studies (Prashar et al., 2013; Prashar and Jones,
2014) involving large genetic populations (Furbank and Tester,
2011; Lopes and Reynolds, 2012). However, the requirement for
phenotypic assessment is currently one of the major bottlenecks
in both genotype-phenotype association studies and large-scale
breeding programs.

Current phenotyping methodologies are very laborious and
time consuming and therefore impractical for large-scale field
studies. In addition, depending on the trait being measured,
they can be inaccurate, inconsistent and susceptible to user
assessment bias (Friedli et al., 2016; Jimenez-Berni et al., 2018;
Wang et al., 2018). For example, leaf area index (LAI) and
ground cover (GC) are two traits frequently used in monitoring
plant growth (Khurana and McLaren, 1982; Boyd et al., 2002),
with most potato yield prediction models requiring at least
one of these (Haverkort et al., 2015; Raymundo et al., 2017).
Traditional methods such as the use of grids to estimate GC,

or light interception based techniques to estimate LAI, are
labor-intensive and time consuming (Khurana and McLaren,
1982; Boyd et al., 2002). These challenges limit monitoring to
small sample plots, which may not accurately represent the
heterogeneity in agricultural fields. This seriously limits the high
accuracy and precision that is required in modern agriculture, not
only to achieve lower resource inputs and hence environmental
impact, but also to accelerate genetic gain through increasing
heritability, and hence selection accuracy (Araus et al., 2018).
Remote sensing techniques for quantitative assessments and
stress detection have been suggested as a possible solution to these
limitations (Prashar et al., 2013; Friedli et al., 2016; Yang et al.,
2017; Jimenez-Berni et al., 2018; Wang et al., 2018).

Sensing approaches used for crop trait phenotyping and
crop monitoring include satellite-based systems, manned aircraft
or unmanned aerial vehicle (UAV) linked systems and tractor
mounted sensing tools. Satellite remote sensing is capable of
monitoring large areas at the same time and has undergone
significant improvements in recent years, especially with regards
to spatial resolution and increased coverage due to the addition
of low orbit satellites. Nevertheless, it still frequently lacks the
spatial resolution necessary for precise and detailed canopy
phenotyping of relatively small plots. Satellites are also limited
to data collection or observations at fixed times, which may not
match the phenotyping needs, and by cloud coverage, which may
impede data collection during those times (Berni et al., 2009;
Matese et al., 2015). In recent decades, UAV technology has
become more accurate, and importantly, more affordable. It is
capable of monitoring agricultural fields with greater flexibility
and higher spatial resolution, in a short time period (Matese et al.,
2015; Yang et al., 2017). The nature and extent of the data to be
collected with UAVs depends on the type of sensor used (Yang
et al., 2017). RGB sensors allow not only visual assessment of
the sampled areas, but also the assessment of traits influencing
plant development from the point cloud data, such as leaf color,
plant height, canopy cover and 3D plant structure. Near-Infrared
(NIR) sensors allow estimation of various vegetation indices that
can be used to estimate biomass, nitrogen content and disease
detection, while thermal sensors are useful for understanding
stress and assessing water status (Yang et al., 2017; Zheng et al.,
2018; Roitsch et al., 2019). Through the combined use of different
types of sensor, numerous traits can be evaluated more efficiently
and objectively, with the potential for temporal studies with
more frequent data collection points, enabling accurate growth
and development models to be created (Prashar et al., 2013;
Friedli et al., 2016; Yang et al., 2017; Jimenez-Berni et al., 2018;
Wang et al., 2018).

With the images acquired by UAV equipment using various
sensors (RGB, multispectral and/or hyperspectral), Structure
from Motion (SfM) point cloud data has been used to
understand plant growth and development. Early applications
of this method include artificial monocultures (e.g., orchards)
and diverse biomes (e.g., forestry), which share many of the
same challenges, including resource intensive monitoring of
large areas and understanding tree crown heterogeneity. For
example, a combination of RGB and NIR sensors have been
used to develop an object-based image analysis technique for
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automatically calculating tree height, canopy cover and volume
of individual olive trees (Torres-Sánchez et al., 2015), as well as
to assess the effect of different pruning methods on olive tree
growth (Jiménez-Brenes et al., 2017). UAV based systems have
also shown potential for estimating flower biodiversity (Getzin
et al., 2012) and for the creation of a rapid and accurate forest
census (Mohan et al., 2017). However, applications in agriculture
have mostly been limited to cereals (Bendig et al., 2013, 2014,
2015; Holman et al., 2016; Jin et al., 2017) and cotton (Xu et al.,
2019). In potato, UAV acquired images have been used to estimate
plant emergence (Sankaran et al., 2017; Li et al., 2019) and assess
disease severity (Sugiura et al., 2016; Franceschini et al., 2017).
However, there have been no published studies related to plant
structure, including canopy architecture and development, under
field conditions.

This article evaluates the use of a low-cost UAV system,
mainly in the form of RGB imaging resources and obtained
datasets, for understanding plant growth and development in
potato under natural field conditions. The image datasets from
this system are used to develop new methodology for quantifying
canopy growth parameters and assessing canopy variability
through developing crop growth and development models,
with validation using ground truth datasets. This methodology
enables quantitative trait assessment and modeling of growth
and development parameters in potato, which can allow high-
throughput phenotyping of canopy traits for integration with
large-scale genetic datasets and hence the improvement of future
potato breeding programs.

