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Defective citrus fruits are manually sorted at the moment, which is a time-consuming and

cost-expensive process with unsatisfactory accuracy. In this paper, we introduce a deep

learning-based vision system implemented on a citrus processing line for fast on-line

sorting. For the citrus fruits rotating randomly on the conveyor, a convolutional neural

network-based detector was developed to detect and temporarily classify the defective

ones, and a SORT algorithm-based tracker was adopted to record the classification

information along their paths. The true categories of the citrus fruits were identified

through the tracked historical information, resulting in high detection precision of 93.6%.

Moreover, the linear Kalman filter model was applied to predict the future path of the fruits,

which can be used to guide the robot arms to pick out the defective ones. Ultimately, this

research presents a practical solution to realize on-line citrus sorting featuring low costs,

high efficiency, and accuracy.

Keywords: defective citrus sorting, CNN-based detector, SORT-based tracker, deep learning, vision system

1. INTRODUCTION

Citrus is an important agricultural commodity produced in 140 countries, with the annual
worldwide production estimated at over 110 million tons in the period 2016–2017 (Nazirul et al.,
2017). For the fresh citrus fruit market, consumers demand fruits at a reasonable price without
defects and diseases, which can be guaranteed by proper monitoring in the field and post-harvest
quality inspection (Campbell et al., 2004). Traditionally, citrus fruits are manually sorted based
on their external appearance in the packinghouse, which is time-consuming and cost-expensive.
As the skill of the sorter varies from person to person, it is also an inaccurate process (Satpute
and MJagdale, 2016). Therefore, it is necessary to develop automated systems to more effectively,
economically, and accurately sort citrus fruits before they are sold in the market.

Damage to the citrus fruits can be caused by various issues, including insects in the field, bad
practice in harvesting, infection penetration through injuries, or evolution of previous diseases
during post-harvest storage (Holmes and Eckert, 1999; Burks et al., 2005). These diverse types of
defects generate very different symptoms on their external appearance, making it challenging to
develop non-destructive sorting methods with both high accuracy and efficiency. Hyperspectral
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image (HSI) technology, which inherits the advantages of
both spectral and image analysis, has been adopted in several
automated systems to detect the defects of agricultural products
(Xing et al., 2004; Lee et al., 2014). However, applying HSI
in real-time is difficult due to the relatively long time needed
to acquire and analyze high-dimensional hyperspectral images.
Multispectral image (MSI) technique captures images at only
several specific wavelengths for higher efficiency and has been
integrated into a real-time citrus sorting system (Qin et al., 2012).
Despite a high accuracy of 95.3% achieved, it remains narrow as
it focuses purely on citrus canker and new pests and diseases
are still appearing. Traditional machine vision based on RGB
cameras is a promising solution for on-line fruit sorting due to
its high speed and low costs. This method has been adopted to
investigate defective apples in a recent study with an average
recognition accuracy of 90.2% (Zhang et al., 2017), but the
accuracy is actually dependent on the features selected such as
color, morphological and textural characteristics. The application
of the NIR camera and NIR coded structured light, which aims to
provide even lightness over the fruit surface, also complicates the
system and increases the costs of postharvest handling.

In recent years, deep learning has become state of the art due
to its strong adaptability to variances within the working scene,
showing potentials for a variety of tasks within machine vision
such as image classification (He et al., 2016), object detection
(Redmon and Farhadi, 2017), and image segmentation (Kang
et al., 2020). As it is capable of automatically learning the image
features, better recognition accuracy can be expected compared
with traditional image processing methods (Kang and Chen,
2020a). It has found its applications in various detection tasks
in agriculture such as the pesticide residues of apples (Jiang
et al., 2019), classes of garlic bulbs (Quoc et al., 2020), defects
in cucumber (Liu Z. et al., 2018) and peaches (Sun et al.,
2019), plant diseases (Picon et al., 2019), and automated robot
harvesting (Kang and Chen, 2019, 2020a). In amore recent study,
a deep learning-based vision sensor is developed to perform on-
line detection of defective apples (Fan et al., 2020). However,
since the apples are placed one by one on the conveyor for the
simplicity of recognition, the speed of 5 apples per second is
low and unsatisfactory for commercial production. As a result,
none of the existing automated sorting systems is capable of
achieving a good combination of high accuracy, efficiency, and
low costs.

