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In winegrowing regions around the world increasing temperature associated with climate
change is responsible for earlier harvests and is implicated in undesirably high sugar
concentrations at harvest. Determining the suitability of grapevine varieties in existing
or new winegrowing areas has often been based on temperature, without considering
other factors. The purpose of this study was to quantify key berry sugar accumulation
traits and characterize their plasticity in response to several climate variables. Data was
collected from 36 different cultivars over 7 years (2012-2018) from an experimental
vineyard in Bordeaux, France. Sugar amounts were obtained through weekly berry
sampling starting at mid-veraison and continuing until after technological maturity. The
variation in sugar accumulation traits for all cultivars, when considered together, were
well explained by cultivar, year, and their interaction, highlighting the relative roles of
genetic variation and phenotypic plasticity. Sugar accumulation traits were affected by
antecedent and concurrent climate factors such as photosynthetically active radiation,
temperature, and vine water status, whether before, or after mid-veraison. In addition,
other traits such as berry weight at mid-veraison and date of mid-veraison had an
important influence on sugar accumulation traits. More notably, the relative importance
of these factors varied significantly by cultivar. The specific physiological mechanisms
driving the plasticity of these traits remain to be identified. Adaptation to climate change
cannot be based on temperature alone and crop responses cannot be generalized
across genotypes, even within species.

Keywords: grapevine cultivars, berry sugar accumulation traits, phenotypic plasticity, climate change, genotype-
environment interaction, modeling

INTRODUCTION

Wine grape (Vitis vinifera L.) vineyards covered more than 7.4 million hectares worldwide (OIV,
2018). As of 2015, the estimated net worth of the wine industry was more than 258 billion euros
(Lecat et al., 2019). Winegrowers have classically selected different cultivars of wine grapes for the
phenotypic traits that best match their (micro-)climates (Wolkovich et al., 2018) and soils. They

Frontiers in Plant Science | www.frontiersin.org 1

February 2021 | Volume 12 | Article 624867


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.624867
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.624867
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.624867&domain=pdf&date_stamp=2021-02-05
https://www.frontiersin.org/articles/10.3389/fpls.2021.624867/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Suter et al.

Grape Berry Sugar Accumulation Traits

maintain those cultivars that produce consistent yields and reach
appropriate balance of sugar, acid, and other compounds under
local climatic conditions (van Leeuwen and Seguin, 2006).

A major concern is that crop yields and quality may
be significantly affected by climate change (Fraga et al,
2012). It is expected that temperatures will increase and
drought will intensify in many regions across the globe
(Intergovernmental Panel on Climate Change [IPCC], 2014).
Climatic conditions during grape ripening have already been
affected, resulting in altered grape composition at harvest (Fraga
et al., 2012). Grapes are being harvested at increasingly higher
sugar levels, resulting in wines with increased alcohol levels
(Duchéne and Schneider, 2005; Godden et al., 2015).

Sugar is one of the most important metabolites in grape
berries used for wine production. Not only is the sugar
concentration a major driver of the alcohol level of the finished
wine, its levels during berry ripening are also involved in
regulating development of the phenolic compounds that give
color, flavor, and tannin structure to the wine (Conde et al., 2007).
Duration of sugar loading may also be of interest to growers
concerned with achieving adequate phenolic maturity of the
grapes (Deloire et al., 2005).

Moving viticultural production to areas with more suitable
climates may lead to conflicts in land use and freshwater
ecosystems (Hannah et al., 2013). In addition, the land previously
cultivated with grapevines may be unsuitable for other types of
agriculture. A more sustainable adaptation, which can readily be
implemented by winegrowers, would be to change to cultivars
that are better suited to their objectives as the climate warms. To
assess their adaptability, however, it is necessary to identify key
ripening traits and their plasticity under different environmental
conditions for a wide range of those cultivars.

Sugar accumulation during ripening is the net sum of sugar
loading into, and sugar metabolism within the berry, with
changes in the berry water balance affecting concentration.
This ripening process starts at veraison, concurrent with berry
softening and color change and can be subsequently affected by
environmental conditions and vineyard management practices
(Dai et al,, 2009). The timing of veraison is a trait that can
indirectly affect sugar accumulation. It drives the start of ripening
and may be a factor in determining both the length of time
available for ripening and the climatic conditions that the
vine and berries will experience during ripening. The veraison
date is influenced by both cultivar genetics and environmental
conditions prior to veraison, and can be considered as a proxy
for those conditions (Parker et al., 2011). For growers, both the
earliness of the cultivar and its sugar accumulation traits are
important considerations in assessing whether a given cultivar is
adapted to their local climatic conditions.

The trajectory of sugar accumulation in grape berries follows
a sigmoidal pattern with slow accumulation at the onset of
veraison, rapid accumulation just after veraison and several weeks
later reaching a plateau phase (Coombe and McCarthy, 2000).
At the end of the ripening period, sugar content per berry
no longer increases, but sugar concentration may continue to
increase due to berry dehydration (Keller et al., 2016) or decrease
due to dilution. Several researchers have already captured the

dynamics of sugar accumulation through modeling approaches
that estimate the rate of sugar accumulation, the amount of sugar
at maturity and the timing of the plateau phase (Parker et al,
2020). This information is available, however, for only a few grape
cultivars. Also, direct comparison of results from different studies
may be difficult due to differences in experimental conditions,
such as soils and climate.