MATERIALS AND METHODS

Plant Material and Field Layout
The data used in this paper forms part of a large study that
was performed at Nafferton Farm, Newcastle University,
United Kingdom, with field trials at 54◦59′12.0′′N
1◦53′33.9′′W/54.986655, −1.892751 and 54◦58′51.3′′N
1◦53′56.5′′W/54.980924, −1.899018, in 2017 and 2018
respectively. A total of 297 varieties of potato (Solanum
tuberosum L.), which form a large part of a tetraploid variety
association panel available at The James Hutton Institute (Sharma
et al., 2018), were planted in April 2017 and May 2018. The
experimental design consisted of two replicate blocks for each of
two management systems (organic and conventional), making a
total of 4 blocks. Each block consisted of 6 rows spaced 90 cm
apart and comprising 50 plots per row. Each plot contained 3
plants of a given variety planted 35 cm apart. Spacing of 90 cm
was maintained between plots within each row. To minimize
edge effects, a row of guard plants was planted surrounding
each block. Both conventional and organic trials were conducted
using their respective standard management practices.

UAV Flight Parameters
UAV flights were performed in collaboration with Survey
Solutions Scotland using a fixed wing UX5 HP UAV (Trimble,
Sunnyvale, California, United States). The UX5 HP uses Global
Navigation Satellite System (GNSS) post-processed kinematic

techniques to determine the UAV trajectory. Images were taken
using a Sony α7R 36MP full frame 35 mm RGB camera with
a custom made Voigtlander 35 mm lens. The 35 mm lens was
selected to deliver a 1.0 cm Ground Sample Distance (GSD)
at 75 m Above Ground Level (AGL), while also offering pixel
sizes down to 4.9 µm, to maximize the signal to noise ratio
and dynamic range, while maintaining affordability. Given the
importance of the canopy volume in this research, a UAV sensor
with a global rather than a sliding shutter was selected for the
imagery as this greatly reduces noise in the images, which leads
to a much cleaner and more precise deliverable. The data was
collected at 75 m altitude with overlaps of 85% (both front
and side) between neighboring images. The speed of flight was
nominally 85 km/h, therefore flying height was restricted to 75 m
AGL to minimize image distortion due to motion blur. Details of
flight dates and their relation to canopy development in days after
planting are given in Table 1.

Image and Data Analysis
The images acquired using UAV were processed and analyzed
using the Trimble Business Center (TBC) software version
4.1 and 5.0, for the 2017 and 2018 datasets, respectively
(Trimble, Sunnyvale, California, United States). This includes
the subsequent use of GCP referencing, point cloud data
generation, creation of digital surface models, manual plot
demarcation, computation of difference models and canopy data
acquisition e.g., canopy cover and volume (further details in
the following sections). Plant height data clean up, subsequent
statistical analysis (regression and correlation) and other data
processing was carried out in R (R: Project for Statistical
Computing, The R foundation) using the following packages:
dplyr, ggplot2, gridExtra, Hmisc, plotrix, plyr, SDMtools, tidyr,
tidyverse (Lemon, 2006; Wickham, 2011, 2016; Vanderwal et al.,
2014; Wickham et al., 2015, 2019; Baptiste, 2017; Wickham and
Henry, 2019; Harrell, 2020).

UAV DATA PRE-PROCESSING

UAV Trajectory Processing
Raw GNSS data was recorded in the UX5 HP UAV by the on-
board 336-channel multi constellation GNSS receiver, which is
downloaded at the end of the flight and processed against a local
base station situated within our flight area. The local base position

TABLE 1 | Planting and UAV flight schedule for assessing potato canopy
characteristics.

Year Planting Flight date Days after planting

2017 28-04-2017 07-07-2017 70

24-07-2017 87

08-08-2017 102

2018 03-05-2018 05-06-2018 33

04-07-2018 62

06-08-2018 95

28-08-2018 117
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was established by processing the local base against Ordnance
Survey CORS (Continuously Operating Reference Stations),
sourcing 1 hourly RINEX data, which provide GNSS data
at reference stations coordinated in ETRS89 (ETRF2009.756).
Processing the local base station relative to known Ordnance
Survey CORS (OSNet) helps in establishing the position of
the local base for each UAV flight and its repeatability is
assured. Processing multi constellation GNSS data relative to
fixed OS CORS typically gave estimated precisions of ≈5 mm
in plan and ≈20 mm in height (at 95% confidence) over 30
km baselines. OSTN15 CORS stations, relative to each other,
are considered error free. The processed base stations used the
OSTN15 transformation model and OSGM15 geoid correction
surface to convert the ETRS89 global WGS84 coordinates into
Ordnance Survey (OS) grid coordinates. The local base was
processed (using the final local base station coordinate) against
the 20 Hz UAV data to produce a continuous flight trajectory
of the UAV. This estimated a posteriori trajectory accuracy of
97.20% @ 0–5 cm and 2.60% @ 5–15 cm, and the remaining
values were considered outliers.

