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Pathogens and animal pests (P&A) are a major threat to global food security as they
directly affect the quantity and quality of food. The Southern Amazon, Brazil’s largest
domestic region for soybean, maize and cotton production, is particularly vulnerable
to the outbreak of P&A due to its (sub)tropical climate and intensive farming systems.
However, little is known about the spatial distribution of P&A and the related yield losses.
Machine learning approaches for the automated recognition of plant diseases can help
to overcome this research gap. The main objectives of this study are to (1) evaluate
the performance of Convolutional Neural Networks (ConvNets) in classifying P&A, (2)
map the spatial distribution of P&A in the Southern Amazon, and (3) quantify perceived
yield and economic losses for the main soybean and maize P&A. The objectives were
addressed by making use of data collected with the smartphone application Plantix.
The core of the app’s functioning is the automated recognition of plant diseases via
ConvNets. Data on expected yield losses were gathered through a short survey included
in an “expert” version of the application, which was distributed among agronomists.
Between 2016 and 2020, Plantix users collected approximately 78,000 georeferenced
P&A images in the Southern Amazon. The study results indicate a high performance of
the trained ConvNets in classifying 420 different crop-disease combinations. Spatial
distribution maps and expert-based yield loss estimates indicate that maize rust,
bacterial stalk rot and the fall armyworm are among the most severe maize P&A,
whereas soybean is mainly affected by P&A like anthracnose, downy mildew, frogeye
leaf spot, stink bugs and brown spot. Perceived soybean and maize yield losses amount
to 12 and 16%, respectively, resulting in annual yield losses of approximately 3.75 million
tonnes for each crop and economic losses of US$2 billion for both crops together. The
high level of accuracy of the trained ConvNets, when paired with widespread use from
following a citizen-science approach, results in a data source that will shed new light on
yield loss estimates, e.g., for the analysis of yield gaps and the development of measures
to minimise them.

Keywords: plant pathology, animal pests, pathogens, machine learning, digital image processing, disease
diagnosis, crowdsourcing, crop losses
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HIGHLIGHTS

- ConvNets were trained to identify 420 crop disease classes
under diverse conditions.

- Crowdsourcing can significantly improve the data basis for
algorithm training.

- Expected yield losses to pests and diseases in the Southern
Amazon are below global estimates.

- Annual soybean and maize yield losses to pests and diseases
each amount to 3.75 million tonnes.

- Citizen science data can help to identify yield gaps and
advance the field of crop loss research.

INTRODUCTION

Pathogens and animal pests (P&A) are major challenges
to global food security, directly affecting the quantity
(reduced productivity) and quality (e.g., reduced content
of valuable nutrients, poorer market quality, and inferior
storage characteristics) of food (Oerke, 2006)1. They can cause
devastating yield losses, leading to malnutrition and starvation,
as several examples in history have shown (e.g., the Irish Potato
Famine (1845–49), caused by potato leaf blight; and witches’
broom disease, Moniliophthora perniciosa, which destroyed
Brazil’s leading position in world cocoa production). Globally,
direct yield losses to P&A were estimated to range between 20
and 30% for major food and cash crops (Oerke and Dehne,
2004; Oerke, 2006; Savary et al., 2019). Besides these direct
effects on food provision, P&A also have indirect effects on the
environment (e.g., pesticide use, soil contamination), public
health (e.g., mycotoxin contamination) and the economic
performance of rural communities (Savary et al., 2012).

The Southern Amazon (specifically, the states of Mato Grosso
and Pará) is Brazil’s largest domestic producing region of cotton
(64% of national output), maize (34%) and soybeans (28%)
(CONAB, 2019). High annual rainfalls and relatively long wet
seasons with reliable onset dates allow for the cultivation of two
crops in one season (Arvor et al., 2014). Early maturing soybean
cultivars are grown at the onset of the rainy season and are either
followed by maize or cotton. The high production intensity as
well as the warm and humid climate, however, make the region
susceptible to the outbreak and spread of P&A. Soybean, maize
and cotton production are expected to decrease by 30–40% if
farmers do not make use of pesticides to control major P&A
(CEPEA, 2019). One of the largest threats to crop production
in the Southern Amazon is the fungus Phakopsora pachyrhizi,
commonly known as Asian soybean rust, causing yield losses of
up to 90% (Godoy et al., 2016). Since its first occurrence in Brazil
in the early 2000s, the fungus has caused annual yield losses in the
range of 360,000–4.6 million tonnes, and economic losses (grain
loss +pest control costs) of approximately US$0.18–2.38 billion
per year (Godoy et al., 2016).

1The term crop losses refers to both quantitative and qualitative losses, whereas the
term yield losses covers quantitative losses only. The focus of this study is on yield
losses.

However, although P&A can cause immense crop damage
and economic losses, there are very few systematic research
and monitoring programmes on the impact of P&A on crop
performance and their spatial distribution. Yield loss data is often
based on a limited number of site-specific tests or a particular
pathogen over one season. As a result, there has been a persistent
and chronic lack of knowledge on the frequency and extent
of crop losses caused by plant diseases (Esker, 2012; Nelson,
2017). Moreover, biotic yield losses are largely ignored in yield
gap analysis. Yield gaps are an essential concept in crop loss
research, defined as the difference between potential yields and
actual yields (van Ittersum et al., 2013). While yield losses due
to nutrient- and water deficiency were extensively explored using
crop modelling, such studies for P&A or weeds are still missing.
One major challenge to quantifying P&A-related yield losses
is the extremely large diversity of plant diseases, the diversity
of life cycles of these organisms and the enormous number of
interactions that may exist between P&A and their host crops
(Donatelli et al., 2017; Savary et al., 2018).