In this paper, we aim to develop a vision system based on
deep learning, which can be implemented directly on a citrus
processing line and perform fast on-line citrus sorting. To this
end, a camera was mounted above the conveyor that transported
multiple citrus fruits and presented their different surfaces
during rotation. A novel detection-from-tracking sorting strategy
was proposed that combined a detector and a tracker. The
detector detected the defective surfaces of the fruits while the
tracker memorized their classification information and tracked
the location along their paths, and their true categories were
identified through the historical information. The future paths
of the defective fruits were also predicted using the Kalman filter
algorithm, which can be adopted to control the robot arms to pick
them out in real-time in future work.

2. MATERIALS AND METHODS

2.1. System Configuration
2.1.1. Samples
Sample oranges were harvested in August 2020 from a
commercial orchard in Zigui, Yichang, China. This type of
oranges is characterized by moderate sugar-to-acid ratio and
varietal green to orange skin colors at the mature stage. A day
after harvest the fruits with normal surface and several types of
common defects were packed in cardboard boxes and sent to
Wuhan, China via air flight.

The oranges were first manually inspected and classified into
three categories, including Normal (N), Mechanical damaged
(MD), and with Skin Lesions (SL). Category N related to the
oranges without any defects and ready for the fresh fruit market,
as shown in Figure 1A. Category MD usually refers to those
mechanically damaged by improper handling during the harvest
or post-harvest process, while in this study it was defined as those
with observable mechanical wounds and no other skin disorders
for the simplicity of recognition, as shown in Figure 1B. For
the fruits infected by fungi, pets or insects, the contrast between
the sound peel and defects exists, and they were classified into
Category SL, as shown in Figure 1C. A total of 300 oranges were
randomly selected for the tests, of which 100 were from Category
N, 100 from Category MD, and 100 from Category SL.

2.1.2. Platform Setup and Vision System
A commercially available citrus fruit processing line (GJDLX-
5) was assembled in the lab and employed for automatic fruit
cleaning and waxing, as shown in Figure 2A. Traditionally, the
conveyor is employed to rotate the fruits freely so that the whole
surface of each fruit can be manually inspected by the sorters.
After that, the fruits with a sound surface are transported to
the washing machine and waxing machine for processing. To
automate the sorting process, a low-cost webcam (Gucee HD98)
with an image resolution of 640 × 480 in 30 frames per second
(FPS) was used to detect and track the defective fruits. The
camera wasmounted 0.5m above the conveyor, and a 100WLED
light was used to enhance and balance the lighting conditions
within the working space.

The vision-guided sorting process included two-steps:
defective citrus detection and tracking. In the first step, the
conveyor continuously rotated the oranges, letting the webcam
view different surfaces of the oranges and detect the defective
ones. A one-stage neural network-based detector Mobile-Citrus
was therefore developed to detect and temporarily classify
the citrus fruits into corresponding categories. In the second
step, a tracker adopting a custom Simple Online and Real-time
Tracking (SORT) algorithm was used to track the defective
oranges (including Categories MD and SL) and predict their
possible paths. The true categories of the oranges were then
identified through the stored historical information. The
predicted paths will be sent to the central control system to guide
the robotic arms to pick out the defective ones, as shown in
Figure 2B, which will be implemented in our future work.

As shown in Figure 3, although the camera could capture
multiple images when the orange rotated, it might fail to
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FIGURE 1 | Sample oranges are classified into three categories, including (A) normal, (B) mechanical damaged (MD), and (C) with skin lesions (SL).

observe the entire fruit surface of especially those near the
edges of the conveyor. One solution is to implement multiple
cameras to observe these oranges, which will be conducted
in future work. During image acquisition in our experiment,
we randomly picked 30–40 oranges from the 300 ones and
placed them on the conveyor moving at a speed of 0.3 m/s
for video taking each time. Forty videos at the frequency of
30 Hz were collected in total, and their duration were between
15 and 30 s. Among these videos, 30 were used for the
developed detector. To avoid heavily overlapped information
between neighboring frames, two frames per second were taken
from each video sequence, resulting in 2400 images collected
in total. Among these images, 700 were randomly selected
to train the detector, another 500 as validation data, while

the rest were used as test data. LabelImg tool was used to

manually label the collected images in VOC format. The oranges
were labeled as Category MD or SL only when the surfaces
with damaged or lesional parts were captured. The remaining
10 videos were adopted to assess the performance of the
combination of the detector and tracker. An object tracking
dataset was also constructed to evaluate the proposed sorting
strategy. This dataset included the bounding box and temporary
category label of each orange presented in the video, with a

specific number assigned to indicate its identity during the
tracking process.