Sugar accumulation traits have been found to be
influenced by climatic variables, such as average temperature,
photosynthetically active radiation (PAR), and water availability,
with the effect depending on whether it was experienced during
berry development pre-veraison, or post-veraison (Jones and
Davis, 2000). Temperature was found to have an important effect
on the rate and the total content of sugar accumulated (Greer
and Weedon, 2014), but a relatively small effect on final sugar
concentrations (Coombe, 1987) and corresponding rates of
concentration increase (Sadras and Petrie, 2011). High levels of
insolation together with temperatures greater than 30°C during
the sugar accumulation period were found to promote berry
growth (Jones and Davis, 2000), while limited sunlight during
veraison delayed grape ripening (Keller et al., 1998). Results from
Bergqvist et al. (2001) suggested that the effects of light on fruit
composition are heavily dependent upon the extent to which
berry temperature is elevated as a result of increased PAR.

Vine water status can also have an important effect on sugar
accumulation rates due to its effect on photosynthesis (Zufferey
et al., 2000), shoot growth (Pellegrino et al., 2005), berry weight
(Ojeda et al, 2001), berry water budget (Greenspan et al,
1994), and carbohydrate partitioning (Dry and Loveys, 1998).
Water deficits can also increase berry sugar concentrations when
moderate, but decrease berry sugar concentrations when severe
(Peyrot des Gachons et al.,, 2005; van Leeuwen et al.,, 2009).
Individual cultivars manage their water status differently in
response to changes in climatic conditions (Schultz, 2003; Domec
and Johnson, 2012). The effects of these and other climatic
variables on sugar accumulation traits have been studied, but not
extensively quantified for a wide variety of grape genotypes under
comparable conditions.

Sugar accumulation traits can also be affected indirectly by
other factors, such as phenology and berry weight, and their
responses to changes in climate. There is significant genotypic
variation in the phenology of different cultivars and in their
phenotypic plasticity in response to antecedent temperatures
conditions (Parker et al., 2011, 2013). In turn, within a given
year, such differences in phenology will have an important
effect on the climate conditions (temperature, PAR, soil water
deficits) experienced by each cultivar during different stages of
its development (van Leeuwen and Darriet, 2016).

It is difficult with this type of research to find data from
multiple cultivars grown in the same climate in a sound
experimental layout, such as with a randomized block design.
The cultivar repositories that exist to date often have not
been planted with replicates, making it impossible to study
genotype X environment interactions (Destrac Irvine and van
Leeuwen, 2016). And generally, such genotypic and phenotypic
data is available for only a limited set of widely grown varieties
(Wolkovich et al., 2018). The VitAdapt experimental vineyard
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is unique in that it allows for collection of data with replicates,
allowing for statistically robust analysis across a wide range of
varieties (Destrac Irvine and van Leeuwen, 2016).

The purpose of this study is to describe key sugar
accumulation traits and characterize their plasticity in response
to seasonal variation in climatic and other variables for 36
different grapevine cultivars using data collected over 7 years
(2012-2018) from an experimental vineyard in Bordeaux France.
More specifically, the four objectives of this study are to: (i)
fit a sigmoidal model to collected data and quantify key sugar
accumulation traits; (ii) characterize and classify the 36 cultivars
based on these sugar accumulation traits; (iii) determine the
relative effect of genetic versus various environmental controls
on these sugar accumulation traits; and (iv) evaluate how much of
the variability in the plasticity of these sugar accumulation traits
are affected by different independent variables.

MATERIALS AND METHODS

Experimental Setting

Data for this study was collected in the VitAdapt experimental
vineyard at Domaine de la Grande Ferrade of the INRAE
(Institut national de recherche pour I'agriculture, 'alimentation
et Penvironnement) research center in Bordeaux, France
(44°47'23.8"N, 0°34'39.3”W) (Destrac Irvine and van Leeuwen,
2016). The VitAdapt vineyard was planted with 48 V. Vinifera
(L.) and four hybrid cultivars in 2009, with the purpose of
studying the response of these varieties to climate change in
Bordeaux. The cultivars have been phenotyped each year starting
in 2012 for many traits, including phenology (mid-budbreak,
mid-flowering, and mid-veraison), grape composition during
ripening, carbon isotope discrimination in berry juice sugars,
and others. The cultivar names, origins, clones, and years of
plantation are listed in Supplementary Table 1. The vineyard is
located on a relatively homogeneous gravel soil in the Pessac-
Léognan appellation. Soil physical and chemical properties are
presented in Supplementary Table 2.

The 0.6 ha vineyard has 46 rows with five buffer vines at
each end of each row that are not included in the study. The
vineyard was laid out using a randomized block design with
four blocks for each cultivar and each block consisting of two
parallel rows of five grapevines each. All grapevine clones were
grafted on Sélection Oppenheim 4 (SO4) rootstock. Irrigation
was necessary at plantation in 2009 and in July of the same year.
Once the rooting system was established, however, the vines have
been dry-farmed. The vines are Guyot pruned and trained with a
vertical shoot positioned trellis. The vines were estimated to have
2.0-2.4 m? of canopy leaf area per meter of row. The vineyard was
managed according to good agricultural practices.