Various methodological approaches have been used to identify
P&A and to quantify associated yield losses, including field
experiments (Savary et al., 2016), expert surveys (Savary et al.,
2019), simulation modelling (Bregaglio and Donatelli, 2015;
Donatelli et al., 2017), remote sensing (Mahlein, 2016), image
recognition techniques (Barbedo, 2013; Barbedo et al., 2016), and
deep learning models (Boulent et al., 2019). Deep learning model
and in particular convolutional neural networks (ConvNets)
have recently achieved impressive identification performances
in various visual classification tasks, such as the automatic
identification of plants and animals (LeCun et al., 2015;
ImageCLEF, 2018). Due to their capacity to generalise, they can
overcome many of the challenges (e.g., diseases with similar
symptoms, multiple simultaneous disorders in a single plant)
faced by traditional classification methods (e.g., thresholding,
fuzzy classifier, feature-based rules), which appear to be either
too specific (identifying just a small number of pathogens) or
too sensitive (functioning only under strict operation conditions)
(Barbedo, 2013; Boulent et al., 2019).

Several studies demonstrated that ConvNets can be trained to
identify a large number of different plant-disease combinations
with an accuracy of 85–99% (Mohanty et al., 2016; Ferentinos,
2018; Boulent et al., 2019). The accuracy of these models,
however, drastically fell to 25–30% when they were tested on
images taken under conditions other than the training dataset
(Mohanty et al., 2016; Ferentinos, 2018). The acquisition of
a large, verified database with P&A images from different
geographic locations as well as the maximisation of real-
condition images in the training dataset are two of the
major challenges to further improving ConvNets’ performance
(Mohanty et al., 2016; Barbedo, 2018b; Ferentinos, 2018).
Integrated into mobile devices such as smartphones, ConvNets
can be turned into valuable decision support tools for farmers,
allowing for plant disease diagnosis on a massive—indeed
global—scale (Hughes and Salathe, 2015; Mohanty et al., 2016;
Ferentinos, 2018). For instance, Picon et al. (2019) implemented
their trained model into various mobile devices and obtained
balanced accuracies of 86 and 98% for two different wheat
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diseases. In another study, Ramcharan et al. (2019) deployed
a ConvNet in a mobile app to identify three different cassava
diseases in Tanzania but reported a 32% drop in the classification
performance when shifting from the test dataset to real-
world images.

To sum up, the most important research gaps are a lack of
data on the spatial distribution of plant diseases and associated
yield losses in the Southern Amazon, a lack of a large verified
database for the training and further improvements of ConvNets
and a lack of implementation of deep learning technologies for
the automated recognition of plant diseases into a practical tool
for farmers and/or extension workers. The study seeks to address
these research gaps by targeting the following objectives:

(i) Evaluating the performance of ConvNets in classifying
P&A

(ii) Mapping the spatial distribution of P&A in the Southern
Amazon, Brazil

(iii) Quantifying perceived yield losses for main soybean and
maize diseases

(iv) Discussing the potential benefits and limitations of
an automated plant disease classification and possible
implications for the field of crop loss research.

The objectives were addressed in a joint effort by the
Leibniz Centre for Agricultural Landscape Research (ZALF)
and PEAT GmbH (Progressive Environmental and Agricultural
Technologies). In 2016, PEAT launched Plantix, a mobile
decision support application for farmers, extension workers
and gardeners that uses image recognition and deep learning
to diagnose P&A. As part of this study, the Plantix library
was expanded to include P&A common to the (sub)tropical
environment of the Southern Amazon and a 3 months field test
was carried out in 2016 to capture field-condition images and to
test and promote the app in situ. Since then, Plantix users have
captured more than a million images of P&A in Brazil.

MATERIALS AND METHODS

Study Area
The states of Mato Grosso (MT) and Pará (PA)—located in
the Southern Amazon of Brazil (Figure 1A)—are dominated by
highly industrialised agricultural systems, mainly consisting of
soybean-maize and soybean-cotton rotations. In 2019, farmers
in MT produced approximately 32, 31, and 4.5 million tonnes
of soybean, maize and cotton (seeds and lint) on 9.6, 4.9,
and 1 million ha (Mha) of cropland, respectively (Figure 1B;
CONAB, 2020). The climate in the study area is sub(tropical),
with pronounced dry and wet seasons and annual precipitation
rates ranging from approximately1,000 mm in South MT to
over 3,000 mm in Northern PA (INMET, 2019). However,
the warm and humid climate, as well as changes in the
production system (e.g., expansion of the agricultural frontier
northward, extended sowing periods, lack of rotation) have
led to a high incidence and spread of P&A in the study
area (Godoy et al., 2016; Fundação, 2019). The main diseases
affecting agricultural production in the study area are Asian