2.2. Defective Citrus Detection
2.2.1. Network Model
As convolution neural network (CNN)-based algorithms have
shown superior performance in many computer vision tasks
compared to traditional vision methods (Kang and Chen, 2019,
2020b), we developed a CNN-based detector Mobile-Citrus to
detect the normal and defective oranges on the conveyor. CNN-
based algorithms can be classified into two categories: two-
stage detection networks with better performance in complex
conditions and one-stage detection networks featuring better
computational efficiency (Han et al., 2018). Since the proposed
vision system should be capable of detecting defective oranges
in a singular environment with real-time speed, a one-stage
detection network was developed and applied in this work.
The architecture of our proposed detection network included
two parts: the network backbone and detection branch, as
shown in Figure 4. Here, we applied a lightweight classification
network MobileNet-V2 (Sandler et al., 2018) as the network
backbone to extract multi-scale feature maps from the input
images. After that, a Path-Aggregation Feature Pyramid Network
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FIGURE 2 | Platform setup and computer vision system. (A) The citrus processing line assembled in the lab, with a webcam mounted above the conveyor. (B) The

diagram showing an automated citrus sorting system using a camera and robot arms, and the robot arms will be implemented in future work.

(PANet) (Liu S. et al., 2018) was used to aggregate multiple-scale
information from feature maps and detect the defective oranges.

2.2.2. Network Backbone
The network backbone was used to extract and learn features
and representations of the oranges within the input images. It
adopted convolution layers to process the features of the oranges
and pooling layers to aggregate the important features from the
feature maps. As the pooling layers continuously shrunk the
size of the images, the feature maps from the shallow levels
comprised more spatial features of the oranges while the feature
maps from the deep levels contained more semantic features. To
improve the real-time computational performance, MobileNet-
V2 using the depth-wise convolution operation was applied
as the backbone due to its reduced computational complexity

without sacrificing accuracy. Moreover, the shortcut design of
the residual network module was introduced, which can largely
improve the classification accuracy and training performance in
deep networks. The proposed MobileNet-V2 included 18 depth-
wise residual network modules in the model. The 8-times (C3),
16-times (C4), and 32-times (C5) size-reduced feature maps were
used as the input for the detection branch to perform detection
of the defective oranges.

2.2.3. Detection Branch
Mobile-Citrus applied PANet to aggregate multiple-scale features
from the backbone to perform the detection of defective citrus
fruits. Compared to the standard Feature Pyramid Network
(FPN), PANet introduced the top-down-top multiple-scale
feature aggregation strategies for enhanced performance. As
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PANet can fuse both semantic features and spatial features
to the corresponding detection head, it directly encoded the
bounding box and classification information of the oranges in
the tensors. The detection branch of Mobile-Citrus received

FIGURE 3 | Diagram illustrating the part of the fruit surface captured by the

camera in the rotation process.

C3, C4, and C5 feature maps from the backbone network, and
the feature maps then followed the specific path of PANet and
arrived at the detection head at C4 level. Since Mobile-Citrus was
designed to sort oranges within a fixed scale, only the detection
head at C4 level outputted the prediction of the bounding
box and classification information of the defective oranges. The
detection head ofMobile-Citrus followed the design of the YOLO
network which includes the information of the confidence score,
bounding box, and classification information within the tensors.

2.2.4. Network Training
Multiple image augmentation methods were applied during the
training, including scaling (0.8–1.2), flip (in horizontal and
vertical direction), rotation (±20◦), and adjustment of saturation
(0.8–1.2) and brightness (0.8–1.2) in HSV color space, as shown
in Figure 5. Adam-optimizer was used to train the network, and
the batch size was 24 with the training image resolution of 416
× 416. During the training process, we froze the weight within
the backbone network and only trained the detection branch. The
network was trained with a learning rate of 0.001 for the first 80
epochs and another 40 epochs with a learning rate of 0.0001.

2.3. Defective Citrus Tracking
Defective citrus fruits can have both fine and damaged/lesion
surfaces over the fruit body. As the conveyor continuously

FIGURE 4 | Network architecture of the detector, Mobile-Citrus, which includes MobileNet-V2 as the backbone and PANet as the detection branch. The output of the

objects’ bounding boxes are predicted from P4 level.
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FIGURE 5 | The example of augmented images and labels in network model training.