Phenology Observations

Phenological stages of all cultivars were tracked following the
Biologische Bundesanstalt, Bundessortenamt und CHemische
Industrie (BBCH) scale for monocots and dicots as described
by Hack et al. (1992). Dates of mid-flowering (BBCH 65)

mid-veraison (BBCH 85) were recorded for each cultivar through
field observations. These are denoted as:

tgo = time (DOY) of mid-flowering.
tyer = time (DOY) of mid-veraison.

During each phenological stage, observations were carried out
on Mondays, Wednesdays, and Fridays for each cultivar and
replicated until the mid-point of that stage was identified. For
missing data (7.7% of total), replacement values were obtained
by averaging values from the other blocks for the same cultivar
in the same year.

Climate and Water Stress Indicators

Climatic data were recorded by a weather station situated
approximately 100 m from the experimental vineyard. The
station is part of the CIMEL automated DEMETER network,
and the data is obtained from the INRAE (Institut national de
recherche pour 'agriculture, I'alimentation et 'environnement)
Climatik meteorological database for the Villenave d’Ornon (la
Grande-Ferrade) location.

To account for the differences in phenology between the
cultivars, the observed dates of mid-flowering and mid-veraison
are used for each replicate (cultivar x year x block) to
calculate the various climate statistics used in this analysis. The
following climate variables were used as input to the analysis of
variance (ANOVA):

T¢y = average air temperature (°C) between mid-
flowering (tg,) and mid-veraison (tyer).

Ty_g5 = average air temperature (°C) between tye; and time
(DOY) of 95% maximum sugar content/concentration
(tos).

PAR¢_, = average photosynthetic active radiation (J cm~2)
between tg, and tyer.

PAR,_¢g5 = average photosynthetic active radiation
(J cm™2) between tyer and tos.

RR¢_, = total rainfall (mm) between tg, and tye;.

In the absence of any direct measurements of soil water deficit
or vine water status prior to mid-veraison, total rainfall between
mid-flowering and mid-veraison is considered a good surrogate.
After veraison, carbon isotope discrimination in berry juice sugar
is well correlated to plant water status during the period of sugar
accumulation (Gaudillere et al., 2002). Although intrinsically
313C is a measure of water use efficiency (WUE), is also a very
good proxy for vine water status (van Leeuwen et al, 2009;
Santesteban et al., 2015) §'3C measurements were performed
each year prior to harvest for every cultivar and every block.
For missing §'°C data (about 3%), to allow balanced statistical
analysis, replacement values were obtained by averaging values
from the other blocks for the same cultivar in the same year.

Berry Components

The berry sugar concentration and content per berry and their
respective rates of accumulation over the course of the season
are the key traits being evaluated in this study across the
different cultivars. The size of berries (as measured by weight)
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are also important factors influencing this development. Berries
were analyzed during the 2012-2018 seasons starting at or a
few days after mid-veraison. Approximately five healthy and
representative berries per vine were harvested, adding to a total of
50 berries per plot. Berries were selected from different positions
on the bunch. Berries were picked by hand and collected in bags
containing a vertical filter (BagFilter® 400 ml, Interscience, Saint-
Nom-la-Breteche, France). Each plot was sampled weekly in the
morning between 08:00 and 10:30 a.m. Berries were counted and
weighted collectively.

The juice of the berries was extracted using a crusher
(BagMixer® 400 W, Interscience, Saint-Nom-la-Breteche,
France) and collected in 50 ml tubes. The tubes were centrifuged
at 20,089 x g for 10 min (Sigma 6K15, SIGMA Laborzentrifugen
GmbH, Osterode am Harz, Germany). The juice was then
analyzed by using a WineScan™ Auto based on Fourier
Transform Infrared Spectroscopy (FTIR; FOSS Analytical,
Hillered, Denmark) (Destrac Irvine et al., 2015). Values of
reducing sugars produced by the WineScan™ Auto were
validated with a digital refractometer and were found to be
similar (P < 0.05). Sugar content was calculated from berry
weight and sugar concentration.

Statistical Analysis

Sugar Accumulation Curve Fitting

Values for reducing sugar were fitted with a non-linear model.
Both sugar content and concentration in berries versus time
follow a sigmoid curve and were well fitted by a 3-parameter
logistic function (Eq. 1; Triboi et al., 2003) as given by:

S(t) = Smax (1)

14005 47 (5))

where, Spax = the estimated maximum content or concentration
of reduced sugars, t = day of year (DOY), tos = DOY when 95%
of maximum was accumulated, and r represents the estimated
maximum rate of accumulation defined as the derivative at
the point of inflection. With this model the amount of sugar
(as either content, or concentration) at mid-veraison (Syer) and
at 95% sugar accumulation (Sgs) can be iteratively calculated.
Each block for a cultivar was modeled separately in order that
ANOVA could be performed. The modeling was implemented
with the data expressed both in concentration (g L™!) and
content (mg berry_l). The following traits were extracted from
the model:

tos—conc = day of year (DOY) when sugar concentration
reached 95% of maximum.

to5—cont = day of year (DOY) when sugar content reached
95% of maximum.