PPK (Post-processed Kinematic) was used to create the
trajectory as it is more robust than alternative methods, which
may rely on radio or other communications. In addition, precise
ephemerides can be incorporated into the processing later, to
enhance the baseline processing algorithms if needed. Although
we used a processed UAV trajectory, we still used and placed
Ground Control Points (GCPs) as required, but the number of
these can be greatly reduced in comparison to non-PPK methods.

Photogrammetric Processing
The UAV trajectory was processed in TBC software, with
feedback events recorded at better than millisecond accuracy.
This helps to precisely establish the location of the photo center
of each image at the time of exposure. Having image positions
at the cm level negates the need for dense pixel matching, a
process which is required in non-PPK aerial photogrammetric
processing. It also greatly reduces the need for intensive, time
consuming and expensive GCP placement, which would be
impractical given the expected development of the canopy
in this research.

Around 6 GCPs were placed in the periphery of the trial
and were used in all flights to ensure repeatable and accurate
deliverables and to generate an accurate camera calibration. In
addition to being measured as vectors from the local base, the
GCPs were also georeferenced using Network RTK (Real-time
Kinematic), which provides an independent check on the GCP
coordinates. These GCP coordinates were fixed for the duration
of the project, thus providing a common datum for all flights
in a given year.

Image Processing
The images were imported into TBC software at the same time
as the Raw GNSS data, so that when the trajectory is processed
and the event markers created, each image will be positioned
in the correct 3D position. To resolve the orientation of each
image, i.e., the omega, phi and kappa rotations, a precise Interior
Orientation (IO) is computed using the GNSS positions, i.e., a tie

point adjustment, highlighting how well the images tie together.
In non-PPK processing, this is a computer intensive and time-
consuming process. However, a PPK trajectory resolves for the
image location, thus only the orientation needs to be resolved,
resulting in a more rapid and robust solution.

The IO was followed by an exterior orientation (EO) with
camera calibration. For the EO, visible GCPs in each image were
“picked” so that the real-world coordinates are allocated to the
GCP image coordinates (as produced by RTK observations and
verified by Network RTK). As mentioned above, GCPs allow
camera calibration and computation of distortion parameters
for the lens. The combination of GNSS and GCPs also allows
computation of the focal length. Both of these parameters are
a necessity for creating “noiseless” deliverables. After the EO is
performed, the flight report is analyzed for errors and accuracy.
The low errors and high confidence accuracy confirms the
validity of the flight and ensures observation repeatability over
the duration of the experiment (data not presented).

UAV DATA PROCESSING

Deliverable Creation
The next step after measuring accuracy and acceptance of the
EO results is to create deliverables (e.g., point cloud, orthophoto,
etc.). Both point cloud and true orthophotos require well-
orientated images. Different types of surfaces can be generated
from orthomosaic images. Surface generation is the creation
of a point cloud and it requires at least two, and preferably
more, overlapping images. Insufficient overlap produces noise,
or worse, gaps in the data. A surface was generated using
the maximum resolution available (appropriate to the flight
parameters) using a Cost-based Matching algorithm. Briefly, the
algorithm uses pixel-by-pixel matching, rather than an area based
or feature based technique, though a detailed discussion of the
algorithm is beyond the scope of this work.

The orthophoto (i.e., geometrically corrected or
orthorectified) was created after processing of the point
cloud surface, to give an image where the scale is uniform and
true. A “True” orthophoto rather than “Classic orthophoto” was
selected because it uses the surface model to calculate occlusions
and fill them in from other images, which is essential when the
canopy is not uniform. A “Classic” orthophoto, on the other
hand, would require bare Earth.

Preliminary Data Clean Up
Raw data and the generated point clouds typically include
errors due to several factors. These include vegetation movement
due to wind, UAV crabbing in flight, which lessens the
expected image overlap and bad reflection points (i.e., noise
due to inadequate overlap and image uncertainty). These
erroneous points need to be removed from the point cloud
(Figure 1A). This was accomplished by the manual removal
of points that would be considered impossible, as determined
by their height based on proximity to other points, position
in the field, and visual inspection of the point cloud. We
used a manual removal process because the outlier points
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FIGURE 1 | (A) 3D representation of the point cloud before (I) and after (II) the
manual removal of erroneous points. (B) Generation of a soil reference surface
(red surface) by increasing every point of the topographical surface (gray
surface) by the average height of all the ridges in the block.

in our data were sparse and inconsistent in local point
density. Automatic outlier removal methods are available if
needed, such as the discontinuous operators-based method
(Ning et al., 2018).

Surface Model Creation
Following clean up, the point cloud data was used to generate
two surfaces (where surface is referred here as 3D models
generated from point cloud data), including one for the soil
reference and another for the canopy. Surfaces created in the
TBC software are a 3D digital representation of topography (in
this case, canopy), formed by a mesh of contiguous triangles, and
sometimes referred to as a Triangulated Irregular Network (TIN).
The triangles are connected at their vertices, which are defined by
points with horizontal positions (X and Y–values) and elevations
(Z-values), i.e., points in a point cloud forming three sided planar
faces. The surface model from a point cloud is a simple set of
triangles, but can be enhanced by the inclusion (or omission) of
boundaries, break lines, and points, etc. that make up the surface
model and that are used to define its shape.