FIGURE 6 | Workflow of the vision system combing a detector and a tracker.

rotated the oranges, the proposed detector alone could capture
multiple surfaces of each fruit, thus possibly labeling the same
orange differently in different images. To achieve better detection
accuracy, a real-time object tracker was therefore proposed to

track and record the classification information of each orange on
its path within the working space. The vision system could then
classify the true categories of each orange based on the historical
classification information.
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FIGURE 7 | The captured images of a defective orange in 2–3 s, which includes 78 images. The defective part exists in a series of neighboring frames.

2.3.1. SORT
We implemented the SORT algorithm, which is a tracking-by-
detection framework-based Multiple Object Tracking (MOT)
algorithm (Bewley et al., 2016), as the real-time object tracker
for the oranges. SORT has been applied in many vision-based
applications, such as autonomous driving (Du et al., 2018),
pedestrian tracking (Tang et al., 2016; Wojke et al., 2017), and
so on (Chen et al., 2017; Janai et al., 2017; Kosiorek et al., 2018).
SORT included two modules: the estimation model and data
association, as shown in Figure 6. The estimation model used
a linear constant to approximately estimate the motion of the
oranges, with the state of each formulated as:

x = [u, v, s, r, u̇, v̇, ṡ]T (1)

where u and v are the horizontal and vertical position of the
orange center within the image, and s and r are the scale
and aspect ratio of the bounding box, respectively. If a new
detection was matched with an existing tracked orange, the
bounding box of the new detected orange was used to update
the existing orange’s state and predict the bounding box in the
next image frame based on the linear Kalman filter model. Data
association was solved using the Hungarian algorithm, and the
similarity between the predicted bounding box and the new
detected bounding box was computed via Intersection-Over-
Union (IOU). A minimum threshold was adopted to reject the
assignment when the area intersection between the matched
bounding boxes was lower than IOUmin.

2.3.2. Classification From Tracking
During the sorting process, the detector detected all the oranges
within the working space and temporarily classifies them into
Category N, SL, andMD in each image. However, the recognition
error would exist when a defective orange presents its sound
surface to the camera when rotating. Here, we proposed a new
classification strategy that determined the true category of each
orange from the tracking process. As the tracker used the detected

TABLE 1 | Performance evaluation of the detector alone.

Categories Accuracy Recall F1-score

Normal (N) 0.92 0.86 0.883

Defective (SL+MD) 0.85 0.92 0.868

Surface lesion (SL) 0.84 0.94 0.872

Mechanical damaged (MD) 0.86 0.91 0.875

Overall (N+SL+MD) 0.87 0.88 0.871

Overall (no classification) 1.0 0.99 0.99

bounding boxes to track and record the corresponding way-
points and classification information of each orange, the vision
system recorded a historical list. A logical tree could then be
applied to examine the historical list of every orange and identify
its true category.

As shown in Figure 7, although each orange rotated at a
different speed, it rotated roughly 540 degrees when the camera
took 70–80 frames in 2–3 s. As a result, if a defect existed on
the surface of an orange, it would be captured in a series of
neighboring frames. We divided every 8 continuous images as
a set of the historical list, and the true category of the orange
would be labeled as SL or MD if more than 1 frame in a set
was labeled correspondingly. Such a strategy can eliminate some
random recognition errors and improve detection accuracy. The
classification information would keep updating when the oranges
were in the working space, and the oranges would be labeled as N
if they were not classified as true SL or MD yet.

2.4. Implementation Details
The implemented code of Mobile-Citrus was programmed using
the slim library in Tensorflow-1.13, and the model and pre-
trained weights of the MobileNet-v2 were from Github publicly
code library. The implemented code of SORT was built based
on FilterPy library. The overall code of the vision system was
built on python 3.5 and performed on windows-10 and Linux
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FIGURE 8 | Defective detection results by using the mobile-citrus network. The detected green boxes are normal mandarins while detected red boxes are skin lesion

or mechanical damaged mandarins.

TABLE 2 | Performance evaluation of the combination of the detector and tracker.

Categories MOTA (%) mt (%) fpt (%) MOTP (%)

Normal (N) 93.7 3.68 2.53 85.5

Defective (SL+MD) 93.4 2.83 3.76 85.5

Surface lesion (SL) 93.6 2.57 3.84 85.6

Mechanical damaged (MD) 93.4 3.13 3.46 85.4

Overall (N+SL+MD) 93.6 3.5 2.9 85.5

ubuntu 16.04. The running speed test was conducted using an
NVIDIA-GPU GTX-1660Ti with an Intel-CPU i7-9750 on Linux
ubuntu 16.04.