soybean rust (in soybean); common and tropical rust (in maize);
and anthracnose and Ramularia blight (in cotton) (ABRAPA,
2011; Fundação, 2019). The most damaging pests are those
that feed on multiple crops (polyphagous pests) and disperse
across fields and over extended periods, such as the lesser
cornstalk borer (Elasmopalpuslignosellus), the cotton bollworm
(Helicoverpa zea, also known ascorn earworm), and the fall
armyworm (Spodoptera frugiperda) (Fundação, 2019). A detailed
overview of the main P&A affecting agricultural production
in the study area is given in Supplementary Tables 1,2. To
reduce the impact of P&A on crop production, genetically
modified (GM) crops have been increasingly grown in Brazil. In
the 2017–18 cropping season, insect-resistant seeds, herbicide-
tolerant seeds or a combination of both were planted on 97, 91,
and 84% of soybean, maize (second season) and cotton fields,
respectively (Céleres, 2018). Likewise, the use of pesticides in
Brazil increased from approximately50 million tonnes in 1990 to
378 million tonnes in 2017 (FAOSTAT, 2019), with MT reporting
the largest amount of pesticide use (Pignati et al., 2017). The costs
of pesticides (fungicides, herbicides and insecticides) have been
estimated to account for 16, 9, and 27% of the total production
costs for soybean, maize and cotton, respectively (CEPEA, 2019).

The Plantix Application and Its Workflow
Georeferenced images of P&A were collected by users of the
Plantix smartphone application. The application was released by
PEAT in 2016 and is freely available in different languages for
any smartphone using the Android operating system. The core
function of the app is the automated classification of P&A using
ConvNets and involves four steps: (1) taking a picture of the
infected plant; (2) classifying the image using several ConvNets;
(3) confirming or rejecting the diagnosis by the user; and (4)
receiving further information on causes, preventive measures
and control options (Figure 2). When taking a picture of a
diseased plant in the field, the user can upload the image either
directly to a remote server, or the image can be stored on the
smartphone and uploaded as soon as a functioning internet
connection is available. This enhances the app’s usability in rural
and remote areas with low mobile internet connectivity. Once
uploaded, the image is classified using multiple ConvNets (one
network to determine if the image contains a relevant crop or
no plant at all (e.g., an object); one network to classify the crop
type; and one to classify the disease). Then, the most similar
crop disease combinations (further referred to as “classes”) are
displayed to the user and ranked according to their softmax
probabilities (see section “Convolutional Neural Networks and
Softmax Probability”). Based on this probability ranking as well
as a symptom description and reference images for comparison,
the user can either confirm or reject the diagnosis. Once the
diagnosis is confirmed, the user receives further information
on causes, preventive measures, and biological or chemical
treatment options. The app can also be used as an offline library,
which currently (as of June 2020) contains a description of 592
P&D (267 fungal diseases, 191 insects, 51 bacteria, 51 viruses,
21 mites, and 11 deficiencies). Currently, the ConvNets can
automatically detect 231 plant diseases and deficiencies on 49
different species, resulting in a total of 420 classes. Although
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FIGURE 1 | (A) Study of area within Brazil. (B) Soybean production by municipality in Mato Grosso and Pará in thousands of tonnes in 2018, as well as pesticide
use in litres in MT. IBGE (2019b), INDEA (2020). Maps created using ArcMap 10.6.1.

FIGURE 2 | Function flow of the smartphone application Plantix: (1) The user takes a picture of the diseased plant organ. (2) ConvNets classify the image. (3) The
user confirms or rejects the diagnosis. (4) The app displays additional information on symptoms, preventive measures and P&A control mechanisms.
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deficiencies can also be detected, the focus of the application and
this study is on P&A.

Convolutional Neural Networks and
Softmax Probability
Image classification in Plantix is done via ConvNets, a type of
deep neural network, which processes data that comes in the form
of an array—for example, a colour image composed of three 2D
arrays containing pixel intensities in the three colour channels
(LeCun et al., 2015). The architecture of a typical ConvNet mainly
consists of convolutional layers and pooling layers. The role of
the convolutional layers is to detect local conjunctions of features
from the previous layer, whereas the role of the pooling layers is
to merge semantically similar features into a single one (LeCun
et al., 2015). Multiple ConvNets, such as GoogleNet, AlexNet,
and ResNet, have been trained and tested for the classification
of plant diseases (Boulent et al., 2019). Other networks, such as
EfficientNet (source code/weights) were especially designed for
the use on mobile devices. EfficientNet achieves state-of-the-art
accuracy with fewer parameters and fewer number of floating-
point operations (FLOPs) than other current ConvNets (Tan and
Le, 2019; Tan et al., 2019). Due to their high accuracy, this study
trained and tested ConvNets using the EfficientNet architecture
on a large crowdsourced image database held by PEAT.

To facilitate the interpretation of the network’s output,
the convolutional and pooling layers are followed by a fully
connected layer. The logits contained in this last layer are
converted into probabilities using an activation function, most
commonly softmax. Softmax normalises the input array into a
scale between 0 and 1, with the sum of the softmax output
resulting in 1 (Sharma et al., 2020). In multi-class classification,
which is the case of plant disease recognition in Plantix, the
output of the softmax activation function is given as a vector with
probabilities for each class, e.g., [0.2, 0.6, 0.1, . . .]. The class with
the highest probability among all the distributed probabilities
is the top-1 prediction. Plantix displays the top-1 prediction
to the user as the most likely disease, but other predicted
classes with lower probabilities (top-2, top-3) can be shown on
lower-ranking positions, thus serving as a decision support tool.
Although the prediction probability from a softmax distribution
has a poor direct correspondence to confidence, correctly
classified examples tend to have a greater maximum softmax
probability than erroneously classified or out-of-distribution
examples (Hendrycks and Gimpel, 2017). Therefore, in this
study, only images with a top-1 softmax probability above
0.5 for both the predicted crop and disease were retained in
the final dataset.