Canopy surfaces in our case used the totality of the point
cloud within each experimental block. Ideally, the creation of a
soil reference surface would use point cloud data from below the
canopy, but Structure from Motion imagery does not permit this,
especially when plants are growing. Therefore, to overcome this
limitation a surface was created to estimate the soil topography.
Since potatoes are grown on ridges, a topographical surface
was first created using the bare soil surrounding the plants,
hence excluding the ridges and any potential vegetation. Second,
the height of every point on this surface was increased by the
average height of all the ridges in the block to construct a raised
surface (Figure 1B).

Difference Model Creation and Plot
Demarcation
As a next step after generating surfaces, difference models were
created for the entirety of each experimental block. Difference
models are a 3D representation of a model, where each point in
the model has the elevation difference between two surfaces on
the same point. Once generated, this difference model was then
used in combination with the orthomosaic image to accurately
demarcate individual plots. The demarcation of individual plots
made it possible to create difference models for each and every
plot in each block, using the same surfaces that were created
previously, from which we are able to extract canopy volume,
ground cover and canopy height datasets for further analysis.
Details of the workflow are shown in Figure 2.

Difference Model Computation Methods
Two difference model computation methods were compared
(Figure 3). The “trace all triangles” method (Figure 3B) creates a
new vertex at each point of the point cloud where soil surface and
canopy surface triangles either overlap or intersect, while taking
into account any existing breaklines created during demarcation.
These vertices serve as new points for the creation of the
difference model; therefore, the resulting difference model has
a denser mesh of vertices than the original surfaces. The “do
not track breaklines” method (Figure 3C) uses only existing
points of the point cloud to create a difference model, ignoring
breaklines and not creating new vertices, with the generated
difference model having the same density of vertexes as the
original surfaces. For comparison, 300 field plots were selected
and both methods were applied to generate the triangular mesh.
Subsequent calculations of plot volume were compared using
Spearman’s rank correlation coefficient.

Plant Height Calculation
The difference model helps us build up the height data at any
point within the plot area, at a resolution of 1 cm. This allows us
not only to determine the highest point within the demarcated
area (representing the maximum height of the 3 plants within
the plot), but also allows the construction of a frequency
table of the height distribution that provides information on
the canopy structure and allows calculation of the average
height of the plants.

Plant Height Data Clean Up
Preliminary point cloud clean-up removes the more noticeable
errors, which tend to be the impossible or unrealistic values.
However, smaller errors tend to remain in the point cloud. These
smaller errors have a negligible effect on the average height,
but maximum height is more susceptible to influence. Weeds
are also a probable source of errors when it is not possible to
manually remove them from the potato plants. An integrated
approach using different imaging sensors (not illustrated here)
is more valid in this scenario but falls outside the scope of this
work. Small weeds will provide a small, potentially negligible,
effect on the histograms and the average height. However,
maximum height can easily be overestimated because of a single
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FIGURE 2 | Methodological flowchart showing the acquisition of quantitative data on potato plant canopy structure (e.g., canopy volume, canopy ground cover, and
plant height) using a Structure from Motion algorithm from UAV acquired images.

weed plant that outgrows the potato plants, thus necessitating
a more precise clean up. First, all points above 1.2 m were
removed, as potato plants do not reach this height. Second,
further clean-up was achieved by using the standard deviation
(SD) of the plot canopy height distribution as a cut-off for

the maximum height. Cut-offs of 2, 2.5, and 3 SDs above
the mean were evaluated by comparing post cut-off data with
field/proximal data using regression analysis and other graphical
visualizations including histograms to observe the effects on
individual plots.
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FIGURE 3 | Comparison of two difference model computation methods using the same reference surfaces. (A) Surfaces used for computation, where red
represents the soil reference, green is the canopy surface generated from the point cloud, and a blue line demarcates the plot border. (B) Difference model using the
“trace all triangles” method. (C) Difference model using the “do not track breaklines” method.

Canopy Ground Cover and Canopy
Volume
Canopy ground cover and canopy volume are defined as the
sum planimetric area and total canopy volume, respectively, that
is above the level of the soil reference surface in the difference
model for each plot.

PROXIMAL DATA ACQUISITION

Ground truth data was collected for comparison
with measurements obtained from the UAV point
cloud data approach.

Plant height was measured proximally using a ruler in
randomly selected plots on the same day as UAV data collection.
The highest contact point of the plant for each of the 3 plants
in each plot was recorded. The maximum height from the 3
plants per plot was compared to the maximum height determined
from the UAV data.

Leaf Area Index (LAI) data was obtained using a ceptometer
(ACCUPAR LP-80, METER ENVIRONMENT, part of METER
Group, Inc. United States). The ratio of the length of the
horizontal to the vertical axis of the spheroid described by the leaf
angle distribution of a canopy was assumed to be 2 for the leaf
distribution parameter in potato plants. The sensor was angled
so that the angle to the ridge was kept the same and would
cover all plants within a plot (Supplementary Figure S1). All
LAI measurements were taken in tandem with the field height
measurements in 2018.