3. RESULTS AND DISCUSSION

3.1. Evaluation Metrics
The performance of the vision system is evaluated from
two aspects: the performance of the detector alone and the
performance of the combination of the detector and tracker. In
the first experiment, the detector alone is evaluated working on a
single image without considering continuous tracking during the
sorting process. The F1 score measures the overall performance
of detection, which is formulated as follow:

F1 =
2 ∗ recall ∗ accuracy

recall+ accuracy
, (2)

where recall measures the fraction of true-positive objects that
are successfully detected, and accuracy measures the fraction of
true-positive objects within the detection.

In the second experiment, the overall performance of the
vision system is evaluated using the Multiple Object Tracking

Accuracy (MOTA) and Multiple Object Tracking Precision
(MOTP). The MOTA is formulated as below:

MOTA = 1−

∑
t(mt + fpt +mmet)

∑
t gt

(3)

where mt and fpt measure the total number of miss and fault
results within detection, respectively, and mmet measures the
mismatched objects within the tracking process. gt is the ground
truth of object tracking at time t. The MOTP is formulated
as follow:

MOTP =

∑
i,t d

i
t∑

t ct
(4)

where dit is the Intersection Over Union (IOU) value between
the predicted ground-truth locations and ct is the number of the
correct matched objects, respectively. Higher MOTP and MOTA
indicate a better performance of the vision system.

3.2. Performance Evaluation
3.2.1. Evaluation of the Detector
We first evaluate the performance of the detector, Mobile-Citrus.
A threshold value 0.5 is used to filter unmatched bounding
boxes. The experimental results of the detector on defective citrus
detection are presented in Table 1 and Figure 8.

The overall recall, accuracy, and F1 score achieved by the
detector are 0.87, 0.88, and 0.871, respectively. To further
evaluate the model performance in different categories, we
separate the classification into Normal andDefective cases, where
Defective case includes Category SL and MD. The detector has
higher accuracy but lower recall on Normal oranges, while it
has higher recall but relatively lower accuracy on Defective ones.
This is possibly due to the varietal green to orange colors on
the surface of this type of oranges. Since the lesional areas on
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FIGURE 9 | Defective detection and tracking results by using the developed methods. The tracking series of five identified defective mandarins are shown in figure.

Green box stands that this mandarin is identified as normal case, while red box stands that this mandarin is identified as defect.

the defective oranges, which are usually presented in dark and
rotten appearances, are similar to the darkly green area on normal
oranges, the recognition accuracy can be influenced. As a result,
the detector tends to classify Normal oranges into Defective ones
in a small amount of cases.

The recall and accuracy of the detector without considering
classification error are 0.99 and 1.0, respectively, indicating its
capability to detect all the oranges within the working space. It
has to be noted that, as shown in Figure 8, even defective oranges
have both normal and defective surfaces, which are captured
in different images and temporarily classified as Normal and
Defective cases respectively. A true Normal orange, however,
should present a sound surface to the camera all the way during
rotation. Therefore, the detector alone cannot classify the true
category of the oranges, and tracking is an indispensable step
to track oranges along their paths and identify the true SL and
MD ones.

3.2.2. Evaluation of the Combination of the Detector

and Tracker
The tracker enables the vision system to memorize the historical
classification information and track the location of each orange.
The MOTP (also includes mt and fpt , as described in section
3.1) and MOTA are used as metrics to measure the performance
of the combination of the detector and tracker. The experiment
adopts the recorded tracking list to perform classification and the
object tracking dataset performs the evaluation. The results are
summarized in Table 2 and an example of the results is shown in
Figure 9.

It can be observed that the proposed strategy significantly
improves the accuracy of the sorting process. The overall MOTA
is 93.6%, and mt and fpt within MOTA are 3.5 and 2.9%,
respectively. The error distribution of the system is different
in the cases of Normal and Defective oranges. For the Normal
oranges, the system has a larger error in miss classification (mt is
3.68%) while is more accurate in false classification (fpt is 2.53%).
However, for the Defective oranges, the system can identify most
of the defective ones (mt is 2.83%) but the classification accuracy
is relatively lower (fpt is 3.76%). These results demonstrate that
our vision system can classify the true categories of most of
the oranges. However, it also tends to misclassify the normal
oranges as Defective ones in a small portion of the cases,
possibly also due to the similar appearance between the dark
green surface and defective area. The MOTP score of the
tracking algorithm is 85.5%, demonstrating a highly precise
performance on estimating future locations of the oranges. This
also indicates that the velocity of each orange on the conveyor is
relatively constant.