Model Training and Testing
The ConvNets implemented in Plantix were trained and tested
on a large crowdsourced image database, collected either directly
by Plantix users or by agronomists. While agronomists helped to
gather images of less frequent diseases, a high share of images
directly collected by Plantix users increases the diversity in the
image dataset in terms of e.g., image quality, geographic location
and smartphone devices. The larger the diversity in the image
dataset and the better it reflects the reality of the operational

environment, the greater the robustness of the trained model
(Barbedo, 2018b; Boulent et al., 2019). Images used for model
training and testing were not only collected in Brazil (see section
“Fieldwork in Mato Grosso”) but also in other world regions
(e.g., Germany, India). All images were either directly annotated
by agronomists or annotated and validated afterward by plant
experts. The final image dataset was split into a training (2/3)
and testing (1/3) subset. Using transfer learning, one ConvNet
was trained to classify species (crop ConvNet) and another one to
classify P&D and deficiencies (disease ConvNet). The ConvNets
are trained with a cosine annealing learning rate over 20 epochs.
The total time for training on a machine using two Nvidia
GeForce RTX 2080 Ti GPUs is 28 h.

The performance of the ConvNets in identifying plant
diseases was assessed by comparing the predicted label (ConvNet
classification) to the actual label (expert classification) for each
element of the test dataset and calculating the three following
evaluation metrics: (1) precision, (2) recall, and (3) F1 score. Also,
the proportion of images where the correct class was among the
top-3 predicted classes was calculated. “Precision” designates the
number of images correctly labelled as belonging to the positive
class (true positives) divided by the total number of images
labelled as belonging to the positive class (sum of true positives
and false positives). “Recall” is defined as the number of true
positives divided by the total number of images that actually
belong to the positive class (sum of true positives and false
negatives). The F1 score is the harmonic mean of the “precision”
and the “recall” figures (Powers, 2011). All metrics are based
on the binary confusion matrix (Table 1). Table 2 provides an
overview of how to calculate each metric.

Fieldwork in Mato Grosso
Three months of fieldwork (from September to December
2016) was carried out in MT to collect training images and
to promote the app among farmers and their organisations.
Before the fieldwork, an online survey was conducted among
local agronomists and plant experts to identify the main
soybean, maize and cotton plant diseases common to the
Southern Amazon. The online survey asked agronomists to
rank a literature-based pre-selection of P&A according to their
importance and/or to name additional P&A. The survey was

TABLE 1 | Confusion matrix for a classification task.

Prediction (ConvNet classification)

Positive Negative

Actual (expert classification) Positive True positive (Tp) False positive (Fp)

Negative False negative (Fn) True negative (Tn)

TABLE 2 | Formula of evaluation metrics used to assess ConvNet performance.

N◦ Evaluation indices Formula

1 Precision Tp
Tp+Tp

2 Recall (sensitivity) Tp
Tp+Fn

3 F1 score 2 ∗ precision ∗ recall
precision + recall
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sent to agronomists of the Brazilian Agricultural Research
Corporation (Embrapa), as well as to universities and research
institutes specialising in agronomy. The P&A they identified
were incorporated into the Plantix library with a description
of their symptoms as well as preventive measures and control
options. Besides, the library and menu of Plantix were translated
into Portuguese.

During fieldwork, more than 50 farms in Southeast and
Central Mato Grosso were visited to test Plantix in the field
and collect images that could be used for model training.
One crucial element of the fieldwork was to advertise the app
among farmers, research institutes, students and the general
public to ensure a large engagement in the crowdsourcing
project. Advertising materials were distributed at universities
and research institutes and sent to public and private farmers’
organisations, such as Aprosoja and the Mato Grosso Research,
Assistance and Rural Extension Company (EMPAER), as well
as to more than 200 local offices of the Rural Workers’ Union
(FETAGRI) and the Rural Union (FAMATO). One example of
these advertising materials is shown in Supplementary Figure 1.

Survey on Perceived Yield Losses and
Yield Loss Estimates at the State Level
Besides the above mentioned online survey, a second survey
was conducted during the cropping season 2016–17 to gather
information on perceived yield losses to P&A. This survey
was directly included in an “expert” version of Plantix, which
was distributed exclusively among agronomists and other plant
experts. When taking a picture of a diseased plant, the
agronomists were asked to roughly estimate expected (future)
yield losses. Six different answer ranges were possible: 0–5, 5–10,
10–20, 20–50, 50–70, and more than 70%. The reason to limit its
distribution to plant experts was to ensure the highest possible
data quality. However, this also limited the spatial coverage of the
survey and most yield losses estimates were provided for Central
MT, causing a potential location bias.

To get an approximation of possible yield and economic losses
at the municipality and state level, the study assumed that yield
loss estimates provided for Central MT would be representative
of other production sites in the Southern Amazon. Hence, the
expert-based average yield loss estimates of each disease were
merged with the kernel density map of the respective disease
(see sections “Description of Cleaned-Up Dataset”, “Spatial
Distribution” and “Expected Yield Losses”), resulting in spatial
yield loss maps of the most important soybean and maize
P&A. The mean of these spatial yield loss maps was taken
for both soybean and maize and the expected percentage yield
losses per municipality were estimated. Next, data on absolute
crop production between 2016 and 2018 at the municipality
level (IBGE, 2019b) and expected percentage yield losses per
municipality were used to calculate absolute yield losses at
the municipality and state level. Finally, economic yield losses
were estimated assuming average prices of US $355 and $159
per metric tonne for soybean and maize, respectively, for the
2016–2018 cropping seasons in accordance with data from the
International Monetary Fund (IMF, 2020).