Sver—conc = sugar concentration (g L™1) at tyer.

Sver—cont = sugar content (mg berry™!) at tye,.

S95_conc = sugar concentration (g L™ 1) at t95_conc.
S95_cont = sugar content (mg berry’l) at tos_cont-

I'conc = Maximum rate of sugar accumulation concentration

(gL' day™1).

I'eont = Maximum rate of sugar accumulation as content
(mg berry ! day~1).

Durcone = number of days between tyer and tos_conc.
Durcont = number of days between tyer and tos_cont-

BW, = berry weight (g) at tyer.

Data were statistically analyzed using the open source software
R (R Core Team, 2017) within the integrated development
environment RStudio. The nonlinear model was fitted using the R
function nls. The performance of the model for each cultivar was
evaluated by calculating the coefficient of determination (%) and
the root-mean-square error (RMSE). Assumptions of normality
and equal variance were respectively checked by quantile plots
and plotting standardized model residuals against fitted values,
respectively. The standardized residual plots of the models were
found to be homoscedastic. Graphs and tables were produced
with RStudio and Microsoft Office Excel 2010.

Hierarchical Cluster Analysis

A clustering was performed to find structures within the
gene pool (represented by the cultivars) based on key sugar
accumulation traits. The clustering in Figure 4 was made using
the Euclidean distance measure. The six identified clusters closely
resembled that of k-means clustering through minimization of
within-cluster sum of squares. The clustering was based on tyer,
S95—conc> and Durcont, which are key traits from both winemaking
and physiological perspectives.

Correlation, ANOVA, and Multiple Regression
Analysis

Correlation and ANOVA

Bravais-Pearson correlation coefficients (r) were calculated
between traits of all cultivars together. ANOVA was used to
determine the effect of year, cultivar, and their interaction on
the modeled sugar accumulation traits. The sum-of-squares
was used to determine their contribution to the explained
variance in the traits. Type III ANOVA was used to quantify
more specific genetic and environmental controls on the traits.
Second-order interactions, albeit sometimes significant, were
excluded from the analysis since they accounted for no more
than 2.8% (no more than 16.1% together) of the total variance
for each sugar accumulation trait. Multicollinearity was tested
through calculation of variance inflation factors (VIF), which all
remained less than six and were deemed acceptable given the
large dataset. The relaimpo package in R (Gromping, 2006) was
used to determine the contribution of regressors in explaining
the variance of the traits. Tukey’s HSD test was used for
post hoc pairwise comparisons across cultivar means for the traits
(Supplementary Table 3).

Multiple linear regression analysis

Multiple linear regression analysis was performed for each
cultivar between the dependent traits in Durcont, So5-cont> and
So5-conc against various independent genetic and environmental
variables. The optimum set of variables in each model
was determined through an “all-possible combinations”
regression method. The model selected for each individual
cultivar had the highest possible adjusted r*, while model
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coefficients were significant (P < 0.05) and showed low
multicollinearity (VIF < 2).

RESULTS

Climatic Conditions Experienced by
Grape Cultivars

Bordeaux is classified as Cfb (warm temperate, fully humid,
warm summers) according to the Koppen and Geiger climate
classification (Beck et al., 2018). Cool and wet winters and
springs, followed by warm and dry summers are responsible for
some of the best wine vintages in Bordeaux (Baciocco, 2014). The
average daily air temperature and PAR from DOY 130 to 290
for years 2012 to 2018 are plotted in Figure 1. PAR is closely
related to temperature, but with slightly different trends over the
progression of the different seasons. The peak in temperatures
always occurs after the peak in PAR (Figure 1).

Since sugar accumulation in grape berries mainly occurs
from veraison to maturity (Coombe and McCarthy, 2000), we
further analyzed the climate variables for the periods prior

and post to mid-veraison. The average temperature from mid-
flowering to mid-veraison (T¢_,) was higher than that from
mid-veraison to maturity in four out of the 7 years studied
(Table 1). The average PAR from mid-flowering to mid-veraison
(PAR¢_) was higher in all 7 years compared to those from mid-
veraison to maturity. In addition to temperature, the moderate
to severe soil water deficits experienced in Bordeaux during
berry ripening are also associated with high quality vintages
(van Leeuwen et al., 2009). The total rainfall from flowering to
veraison was higher than those from veraison to maturity in 6
out the 7 years.

There is considerable variability in the observed phenology
across the 36 cultivars (Destrac Irvine and van Leeuwen,
2016). This phenological variability may affect the climatic
conditions experienced by each cultivar within a given year. An
ANOVA was conducted to assess the relative contributions of
cultivar and year on the exact climatic conditions experienced
by each cultivar over different development stages (Table 2).
As expected, year explained a large amount of the variability
(20.4-94.4%) in the climate conditions experienced by each
cultivar. Interestingly, the T¢_, Ty_g5, and PAR,_g5 were also

3500
= 3000
2500
2000
1500
1000
500

Average air temperature (°C)

PAR (J/cm?)