RESULTS

Ground Truth Versus Image Based Plant
Height Measurements
Plant height measurements from field collected proximal data
were compared with measurements based on UAV imaging.
A two-step data cleaning procedure for the UAV image data
involved manual removal of obvious outliers to produce “pre

clean up” data, followed by a second round of cleaning
using various standard deviation cut-offs based on the plot
height dataset (see section “Materials and Methods”). Data
cleaning significantly increased the concordance between field
and UAV data (Figure 4). The pre clean up data showed
a relatively low R2 of 0.39 (p < 0.01), and this value
increased to moderate levels for cut-offs of 3 SD, 2.5 SD
and 2 SD (R2 of 0.48, 0.50, and 0.52, respectively, all
p < 0.01). Observations from Figure 4 highlight that the
different cut-off levels are not significantly different (data
not presented). To determine the most appropriate cut-off
level, we visually evaluated the risk of removing real canopy
data in three selected exemplar plots (representing relatively
common height distribution profiles) (Figure 5). The first
example plot in Figure 5Ai presents an ideal situation in
which all cut-offs remove only the elongated tail that is
caused by computational errors and weeds integrated within
the canopy structure of the plot, thus affecting the maximum
height measurements. In the other two exemplar plots shown
in Figures 5Aii,iii, the 2 SD cut-off point clearly removes
part of the canopy, while the 2.5 SD cut-off removes part
of the canopy in Figure 5Aii, but not in Figure 5Aiii. This
increase in percentage of points removed is also exhibited
in Figure 5B. The combined analysis from Figures 4, 5
suggested that the 3 SD cut-off was the most appropriate as it
deterred the removal of the canopy data while also removing
most of the noise.

To gain a clearer understanding of how the observations made
in Figure 5 were reflected in the rest of the field, Figure 6A
presents the overall effects of the same standard deviation cut-offs
on all experimental plots (individual histograms are not shown).
In accordance with Figure 5, the 2 SD cut-off removed the highest
percentage of data points. A large number of plots had relatively
high percentages of data removed, with an overall average of
more than 1%, indicating that canopy data is removed from most
plots. The 2.5 SD cut-off performed better, but still removed the
canopy data from a significant portion of the experimental plots.
As expected, the 3 SD cut-off removed the lowest percentage
of data points, but still preserved the canopy profile of all the
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FIGURE 4 | Comparison of maximum height computed from UAV flights with proximal ground truth measurements at plot level, for pre clean up UAV data (A), and
data cleaned using cut-offs of 3 (B), 2.5 (C), and 2 (D) standard deviations above the mean. p < 0.01 in all cases and n = 488.

FIGURE 5 | (A) Effect of 3 different standard deviation (SD) cut-offs on plot canopy datasets. Histograms represent the canopy area coverage at different height
levels using pre clean up canopy height data. (i–iii) Demonstrate 3 exemplar canopy plots. (B) Percentage of points removed from the point cloud at each SD cut-off
for the corresponding histograms in (A).

plots in the experiment (a similar scenario to the one shown
in Figure 5Ai, where over 1% of points are removed from a
particularly pronounced elongated tail).

Independent of the nature of the data points (i.e. canopy
data versus errors), their removal will always reduce the
measured average and maximum canopy heights (Figures 6Bi,ii,
respectively). As expected, the estimated maximum canopy
height based on the 2 SD cut-off showed the most divergence
from the estimate based on pre clean up data, while the 2.5
and 3 SD cut-offs led to a stronger correlation (Figure 6Bii).

In contrast, for the average canopy height, the three different
standard deviation cut-offs have no effect (Figure 6Bi). This
indicated that the average height was not significantly affected by
the existence of elongated tails caused by computational errors
and weeds integrated within the canopy structure. Similarly,
comparing average height with proximally measured field
maximum height, there was no discernible difference between
using pre clean up data or data cleaned using different SD cut-
offs, with all comparisons showing an adjusted R2 of 0.46 and
all p < 0.01. Thus, the point cloud generated average height
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FIGURE 6 | (A) Box-plot of the percentage of points removed from the point cloud of individual plots based on 3 different standard deviation (SD) cut-offs, shown by
flight and by year (n = 8,264). The locations of the exemplar plots shown in Figure 5 are indicated with gray arrows. (B) Relationship between the pre clean up
dataset and post clean up dataset using three SD cut-offs, for the: (i) average canopy height and (ii) maximum canopy height. All analyses have a p < 0.01,
n = 8,264.

provided a more consistent measure than the maximum height
for evaluating canopy height in potato.

Comparison of Difference Model
Computation Methods
There are various methods for constructing difference models
in the TBC software. These differ according to feature usage,
including breaklines and newly extrapolated points where
surfaces intersect, in addition to existing points in the surfaces.
We compared the “trace all triangles” method with the “do not
track breaklines” method and evaluated the pros and cons of each.

The “trace all triangles” method (Figure 3B) had a much
denser mesh generation compared with the “do not track
breaklines” method (Figure 3C), especially where the canopy and
soil references overlapped. To assess any potential impact on
our results, 300 plots were analyzed using both computational
methods. There was no significant difference between the two
methods for the canopy volume generated (Spearman’s rank
correlation r = 1.00, adjusted R2 = 1.00, p < 0.01, n = 300;
Supplementary Figure S2). However, the “trace all triangles”
method was computationally demanding and took significantly
longer (48 h) than the “do not track breaklines” method (25 min)
to compute all 300 plots. Though it was not based on a
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FIGURE 7 | Relationship between Leaf Area Index and computed (A) Canopy
ground cover and (B) Canopy volume for all observations (dashed black line,
n = 291) or when observations with LAI above 3.4 are discarded (solid black
line, n = 251). r is the Spearman’s rank correlation, R2 is the adjusted R2. All
statistical tests have a p < 0.01.

quantitative in-depth analysis when compared to the “trace
all triangles” method, the “do not track breaklines” method
therefore seemed the most appropriate based on the required
computational resources.