Kernel Density Estimation
To visualize the spatial distribution of the predicted P&A, kernel
density maps were generated using the tmaptools (Tennekes,
2019) package of the open-source software program R (R Core
Team, 2020). Kernel density estimation produces a risk map that
is interpolated from incident locations in a defined study area.
It generalizes or “smooths” discrete data points in a way that
a continuous surface area is produced (Hart and Zandbergen,
2014). Here, a 2D kernel density estimator was applied with
a bandwidth set to 1/50th of the shorter side of the study
area and the resolution of the output raster was set to 1 km2.
Kernel densities below 0.0001 were set to NA. The output
raster were plotted using the R packages raster (Hijmans, 2019),
rasterVis (Lamigueiro and Hijmans, 2019), and RColorBrewer
(Neuwirth, 2014).

RESULTS

Evaluation of the ConvNets’
Performance
Table 3 summarises the evaluation metrics for the crop
and disease ConvNet trained on the Plantix image dataset.
The evaluation metrics indicate a high performance of the
crop and disease ConvNets in identifying 420 classes with
a precision of 91.11%, recall of 90.61%, an F1 score of
90.86%, and top-3 accuracy of 98.81% (weighted summary;
see Table 3). Table 3 also gives the weighted mean of
the metrics for 18 maize diseases and 19 soybean diseases,
indicating a lower precision for soybean disease detection than
for maize.

Plantix Dataset and Data Cleaning
Between November 2016 and May 2020, Plantix users captured
about 1.05 million images in Brazil, of which approximately
980,000 showed a plant, whereas the remaining images contain
objects. All images containing objects were discarded from the
dataset. Most of the images were taken in South Brazil, in the
states of Sao Paulo (∼190,000), Santa Catarina (∼172,000) and
Minas Gerais (∼2,000). Plantix users in the Southern Amazon
captured 77,611 P&A images, of which 80% came from MT. From
this dataset, all images showing ornamental plants were removed,
further reducing the dataset to 70,266 images. Since users often
took multiple images at the same location and at the same time,
only one image per disease per camera session was allowed.
This reduced the dataset to 44,926 images. Finally, the images

TABLE 3 | Summary of evaluation metrics for the crop and disease ConvNet
trained using the Plantix image dataset.

Crop Precision Recall F1 score Top3 N◦ diseases

Weighted mean 90.86 91.11 90.61 98.81 420

Mean 88.08 89.63 86.58 97.98 420

Maize 88.40 91.51 89.82 98.99 18

Soybean 78.72 76.64 76.86 96.82 19

For maize and soybean diseases, weighted metrics are shown.
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were filtered according to their softmax probability (see section
“Convolutional Neural Networks and Softmax Probability”). All
images with a top-1 softmax probability below 0.5 for either the
predicted crop or disease type were removed from the dataset,
reducing it to 15,921 images. This corresponds to about 20% of
the original dataset. The results presented in this study are based
on this cleaned-up dataset.

Description of Cleaned-Up Dataset
The cleaned-up dataset contains 15,921 images of P&A and
deficiencies that were taken by Plantix users in the Southern
Amazon between 2016 and 2020. According to the predictions
provided by the ConvNets, the dataset holds images of 395
different classes; some, however, are only represented by a few
images. A complete list of all classes for which more than
50 pictures were taken can be found in the Supplementary
Table 3. The bulk of the images were collected in the main
production areas of MT, specifically the central north (Sinop,
Sorriso, Lucas do Rio Verde), the southwest (Campo Novo do
Parecis, Tangará da Serrá) and the southeast (Primavera do Leste
and Campo Verde). Multiple images were also collected along
Highway BR-163, which connects Cuiabá (MT) with Santarém
(PA) and serves as a soybean export corridor, as well as along the
Trans-Amazonian Highway BR-230. Figure 3 shows the spatial
distribution of images collected by Plantix users in MT and PA
between November 2016 and May 2020, as well as the main
land-use types in the study area.

Spatial Distribution
Spatial Distribution of Predicted Crop Types
Plantix predicted most of the images as showing diseased maize
plants (1,973), followed by citrus (1,921), including orange,
lemon and tangerine, soybean (1,583), pepper (1,459), tomato
(1,390), mango (954), banana (824), cotton (453), rice (442),
onion (384), eggplant (369), cucumber (356), papaya (347),
and lettuce (313). Figure 4 shows the kernel density of images
collected by Plantix users in MT and PA between November 2016
and May 2020 according to predicted crop types.

Spatial Distribution of Predicted Pest Types
The ConvNet that processed images according to disease type
predicted most images as showing insects (4,692) or fungal
diseases (4,402). Fewer pictures were predicted to show bacteria
(899), viruses (577) and mites (366). There were also many
images labelled as deficiencies (1,534), e.g., nitrogen, magnesium
or iron deficiency. The pathogen class of “others” (219) groups
abiotic damage, such as pesticide burn, herbicide damage
or sunburn. The “disease” ConvNet also predicted numerous
images as containing healthy plants (3,461). Figure 5 shows
the kernel density of images collected by Plantix users in MT
and PA between November 2016 and May 2020, according to
predicted pathogen types.