L 3000 ® Average air temperature

* PAR
2500
2000
1500
1000
500

FIGURE 1 | Average daily air temperature (°C) on primary vertical axis, and photosynthetically active radiation (PAR; J cm~2) on the secondary vertical axis, plotted
versus day of year (DOY) between DOY 130 and 290 for years 2012 through 2018. Arrows indicate dates of mid-flowering and mid-veraison averaged over all
cultivars for each year. The solid lines represent LOESS (locally estimated scatterplot smoothing) fitted to the data for temperature and PAR.

TABLE 1 | Average air temperatures, average PAR, and total rainfall over the flowering to veraison and the veraison to maturity periods (dates averaged across all

cultivars) for 2012 to 2018.

Average air temperature (°C)

Average PAR (J cm~—2)

Total rainfall (mm)

Year Mid-flowering - veraison Veraison - maturity Flowering - veraison Veraison - maturity Flowering - veraison Veraison - maturity
2012 20.3 22.0 113381 954.7 120 48
2013 22.0 19.4 1155.6 827.9 214 48
2014 21.4 20.7 1153.6 943.8 140 86
2015 22.5 21.3 1285.9 10138.3 46 111
2016 20.9 22.3 1192.2 1051.1 90 64
2017 22.1 21.2 1162.5 977.9 168 50
2018 22.9 23.1 1065.4 985.5 106 76
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TABLE 2 | ANOVA analysis illustrating the effect of cultivar, year, and their interaction on pre- and post-veraison climatic variables, berry size, and 8'3C.

Contribution of variance components (%)

Source Degrees of freedom RR¢_y PAR;_, Ti_yv PAR,_g5 Ty_o5 BW, 313
Cultivar 35 2.1 1.1 14.7 25.3 138.1 57.8 7.9
Year 6 87.4 94.4 85.2 35.1 54.0 20.4 63.5
Cultivar x year 210 8.7 4.5 0.1 20.3 151 9.1 6.1*
Residuals 756 1.8 0.0 0.0 19.3 17.8 12.7 22.4
Total variance explained 98.2 100.0 100.0 80.7 82.2 87.3 77.6

*ns, not significant.

largely influenced (13.1-25.3%) by cultivar-specific phenology
(Table 2). In addition, the BW, and 33C, two proxies of
climatic conditions (see section “Materials and methods”), were
also analyzed. The year effect was responsible for 63.5% of the
variability in 8!3C, while BWy was mainly influenced by cultivar
(57.8%). These results highlight the necessity to distinguish
between antecedent and concurrent factors when analyzing the
potential linkages between independent variables and sugar
accumulation traits.

Modeling Sugar Accumulation

The sigmoidal model was applied as described in the
section “Materials and Methods” to each single replicate
(year x cultivar x block) providing a statistically strong
fit. Figure 2 presents the curve fits for four cultivars
showing the sugar accumulation traits expressed both as
concentration and content. The cultivars Touriga Franca
and Saperavi consistently attain the lowest and highest berry
sugar concentrations in this dataset, respectively. Whereas
the cultivars Petit Verdot and Assyrtiko accumulate the
lowest and highest berry sugar contents, respectively. The
r* for each cultivar (averaged over blocks) was between
0.96-0.99 and 0.92-0.98 when expressed in concentration and
content, respectively (Supplementary Table 4). RMSE for the
curve fits for concentrations and content across all cultivars
were between 3.30 and 5.56 g L™! and between 9.73 and
29.49 mg berry~!, respectively. The model performed well over
a large range of cultivars with different sugar accumulation
dynamics under different environmental conditions. Figure 3
illustrates the variation in sugar accumulation curves for each
cultivar (the same curves in mg berry~! can be found in
Supplementary Figure 1).

Characterizing Cultivars by

Accumulation Traits

Cluster Analysis

Figure 4 presents the clustering analysis of the 36 cultivars based
on tyer, S95—conc> DUrcont, showing the resulting six clusters, along
with all the other sugar accumulation traits for reference (except
for Syer—conc and Syer—cont Which can be found in Supplementary
Table 3). The timing of mid-veraison was selected for the
clustering analysis as it can indirectly affect sugar accumulation.
It drives the start of ripening and may be a factor in determining
both the length of time available for ripening and the climatic

conditions that the vine and berries will experience during
ripening (Table 2). Sugar concentration at 95% of maximum
was selected as it determines the potential alcohol content of
the wine and is of great interest to winemakers. The duration
of the sugar accumulation period is of interest to growers,
together with tyer, as it will determine in which part of the
season the grapes will ripen. It may also be a concern with
regard to achieving concurrent phenolic maturity of the grapes
(Deloire et al., 2005). Expressed as content, this is the duration
of active sugar loading to the berries and excludes the separate
mechanism of sugar concentration caused by dehydration after
loading has ceased. The main characteristics of the six clusters
are described below.