Relationship of Canopy Traits With LAI
Previous potato studies (Haverkort et al., 1991; Boyd et al.,
2002) indicated that when leaf area index (LAI) is higher
than 3, there is no longer a relationship between LAI and
ground cover, because the canopy has grown to the point
of achieving full ground cover. We found LAI correlated
significantly (p < 0.01) with both canopy volume and canopy

ground cover, with correlation coefficients of 0.50 and 0.39,
respectively (Figure 7). The strongest relationships with canopy
volume (r = 0.55, p< 0.01) and ground cover (r = 0.44,
p < 0.01) were identified when observations with LAI above
3.4 were discarded, as those discarded observations showed no
relationship with either canopy trait.

Temporal Variation of Canopy
Characteristics
The combination of canopy height, ground cover and volume
can provide comprehensive canopy size information. Though
average height is a more robust parameter than maximum height
for canopy height measurement, it does not provide quantitative
information on canopy shape or structure. Therefore, height
distribution data is important for characterizing the canopy
profile. The combined information on the canopy size and
shape from sequential flights helps to better understand the
pattern of canopy growth and development and the current stage
of plant growth.

Figure 8 presents a simplified version of the more complex
real-world plant growth pattern data. It provides a general guide
for the interpretation of growth patterns over time and illustrates
how UAV data can be used to infer canopy development
and size distribution. This guide can be a useful tool not
only for monitoring individual plant/canopy development, but
also to understand varietal variation. The canopy exemplars in
Figure 8 show several growth patterns, canopy shapes and their
corresponding height distribution histograms. In the simulated
growth pattern, we mimic the increase in area/ground cover (e.g.,
“sideways growth”), the increase in height (e.g., “vertical pyramid
growth,” “vertical even growth with higher starting point”), and
present examples of plant lodging and plant senescence.

We chose three varieties to provide an illustration of not
only how the interpretation of canopy data can be used to infer
canopy development, but also how data gathered over the entire
growing season allows the determination of maturity (Figure 9).
In variety Nadine (Figure 9A), we observed that from 33 days
after planting (DAP) to 62 DAP the change in height distribution
showed an almost perfect example of the “Vertical even growth”
pattern (Figure 8), with the canopy changing from a pyramid
like shape to a more bulky rectangular shape. This growth was
associated with an increase in canopy volume, ground cover and
height. By 95 DAP, senescence had begun, with the accompanying
decrease in canopy volume, ground cover and height, as expected.
The height distribution also resembled the “senescence” pattern
(Figure 8), and by 117 DAP the canopy had already senesced
completely. A quick early growth followed by rapid senescence
indicated that Nadine was an early maturing variety.

In variety Bonnie (Figure 9B), we observed that from 33 DAP
to 62 DAP there was an expected increase in canopy height,
ground cover and volume. However, unlike Nadine, the height
distribution pattern was not perfectly matched to the one shown
in the guide (Figure 8). At both 33 and 62 DAP, the canopy
growth seemed to be occurring more like “vertical even growth,”
but the height in the middle part of the canopy increased more
rapidly than the remaining area, i.e., the height of the main

Frontiers in Plant Science | www.frontiersin.org 10 February 2021 | Volume 12 | Article 612843

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-612843 February 8, 2021 Time: 16:3 # 11

de Jesus Colwell et al. Potato Phenotyping Using UAV Datasets

FIGURE 8 | Guide to interpretation of canopy development data at two time points. Column 1 shows a diagrammatic representation of the canopy side profile with
the corresponding height distribution histograms located in column 2 (simulated data). Time points 1 and 2 are shown in light green and dark green, respectively.
Column 3 defines the name given to each growth pattern, followed by a brief description of the most relevant changes between the two time points.

stem seemed to be increasing more quickly relative to the side
stems. At 95 DAP, we observed a good example of plant lodging,
with the bulk of the canopy shifting toward lower height, and
canopy ground cover continuing to increase despite the decrease
in canopy volume and height. This variety also serves as an
example of continued growth after lodging, as we observed an
increase in canopy volume, ground cover and height at 117 DAP,
which was also evident in the corresponding 3D model, with the
growth of new stems at the center of the canopy (Figure 9B).
The continuous growth until 117 DAP indicated that this variety
was an intermediate to late maturing variety, but that lodging
probably hinders its full growth potential.

Variety Bounty (Figure 9C) had a small canopy at 33 DAP
due to late emergence. By 62 DAP it presented a similar height
distribution pattern to Nadine but was clearly smaller. At 95
DAP the canopy size continued to increase. When looking at
the height distribution pattern, there was a noticeable increase
in area in the low to medium height range, with little increase
in the maximum height. Combined with the consistent increase
in the ground cover growth from 33 to 95 DAP, this suggested
that either there was a chance of small partial lodging, which

allowed the plant to increase its ground cover, or that this
variety invested more in lateral growth than vertical growth
(for more photosynthetic capacity). Only at 117 DAP was the
start of senescence observed. This pattern of continuous growth
until nearly the end of the season indicated that this variety
was either intermediate leaning toward late maturing, or a late
maturing variety.