Spatial Distribution of Predicted Soybean Pathogens
and Animal Pests
The “disease” ConvNet interpreted 1,454 out of 1,583 images
as showing diseased soybean plants, and the remaining images

as healthy soybean plants. These images were classified as stink
bugs on soybean (227), brown spot of soybean (159), tobacco
caterpillar (138), potassium deficiency (125), anthracnose of
soybean (121), downy mildew of soybean (106), frogeye leaf
spot (105), Asian soybean rust (94), target spot of soybean
(92), and sudden death syndrome (86). Fewer images were
predicted to show the fall armyworm (41), the helicoverpa
caterpillar (35), soybean looper (32), stem rot (25), leaf miner flies
(19), boron deficiency (16), spider mites (15), powdery mildew
of soybean (9), and castor semi-looper (8). Of the 10 most
frequently predicted soybean P&A, all except tobacco caterpillar
are mentioned by the Mato Grosso Foundation among the
most common soybean diseases found in the Southern Amazon
(Supplementary Tables 1, 2). Most images were collected
between mid-October and mid-February, which corresponds to
the main soybean cropping season, whereas images predicted
as containing maize plants were mainly collected either during
sowing in March or before harvest in July. The timing of the
image data collection is shown in more detail in Supplementary
Figure 2. Figure 6 shows the kernel density of the main soybean
pests and diseases based on images collected by Plantix users in
MT and PA between November 2016 and May 2020.

Spatial Distribution of Predicted Maize Pathogens
and Animal Pests
Between 2016 and 2020, Plantix users captured 1,973 images
of maize plants in MT and PA, Brazil, of which 1,854 were
interpreted by the “disease” ConvNet to show diseased maize
plants and 109 healthy maize plants. According to the system’s
predictions, most images were likely to show the fall armyworm
(466), bacterial stack rot (233), maize rust (233), grey leaf spot
of maize (172), magnesium deficiency (164), northern leaf blight
(116), phosphorus deficiency (107), boron deficiency (90), and
aphids (75). Fewer images were interpreted to show potassium
deficiency (64), nitrogen deficiency (45), stemborer damage (36),
fusarium ear rot (23), maize smut (16), and goss wilt (14). Of
the 10 most frequently predicted maize P&A, all except northern
leaf blight, aphids, maize smut and goss wilt are mentioned
by the Mato Grosso Foundation among the most common
maize diseases found in the Southern Amazon (Supplementary
Tables 1,2). Figure 7 shows the kernel density of the main P&A
affecting maize production in the Southern Amazon.

Expected Yield Losses
Expected Yield Losses According to Pathogens and
Animal Pests
Agronomists reported expected yield losses for 2,419 images. For
soybean and maize, respectively, yield losses were reported for
19 and 13 different classes, including two and five deficiencies,
based on 409 and 250 corresponding images. The survey reveals
that expected soybean and maize yield losses due to P&A were on
average 12.16 and 16%, respectively. However, there were large
differences in expected yield losses according to different P&A.
For soybean, expected yield losses were highest for the sudden
death syndrome (23%), followed by castor semi-looper (21.67%),
and fall armyworm (16.6%). Expected maize yield losses were
highest for maize rust (22.11%), bacterial stalk rot (20.27%),
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FIGURE 3 | Spatial distribution of P&A images collected by Plantix users in Mato Grosso and Pará, Brazil, between November 2016 and May 2020, and the main
land-use types in the study area. Source of land use data: IBGE (2018). Map produced using ArcMap 10.6.1.

and stemborer damage (16.6%). Differences in expected maize
yield losses according to pest types were rather low, with 18.8%
for bacteria, 15.79% for fungi and 15.43% for insects. Likewise,
expected soybean yield losses varied little among different pest
types, with 13.05% for mites, 12.63% for fungi and 11.67% for
insects. Figure 8 shows the expected soybean and maize yield
losses according to different P&A.

The study results indicate that the biggest threat to maize
production are maize rust, bacterial stalk rot and the fall

armyworm, as these three P&A cause high yield losses and
are also among the most widespread diseases according to the
ConvNet predictions and information provided by the Mato
Grosso Foundation (Fundação, 2019). For soybean, the picture
is less clear: the Sudden Death Syndrome was reported to cause
the highest yield losses, but it was relatively seldom predicted by
the ConvNets. P&A like anthracnose, downy mildew, frogeye leaf
spot, stink bugs and brown spot seem to pose a greater threat as
they are widespread and cause average yield losses of 10–15%.
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FIGURE 4 | Kernel density of images collected by Plantix users in Mato Grosso and Pará, Brazil, between November 2016 and May 2020, according to predicted
crop types.

FIGURE 5 | Kernel density of images collected by Plantix users and agronomists in Mato Grosso and Pará, Brazil, between November 2016 and May 2020,
according to predicted pest types and healthy plants.

The Asian soybean rust, which was a long time the most severe
disease in the study area, seems to be relatively well controlled
with average yield losses of 10.5%.

Figure 9 shows examples of P&A images for which
agronomists in Mato Grosso provided an estimate of expected

yield losses. Most of the images showed diseased plants with mild
symptoms and expected yield losses below 20%. The examples
demonstrate that the angle, distance and quality of the recorded
images may vary considerably and that the background may
also be noisy, containing other plant material or soil. Moreover,
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FIGURE 6 | Kernel density of main soybean pathogens and animal pests based on ConvNet predictions provided for images collected by Plantix users and
agronomists in Mato Grosso and Pará, Brazil, between November 2016 and May 2020.

mild symptoms may be hard to recognise from an image alone,
especially non-foliar diseases (e.g., Anthracnose of soybean).
These images also exemplify the difficulty plant experts may be
confronted with when annotating P&A images.