Cluster I is characterized by cultivars that go through
mid-veraison relatively early (tyr < 217.0), ripen fast
(Durcont < 38.5 days, with the exception of Sauvignon Blanc
with 46.7 days) and show rather high concentrations of sugar at
ripeness (214.7 < Sg5_conc < 241.6 g L=h.

Cluster II is a mix of cultivars that go through mid-veraison on
average more than 5 days later than those in Cluster I. Sg5_conc are
generally slightly lower and Durcon is notably lower for Touriga
Nacional, Cot, and Merlot.

Cluster III cultivars go through mid-veraison later
(tyer > 224.4), but with short sugar accumulation periods
(Durcont < 38.0 days). In this cluster, Petit Verdot is notably
the latest grape cultivar to go through mid-veraison, but not the
latest to reach a plateau in sugar concentration (tgs_conc) due
to quick ripening.

Cluster IV cultivars have similar ripening dynamics to Cluster
II. The major difference between Clusters II and IV is that the
latter display only lower levels of sugar concentration and need
more time to load sugars.

Cluster V represents cultivars that go through mid-veraison
early (tyer < 218.2) and end up with low concentrations of sugars
(S95—conc < 204.2 g L™1) at ripeness. Touriga Franca is very
typical for this behavior.

Cluster VI cultivars were not the latest to go through mid-
veraison, but ripened the slowest and therefore have the longest
ripening period (Durcont > 50.7 days).

In general, the coefficients of variation were slightly higher
for the sugar accumulation traits expressed in content compared
to those expressed in concentration. Although the coeflicients
of variation for Durcyne and Dureonc were higher than those
for Sos_conc and Sos_cont> both indicate the presence of some
plasticity (Figure 4).
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FIGURE 2 | Sugar accumulation data and fitted curves for Touriga Franca, Saperavi, Petit Verdot, and Assyrtiko expressed in both concentration (in black) and
content (in blue) for 2016 (block 1). Vertical dashed lines identify tyer and tgs concentration, or content. Horizontal dashed lines identify the corresponding sugar

concentration (on primary vertical axis), or content (on secondary vertical axis).

Correlation Analysis

Correlations among the different sugar accumulation traits of
the different cultivars were also evaluated to identify inter-
relationships. Table 3 presents the Bravais-Pearson correlation
coefficients (r) between all sugar accumulation traits, time of
mid-veraison, and berry weight at mid-veraison for all replicates
(cultivar x year x block) considered together. Correlations
shown in bold had r > 0.71, which corresponds to the 2 > 0.5,
meaning more than 50% of the variation in one variable explains
the variation in the other variable.

In general, the rate of maximum increase in sugar
concentration (reonc) was negatively correlated to both the
time of 95% maximum sugar concentration (tgs—conc) and
the duration to that point starting at mid-veraison (Durconc),
with the latter two also being positively correlated. Likewise,
the maximum berry sugar loading rate (rcon:) was negatively
correlated to both time of 95% maximum sugar content (tos_ cont)
and the duration to that point starting at mid-veraison (Durcopt),
with the latter two also being positively correlated. Berry weight

at mid-veraison (BWy) is strongly and positively correlated to
sugar content at 95% of maximum (So5— cont)-

Because all cultivars are considered together, the relationships
between traits described in the above analysis are only general,
with potentially much different, or possibly no such relationships
existing for individual cultivars. Correlation analysis between
these traits across years was also done separately for each
cultivar (not shown) and found individual cultivars followed
similar trends as the larger group, suggesting a consistency in
these behaviors across individual cultivars, albeit with different
slopes and intercepts.

Climate Versus Genetic Effects on

Accumulation Traits

To understand the relative effect of cultivar genetics versus
climate, Table 4 presents an ANOVA showing the relative
contribution of variance in sugar accumulation traits and tyer
associated with cultivar, year, cultivar x year interaction, and
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FIGURE 3 | Sugar accumulation dynamics of the 36 grape cultivars included in this study from 2012 to 2018. The curves represent a single year and were drawn
from traits averaged over the four blocks.

residuals, together with the total variance explained. Year,
cultivar, and their interaction were highly significant (P < 0.001)
and explained much of the variance of most of the traits. For
the key traits tyer and Sos—conc, year explained around half of the
variance, the latter showing a greater cultivar x year interaction
effect. Durcone had relatively more variance explained by the
cultivar and with larger cultivar x year interaction and residuals,
although the overall variance explained by the model was less
than the others at 59%. Much of the variation in Sg5_cont is
explained by cultivar, this indicates that differences in berry
weight are strongly genotype-dependent. The remaining traits
generally had more variance explained by the cultivar, with the
rest explained relatively evenly across the other factors. The
relative contribution of the block effect to the total variance of
the various traits was low at between 0.1 and 0.8%.

Plasticity of Accumulation Traits

General Effects

Type III ANOVA was performed to test the main effects of
climate related variables, tyes and BW, on the different sugar

accumulation traits (Table 5). Overall, the total variation of the
content-based sugar accumulation traits was better explained
(48-77%) than the total variation for the concentration-based
traits (28-44%). Rainfall prior to mid-veraison explains 44.1%
of the variance in sugar concentration at maturity (Sos—conc)-
Average post mid-veraison PAR explained more of the variance
than post mid-veraison temperature for four of the eight sugar
accumulation traits and it explained a large part of the variation
in three of the four content-based sugar accumulation traits.
Sugar content per berry is strongly affected by berry weight
at mid-veraison.