DISCUSSION

Approaches for Determining Soil
Topography
One of the major difficulties in using Structure from Motion to
generate point clouds is the inability to determine the topography
of the soil below the plant canopy. To overcome this hurdle,
a soil surface was created using soil surrounding the plots and
then a compensation was made for the average ridge height.
This is the first study to implement and evaluate this new
method in ridged crops, which is an extrapolation of the method
commonly used in height assessment studies (Bendig et al., 2015;
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FIGURE 9 | Monitoring Canopy Volume (CV), Canopy Ground Cover (CGC) and Plant Height (H) over the growing season using difference models of three varieties:
Nadine (A), Bonnie (B) and Bounty (C) from 33 to 117 days after planting (DAP). Histograms represent the height distribution of the corresponding difference model.
Maximum height is indicated with a dark red arrow and mean height with a medium red arrow. The difference model is color coded based on height, with red
(<0 cm, soil), yellow (0–20 cm), green (20–40 cm), blue (40–60 cm), and purple (>60 cm).

Holman et al., 2016; Mohan et al., 2017; Hassan et al., 2019).
This method depends on the existence of easily identifiable
bare soil in close proximity to the crops, which is easy at
the beginning of the season (also evident from Holman et al.,
2016; Mohan et al., 2017), but may become impossible when
the plant canopy achieves total ground coverage, depending on
canopy structure.

An alternative method would be to perform a UAV flight
before plant emergence begins and use the soil topography
as a reference for all subsequent data collection points. This
method has the dual advantage of capturing the true ridge
height and allowing plant growth to be monitored below
the ridge height, which is particularly relevant later in the
season when lodging and plant senescence significantly alter

Frontiers in Plant Science | www.frontiersin.org 12 February 2021 | Volume 12 | Article 612843

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-612843 February 8, 2021 Time: 16:3 # 13

de Jesus Colwell et al. Potato Phenotyping Using UAV Datasets

the canopy structure. However, in some potato planting cases
(e.g., in organic systems), re-ridging is important, which further
motivated the evaluation of the new technique in this work.
Both methods share the assumption that soil topography remains
relatively constant throughout the growing season. However,
changes in soil topography during the season could be a
significant factor during data collection for crop phenotyping
and growth monitoring studies. Such effects are expected
to be more significant when plots are used for scientific
research, and hence subject to higher intervention rates, but
may be much less in large commercial agricultural fields.
Simultaneous use of both methods may be beneficial, as the
measurement of canopy proportion that is above or below
the ridge height may be of use in monitoring senescence
and plant lodging.

Consistency Between Proximal and UAV
Based Measurements
Previous studies in various crops including rice, wheat and
maize, have demonstrated high correlations (r > 0.90) between
remote and proximal measurements of plant height (Bendig
et al., 2015; Holman et al., 2016; Li et al., 2016). Here, we
observed correlations between 0.64 and 0.7 (p < 0.01) between
plant height measured proximally using a ruler in the field
and height measured using point cloud UAV data after clean
up. The comparatively low level of correlation we observed
may be attributed to several factors. One important difference
between potato and the crops in previous studies is the canopy
architecture. Potato plants are usually grown from tuber seeds,
which result in a potato plant canopy composed of several
main stems (Struik, 2007) in the form of a shrub, while the
previously studied crops (mostly cereals) either have only one
main stem or tend to have mostly vertical growth. This increases
user bias error in the field measurement of potato plant height,
as the user may erroneously measure a stem that is not the
same as the one selected with point cloud data. This error
may be removed by using a GPS based height measurement
tool to ensure that the same point of proximal measurement in
the field is compared with its UAV cloud dataset counterpart.
The potato canopy is also shorter than some previous crops
analyzed, and hence the relatively fixed error associated with
Structure from Motion point clouds can have a slightly greater
proportional impact on measurement. The spatial resolution or
flight conditions also play an important role in the calculation
of height, as lower flight altitudes generate more accurate height
estimates (Holman et al., 2016). This may well have played
a role in our datasets as we used fixed wing aircraft with
most flight data collected at around 75 m with over 85%
overlap in data collection. A multi-copter would allow more
freedom regarding control over the spatial resolution, with
similar image overlaps.

Height Measurements
Maximum height is commonly used to represent plant growth
characteristics in shrub plants including potato, cotton, and
fruit trees, and in cereals where data is collected from large

plots and maximum height based on a small number of
point clouds is used. We have shown that compared with the
maximum height, the average height provides a more consistent
measure of plant height, which is both more robust to the
data cleaning strategy, and better representative of the entire
canopy height distribution, as demonstrated using temporal
data on the canopy structure of three varieties (Figure 9).
In addition, the use of maximum height data has higher
potential for user bias during in-field measurements, and for
computational error effects while analyzing the UAV point
cloud data. Thus, though it is almost impossible to verify
using traditional in-field measurements, we recommend the
use of average height as it gives a much better representation
of plant growth, which is of utmost importance when
attempting to understand the genotype-phenotype relationship
in plant breeding. The improved precision in phenotype
datasets allow us to decrease the error values and hence
provides the opportunity to improve the heritability of traits
(Cobb et al., 2013). Thus, the accuracy and precision in
phenotyping provide the necessary tools to empower the
next generation of linkage mapping and association studies
and further improve the results of genomic selection (Cobb
et al., 2013; Prashar and Jones, 2014; Bhat et al., 2016;
Melandri et al., 2019).