Expected Yield and Economic Losses per
Municipality and at the State Level
Between 2016 and 2018, farmers in MT and PA produced an
annual average of approximately 24.6 million tonnes of maize
(first and second season) and approximately 31 million tonnes of

soybean (IBGE, 2019b). Most of the production originated from
Central MT (the municipalities of Sorriso and Nova Mutum,
Figure 10A), where also most of the images with estimates on
expected yield losses were collected. The expected yield loss
estimates at the municipality level reveal that the percentage
yield losses range between 7.5 and 23% for soybean and between
11.6 and 22.12% for maize (Figure 10B). Overall, yield loss
estimates were available for 78 and 60% of all soybean and
maize-producing municipalities, which represent 95 and 97% of
the region’s total respective soybean and maize production. The
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FIGURE 7 | Kernel density of the main maize pathogens and animal pests based on ConvNet predictions provided for images collected by Plantix users in Mato
Grosso and Pará, Brazil, between November 2016 and May 2020.

estimation of yield losses at the state level reveals that, on average,
3.74 and 3.75 million tonnes of soybean and maize, respectively,
were lost in MT and PA between 2016 and 2018 (Figure 10C).
This translates into economic losses of around US $2 billion
per cropping season ($1.33 and $0.6 billion for soybean and
maize, respectively).

DISCUSSION

The launch of the Plantix mobile application demonstrated
that ConvNets trained for the automatic classification of plant
diseases are not only ready to be put into operational use, but
that such a decision support tool can achieve great attention and
widespread use among farmers, generating data that can, in turn,
be used by science. Based on the lessons learned from Plantix

in Brazil, the following section outlines the potential benefits
and limitations of an automated plant disease classification via
a mobile application, as well as possible benefits for the scientific
community—especially in the field of crop loss research.

Crowdsourcing the Collection of P&A
Images
ConvNets—like other supervised machine learning algorithms—
require large amounts of human-annotated data to be trained
successfully. However, the development of such a human-
annotated image database for plant diseases has been one of
the major challenges in further improving the performance
of ConvNets and making them fully operational in the field
(Barbedo, 2018a,b; Boulent et al., 2019). One option to generate
such a database is to crowdsource it. PEAT has relied on
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FIGURE 8 | Expected soybean and maize yield losses (%) in Mato Grosso and Pará, Brazil, according to individual pathogens and animal pests.

just such a crowdsourcing process, as the images taken by
Plantix users constantly add to a database that can—at least
in part—be used for model training. The advantage of this
crowdsourced image data collection process is that images are
acquired at different locations, at different hours of the day,
under different meteorological conditions and with different
smartphone devices, thus accurately reflecting the reality of
the operational environment. The growing field of citizen
science could help scientists to crowdsource the collection of
P&A images. Citizen science means the involvement of the
general public in scientific work, often in collaboration with
or under the direction of professional scientists (European
Commission, 2013). Citizen science projects can be found
in fields ranging from astronomy to medicine and computer
science to earth observations, including from the field of plant
pathology (Walther and Kampen, 2017; Luigi Nimis et al., 2018;
D’Agostino et al., 2020).

Potential Benefits and Limitations of
ConvNet Systems as a Decision Support
Tool for Farmers
The implementation of ConvNets trained for the automatic
classification of plant diseases into a mobile application proved
to be a useful decision support tool for farmers and gardeners. In
particular, the high top-3 score (98%) indicates that a diagnosis
given by the application can help farmers to identify the correct
diseases among a pre-selected list. A simple, easy-to-use and free
tool is particularly attractive for small-scale farmers, who often do
not have access to agricultural extension services or who lack the
financial means for such services. One major advantage of such a
tool is that it can be used by anyone (regardless of education level
or scouting experience) with an internet-enabled smartphone.
Furthermore, the services are immediately available at any time,
but leave the user with the final decision of whether and how

to protect or treat the plants. The app can also help farmers
to reduce the number of pesticide applications by promoting
the adoption of non-chemical methods, such as pheromones,
biopesticides or the removal and burning of affected plant parts
(integrated pest management). Moreover, the functionality of the
app can be expanded to include an early warning system by
sending push-notifications in case a disease has been spotted in
a nearby plot or by recommending fertiliser use and the timing of
sowing, among other benefits.

One disadvantage of ConvNets in diagnosing plant diseases
is the timing of the detection: Since this form of detection
relies on visual symptoms, the earliest possible detection is
when symptoms are visible to the human eye and can be
recorded by a camera. However, plants may be affected by a
pathogen much earlier and consequently react to its presence
with, e.g., a reduction in the photosynthesis rate, which induces
an increase in fluorescence and heat emission (Martinelli et al.,
2014). Therefore, the earliest management of a pest or disease
can only happen if there has already been a visual change in
the plant material. Moreover, the success and usability of such
a tool not only depends on its classification performance but
also its availability in different languages and the inclusion of
locally relevant diseases. A major hurdle for any system’s use is
also the affordability of smartphones and internet connectivity.
Although the smartphone penetration rate is increasing rapidly
(45% of the Brazilian population actively used a smartphone in
2019; Newzoo, 2019), it is still limited in rural areas and among
farm households. According to the latest agricultural census,
in MT and PA, only 26% of farmers in MT and only 13%
in PA have access to the internet. Even fewer farmers use the
mobile internet: 14 and 10% in MT and PA, respectively (IBGE,
2019a). Attempts to distribute such a smartphone app in other
countries, e.g., Nigeria, basically failed because too few people
own smartphones in rural areas.
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Grey leaf spot of maize (10-20%) Asian soybean rust (5-10%) Anthracnose of soybean (5-10%) 

Fall armyworm on maize (10-
20%) 

Fall armyworm on soybean (10-
20%) 

Frogeye leaf spot on soybean (5-
10%) 

FIGURE 9 | Examples of images of diseased soybean and maize plants and associated expected yield losses provided by agronomists in the state of MT, Brazil, in
the 2016–2017 cropping season.