3.2.3. Evaluation of the Running Time
In automated citrus sorting, real-time performance is essential as
high-speed updating of the new vision information secures the
accuracy and success rate. The proposed vision system consists
two components, a detector and a tracker, and their average
running time are presented in Table 3.

We count the frequency of the orange number within an
image within the dataset and denote it as the fraction in Table 3.
As shown in the results, the average running time of the detector
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TABLE 3 | Average running time of detection and tracking algorithms.

Number of

objects

Fraction

(%)

Detection (ms) Tracking (ms) Total

< 8 15 10 7 17 ms (59 FPS)

8–20 72 11 12 23 ms (43 FPS)

> 20 13 12 22 34 ms (30 FPS)

is from 10 to 12 ms [increasing processing time is required in
Non-Maximum Suppressing (NMS) algorithm], which is equal
to 83–100 Frame Per Seconds (FPS) and indicates good real-time
performance. The average running time of the tracker depends
on the number of oranges requiring processing. Considering that
there are usually 8–20 oranges in each image captured by the
camera, the average processing time of the tracker is 12 ms.
Overall, the total processing time of each input image when
combining the detector and tracker is 23 ms, which is equal to 43
FPS and shows good potential to update the vision information
in real-time.

3.3. Discussion
The classification accuracy obtained through the combination
of the detector and tracker (93.6%) is higher than the results
using a similar method (Fan et al., 2020), which yields 90.9%
for the Defective fruits and only 83.3% for the Normal ones.
A major reason is that the classification-by-tracking strategy
proposed identifies a fruit as a true Defective case only if it is
temporarily classified as Defective in more than one image in the
neighboring 8 ones, resulting in a decrease in random recognition
errors. Moreover, instead of performing on-line detection on
one fruit at a time, our proposed system can perform detection
and tracking on multiple objects simultaneously, leading to
significantly improved performance and efficiency. Compared to
the results obtained through other methods, such as MSI (Qin
et al., 2012), the detection accuracy is similar. Although MSI has
itsmerits in the detection of early decay in the fruits, the proposed
vision system has higher detection speed and significantly lower
costs. Moreover, the images are captured and analyzed through a
conveyor in this study, which complicates the working conditions
due to mechanical vibrations, fruit movement, and the increased
number of fruits.

The experimental results show that the false classification rate
of the vision system on normal and defective oranges are 2.53
and 3.76%, respectively, while the miss detection rate on normal
and defective oranges are 3.68 and 2.83%. False classification rate
and miss detection rate respectively measure the faction of false-
classified oranges and miss-detected oranges in the detection
process. When considering only the classification on the normal
and defective oranges, the number of false-classified normal
oranges should equal the number of miss-detected detective ones
and vice versa. The above experimental results indicate that
our system has a relatively high recall rate on the detection of
defective oranges but the accuracy of the classification is lower.
This is due to the similar appearance between the defective
part and dark green area on the normal oranges, and a better

performance can be expected when it works on another type of
oranges with a uniform skin color at the mature stage.

4. CONCLUSIONS

The focus of this study is to develop a novel vision system
to realize fast on-line citrus sorting. A CNN-based detector
is adopted to temporarily detect the defective oranges in each
image, and a SORT algorithm-based tracker is used to identify
the true categories of the oranges from the tracked historical
information. The combination of the detector and tracker
can detect and track multiple fruits simultaneously, yielding
a high overall detection accuracy of 93.66%. The results of
this study demonstrate three advantages of the vision system:
(1) it can perform detection, tracking, and motion estimation
of the defective oranges in a highly accurate and real-time
behavior; (2) the algorithms adopt a deep learning network-
based architecture, which largely improves the accuracy and
robustness of the system; (3) it does not require any modification
on the original processing line, which can facilitate our vision
system to be promoted and implemented in a wide range
of applications with similar working scenarios. Overall, the
developed vision system achieves good accuracy and real-time
performance that can meet the demand of packing houses for fast
on-line citrus sorting.
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