With all cultivar data considered together, this type of analysis
identifies larger general trends, but can be blurred by the
differential behavior of the 36 individual cultivars. Performing
this analysis on a per cultivar basis will improve understanding
of the dynamics.

Cultivar-Specific Effects
The effects of the same climatic factors, tye; and BWy included
in Table 5 are evaluated to quantify their contribution to the
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Cultivar tuer Durcon Sos-conc
1 [ Pinot Noir - 355 2217
Chardonnay 37.1 214.7
Gamay 215.3 38.5 217.5
Sauvignon Blanc 46.7
Viognier 2148 38.3
| Saperavi 217.0
1] i Petite Arvine 220.3 41.4 223.7
Marselan 219.3 42.8 220.2
Roussanne 223.8 43.0 218.9
Hibernal 217.3 43.9 208.5
Chenin Blanc 217.0 45.3 21383
Castets 219.3 41.4 208.6
Touriga Nacional 2213 36.0 212.7
Cot 218.1 37.0 211.9
| Merlot 2185 35.7 225.5 1
| Grenache 225.7 35.7 212.4
Cabernet Franc 2244 38.0 210.4
Prunelard 226.9 208.3
Morrastel 226.5 193.2
| Petit Verdot 215.9
IV| Cabernet-Sauvignon 221.7 44.3 207.3
Assyrtiko 223.6 45.3 207.0
Carignan 226.7 443 199.3
Tinto Cao 226.7 47.6 215.9
| Arinarnoa 225.7 44.1 210.2
V| Sémillon 48.2 195.1
Muscadelle 215.0 47.4 198.1
BX 9 47.6 204.2
Touriga Franca 44.0
Riesling 216.1
Carmenére 218.2 197.5
| Tempranillo 214.4 40.0 200.5
vi[ Ugni Blanc 221.3 - 208.0
Sangiovese 221.9 206.3
Mourvedre 220.4 50.7 201.1
BX 6 214.7 _ 214.8
CV pooled 3.28 27.04 10.40
SD pooled 7.19 11.35 21.92

95%Cl (+SD) 2.66+0.19 4.04+1.17 7.88+1.98

Teonc Teont ts-conc tos-cont Sos-cont Durconc
5.1 8.7 3323 36.9
[ 56 100 3342 37.1
4.6 10.1 256.0 253.8 405.9 408
53 10.3 255.8 259.0 4235 435
5.0 10.7 260.8 370.9 45.9
5.2 11.8 257.3 378.9 40.2
_& 259.5 265.1 3113 39.1
48 261.5 2620 [N245300 422
4.7 96 266.3 269.5 389.7 425
48 8.7 255.5 261.2 356.0 383
5.0 9.2 257.0 262.3 376.5 40.0
a5 [072 2604 260.7 412
41 9.7 264.7 257.3 339.8 435
48 61 2562 255.1 568.2 38.0
5.1 123 258.5 254.1 413.1 40.1
4.9 126 259.6 261.4 4734  [339
43 7.9 266.3 262.3 300.8 42.0
4.9 12.6 261.6 263.2 451.4
3.9 9.2 267.0 261.6 327.9 405
45 [eE 2716 2678 [N238EN 393
43 - 262.6 266.0 - 41.0
41 269.5 269.0 459
36 11.3 27238 271.0 493.1 46.1
3.8 2735 2743 3343 46.8
3.7 8.2 2745 2722 3482 48.9
41 122 256.9 261.2 502.1 43.9
338 9.0 262.8 262.4 402.2 476
5.3 91 [25150 2612 375.9 37.8
- 10.0 258.9 256.1 4151 6.7
10.3 3232
41 12.5 259.1 400.3 40.9
4.0 13.4 257.6 254.4 507.0 43.2
4.0 9.4 273.0 44338 51.6
- 8.9 489.8
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4.0 9.3 264.5 268.8 453.9 49.7
20.04 26.31 3.21 4.70 18.16 20.82
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0.32£0.08 093%0.30 3.04%0.68 4.43+1.05 2529%7.09 3.22+0.71

FIGURE 4 | Hierarchical cluster analysis based on tyer, Durcont, and Sgs_conc, Showing six groups for the 36 cultivars together with other sugar accumulation traits
for reference. Values shown are averages of each trait for each cultivar (over 7 years and four blocks, n = 28). Blue cells are increasingly lower values and red cells

are increasingly higher values within the range observed for each of the traits. DOY, day of the year; CV pooled, pooled coefficient of variation; SD pooled, pooled
standard deviation; 95% ClI, average 95% confidence interval with standard deviation.

observed variation in the key sugar accumulation traits of
Durcont> S95—cont> and Sgs_conc for all the cultivars individually.
Durcone is of interest to growers, together with tyer, as it will
determine in which part of the season the grapes will ripen. It may
also be of interest with regards to achieving concurrent phenolic
maturity of the grapes. Expressed as content, this is the duration
of active sugar loading to the berries and excludes the separate
mechanism of sugar concentration caused by dehydration after
loading has ceased. Sos5_cont is of physiologic interest as it is the
ultimate amount of sugar loaded into the berry, and Sg5_conc is of
interest to winemakers as it drives the potential alcohol content,
which is important in the final sensory attributes of the wine.