Reducing Yield Losses to Pests and
Diseases
The study results indicate that soybean and maize yield losses
amount, on average, to 12 and 16%, respectively, and are hence
slightly lower than reported yield loss estimates at the global
scale of 19 and 21% for these two crops (Oerke, 2006; Savary
et al., 2019). This is likely due to the massive and prophylactic
application of pesticides in the study area (Pignati et al., 2017;

INDEA, 2020). Another explanation for the rather low yield loss
estimates is that much of the data was collected in Central MT,
where the most productive and experienced farmers are located,
and where the cultivation of soybean and maize is an established
practice. The study results might, therefore, underestimate yield
losses in other municipalities and hence also at the state level.
Estimated annual soybean yield losses of 3.74 million tonnes, as
well as corresponding economic losses of US $1.33 billion, are
within the range of estimates provided by Godoy et al. (2016). The
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FIGURE 10 | (A) Absolute maize and soybean production in municipalities of
Mato Grosso and Pará, Brazil; (B) expected maize and soybean yield losses
(%) due to the most common P&A in the study area; and (C) absolute maize
and soybean production losses per municipality in Mato Grosso and Pará,
Brazil.

results also indicate that there is a large variation in crop losses
due to specific P&A, which is in agreement with the findings
of Savary et al. (2019), but a rather low variation in yield losses
according to pathogen types (e.g., fungi, bacteria).

P&A are mainly controlled through the intensive use of
pesticides in combination with the cultivation of GM crops,
which may cause negative effects for human health, such
as acute and chronic intoxication (Pignati et al., 2017) and
biodiversity loss, as well as the development of pest resistance to
pesticides (Karlsson Green et al., 2020). One alternative, holistic
approach to combating pests is integrated pest management
(IPM), which combines preventive and curative methods, and
only applies chemical pesticides when there is an urgent
need (Karlsson Green et al., 2020). A field experiment jointly

established by the Embrapa and Aprosoja in MT to test the
efficacy of IPM demonstrated that areas managed using IPM
measures produced the same yield as areas with conventional
management, but used approximately 50% less insecticide
(Bueno et al., 2020). Despite its large potential to decrease
pesticide use as well as production costs, the adoption of IPM in
Brazil sharply declined in the 2000s due to the introduction of
double-cropping and no-tillage systems (Panizzi, 2013). Reviving
the adoption of IPM among farmers through targeted public
policies and governmental funding agencies, as well as the
adaptation of IPM to new circumstances and production systems,
can help to minimise biotic yield losses while maintaining
environmental quality.

Possible Implications for Crop Loss
Research and Limitations of This Study
This study contributes to the field of crop loss research by
providing probability distribution maps and yield loss estimates
for the main soybean and maize P&A of the Southern Amazon,
one of Brazil’s—and the world’s—most important agricultural
regions. These yield loss estimates fill a major data gap and
comprise one of the few spatially explicit available datasets for
different P&A in Brazil. The analysis provided here can easily be
extended to other crops or world regions as more data becomes
available, which in turn will enable future researchers to train
the underlying ConvNets for more crop disease combinations.
Besides, the georeferenced images can be combined with other
spatial data (e.g., climate, soil data) to identify factors influencing
the outbreak and spread of diseases (Wieland et al., 2017) and
to model and predict their spatio-temporal distribution. The
georeferenced images collected by Plantix users can also be
used for other purposes, such as ground-truth labels for the
classification of crops and diseases via satellite images. One
example of such an application can be found in Wang et al.
(2020), who used the Plantix image database and deep learning to
map crop types in southeast India. Nonetheless, the probability
distribution maps and reported yield loss estimates provided in
the present study must be interpreted with caution: despite the
data cleaning steps applied, which reduced the original dataset
by 80%, the probability distribution maps in this study might be
biased, as the collection of data points depended on the number
of active users in an area. Although images were collected in
almost all crop-producing areas and a great deal of effort was
devoted to advertising the application throughout the study area,
some diseases might be underrepresented or might not have been
captured at all.

CONCLUSION

The overall objective of this study was to map the spatial
distribution of the main soybean and maize diseases in
the Southern Amazon and to quantify the associated yield
losses by making use of data collected using the Plantix
smartphone application. Soybean and maize yield losses to
P&A in the Southern Amazon were found to be lower
than biotic yield losses reported for these crops in other
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world regions. A likely explanation is the massive and
prophylactic application of large amounts of pesticides in the
study area. Integrated pest management can be a sustainable
alternative to the intensive use of pesticides, helping to minimise
negative outcomes for human health, biodiversity and the
environment. ConvNets can aid farmers in the early detection
and non-chemical control of P&A, while crowdsourcing may
aid researchers in gathering training data that accurately reflects
the target operational environment. The high level of accuracy
of the trained ConvNets, paired with widespread use through a
citizen science approach, provides a unique source of data that
allows scientists to get a new angle on yield loss estimates, e.g.,
for the analysis of yield gaps and the development of measures
to minimise them.
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