Canopy Traits and LAI
Previous studies have reported correlations between leaf area
index and ground cover ranging from 0.52 to 0.92 based
on analyses of one or two potato varieties (Haverkort et al.,
1991; Boyd et al., 2002). These studies also highlight high
correlation with canopy cover for LAI values below 3, but
no relationship for LAI above 3, due to complete ground
cover. Here, we observed a lower correlation of r = 0.44
(p < 0.01) and a similar cut-off point of LAI 3.4 was established.
The reduced correlation within our dataset is likely due to
the high levels of varietal variation in canopy architecture
compared to previous studies where analysis was carried out
on one or two varieties. Canopy volume exhibits a higher
correlation with LAI (r = 0.55, p < 0.01) in our data,
because even though UAV measured canopy volume does
not consider canopy leaf density, larger canopies are more
likely to have a higher leaf density and hence higher LAI.
Further developments for UAV determined canopy volume,
ground cover and LAI would have to take into consideration
varietal data to enable integration into potato yield prediction
models in the future.

Plant Growth and Development
Monitoring
Crop monitoring for growth and performance during
development is an important aspect of agricultural management,
and not only allows creation of yield prediction models, but
also enables implementation of timely interventions to ensure
optimal yields. Therefore, while individual flights provide useful
point information on the size and the general canopy health of
the plants, it is the continuous data integration of the potato
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plants over the growing season that gives the greatest potential
for a predictive modeling approach. In our study, data collection
from just 4 flights over the growing season allowed us not only
to identify the maturity of the different varieties, but also to
better understand the canopy development of those varieties.
Canopy architecture impacts light interception, water uptake
and transpiration, important factors for carbon acquisition and
allocation (Haverkort et al., 1991; Burgess et al., 2017; Tang et al.,
2019). These represent some of the most valuable traits that
breeders need to focus on for breeding improved crop varieties
that are well adapted for meeting the challenges posed by climate
change. Hence, use of the crop canopy assessment techniques
described here will help to determine optimal plant architecture
or ideotypes for different breeding purposes (Da Silva et al., 2014;
Obidiegwu et al., 2015; Burgess et al., 2017).

Opportunities and Challenges
Many studies have explored the potential of structure from
motion techniques in life sciences. In the field of agriculture,
the focus has been on monocot crops, specifically wheat, whose
development is usually assessed via height measurements (Bendig
et al., 2013, 2014, 2015; Holman et al., 2016; Jin et al., 2017;
Hassan et al., 2019). Wheat, like most cereals, has a relatively
homogeneous height distribution of the canopy when compared
to potato. Potatoes are also grown on ridges or ridged rows where
soil background is distinguishable in most scenarios and are a
bush like crop in which ground cover is recognized as one of
the main methods to evaluate growth. The pipeline developed in
this work combines vertical growth with canopy cover data, as
potato grows in a great variety of canopy shapes and structures
that will be hard to capture with only a 2-dimensional parameter
such as height or ground cover. This pipeline and the difference
model creation allows us to capture the entire canopy distribution
at ∼1 cm resolution and determine canopy cover and volume at
different height levels during crop growth and development. That
said, we want to highlight that structure from motion is one of
the available techniques which can be used for obtaining surface
information of crop canopies non-destructively. There are other
approaches such as terrestrial laser scanning, laser triangulation,
time of flight etc., which allow higher point cloud resolution
(depending upon sensor and platform) and hence 3D sensing for
plant phenotyping (Paulus, 2019).

CONCLUSION

The paper highlights the application of existing tools for
processing point cloud data obtained from UAV imaging for
practical and accurate phenotyping of canopy architecture traits
(plant height, canopy cover and volume) in potato which can be
replicated in other bush type crops. In particular, the approach
allows the consistent monitoring of canopy traits, which will
facilitate the creation of accurate individual growth profiles
for new and existing varieties. These profiles will enhance
all future studies that assess not only varietal variability, but
also its interaction with environmental factors (e.g., drought,
temperature stress) and agriculture management practices (e.g.,

fertilization, tillage and crop rotation), thus supplying valuable
environmental interaction data to help alleviate one of the
current bottlenecks in genotype-phenotype association studies
(Elias et al., 2016).

Using the newly developed and low-cost techniques, farmers
could use the information from temporal monitoring of canopy
size characteristics to identify key indicators of canopy age, health
and development. For example, identification of early senescence
(a potential indicator of stress), drooping due to stress or disease,
or canopy lodging due to inadequate stem strength or maturity,
thus facilitating the prediction of disease occurrence and spread.
Identification of the current stage of the crop life cycle based
on the detailed crop and variety profiles, in combination with
other datasets, would allow farmers to determine the optimal
time for harvesting based on varietal variation. These examples
illustrate how a better understanding of the time course of crop
development can inform important decisions and hence improve
agricultural management practices.
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