Multiple linear regression analysis was performed for each
cultivar on the above dependent traits against the same set
of independent variables in Table 5. On average the resulting
models explained 69, 70, and 69% of the total variation in
Durcont> S95—conc> and Sos_cont, respectively and are described in
more detail below.

Duration in content (Durcont)

PARy_95, RR¢_y, BWy, tyer, and T¢_, were shown to significantly
influence Durcont for 30, 25, 21, 19, and 14 out of the 36 cultivars,
respectively, although the relative contribution of each was very
different across the cultivars (Figure 5 and Supplementary
Table 5). An increase in PAR,_95, RR;_,, Tf_,, Or tyer reduced
Durcont, while an increase in BWy increased Durcyn:. Whereas
PARy_95 was important for most cultivars, it was replaced by
Ty_g5 for the cultivars Arinarnoa, Ugni Blanc, Petit Verdot,
Roussanne, and Carignan. During the mid-flowering to mid-
veraison period, the effect of PAR¢_, was relatively small across all
cultivars. During the mid-veraison to maturity period the effect of
vines water status assessed with 3'3C was also relatively small.

95% maximum sugar content (So5_cont)

BW,, water deficit [8*C or (8!3C)?], Durcon, and RR¢_,
were shown to significantly influence So5_cont for 28, 25, 18,
and 14 out of the 36 cultivars, respectively, while the effects
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TABLE 3 | Bravais-Pearson coefficients (r) for correlation analysis performed between all sugar accumulation traits, tyer and BW, for all replicates

(cultivar x year x block) considered together.

tver Fconc Feont So5-conc So5_cont t95_conc to5_cont Durconc Durcont BW,
tver - ns —0.11 —0.31 —0.21 0.50 0.47 -0.29 —-0.16 —0.11
l'conc - - 0.27 0.24 —0.16 —-0.62 —0.33 -0.73 —0.40 —0.29
loont - - - 0.17 0.58 -0.22 —0.48 -0.16 —0.47 0.57
Sg5-conc - - - - 0.16 0.06 —0.21 0.33 ns —-0.19
Sgs-—cont - - - - - 0.10 017 0.29 0.33 0.92
t95—conc - - - - - - 0.59 0.68 0.32 0.1
to5—cont - - - - - - - 0.26 0.80 0.16
Durcone - - - - - - - - 0.49 0.21
Durcont - - - - - - - - - 0.26
BW, - - - - - - - _ _ _

The correlations shown in bold had r > 0.71, or 2 > 0.50.

TABLE 4 | Analysis of variance showing relative contribution of variance in observed sugar accumulation-related traits associated with cultivar, year, cultivar x year

interaction, block, and residuals, together with total variance explained.

Contribution of variance components (%)

Source Degrees of freedom ter Durcont Sg5-conc Feonc Feont to5-conc to5_cont Sg5-cont Durconc
Cultivar 35 355 24.4 27.0 40.2 47.0 48.2 29.3 64.0 29.4
Year 6 57.6 9.8 45.2 17.4 57 14.9 17.0 13.9 26.7
Cultivar x year 210 4.0 24.2 18.6 25.3 20.8 21.0 21.0 9.6 23.7
Block 3 0.2 0.5 0.2 0.1 0.8 0.2 0.2 07 0.3
Residuals 753 2.8 412 9.1 16.9 25.8 15.7 325 11.8 19.9
Total variance explained 97.2 58.8 90.9 83.1 74.2 84.3 67.5 88.2 80.1

of Tr_, and Ty_95 were generally small for most cultivars
(Figure 6 and Supplementary Table 6). An increase in BW,
or Durcont increased Sos_cont, While increased water deficit after
veraison (813C) and RR_, reduced Sos_cont. Water deficit after
veraison was included either as a linear or as a nonlinear
function (8'3C)? in the multiple regression. The effect of (313C)2
was quadratic, meaning that S¢s_cont increased with water
deficit until a maximum and then decreased, if water deficit
continued to increase.

95% maximum sugar concentration (So5_conc)

RR¢_,, PAR;_,, and (5'>C)? were shown to significantly influence
So5—conc for 34, 20, and 18 out of the 36 cultivars, respectively
(Figure 7 and Supplementary Table 7). The effects of BW,, and
tyer Were generally small and RR¢_, and PAR¢_, reduced So5_conc.
The influence of (3'>C)? was quadratic, meaning that So5_conc
reached an optimum at a certain level of water deficit.

DISCUSSION

Berry sugar accumulation data from 36 grapevine cultivars were
collected between veraison and maturity over 7 years from
a vineyard in Bordeaux. Sigmoid curves provided a strong
statistical fit to the data and were used to obtain key sugar
accumulation traits. The diversity of these traits were then
described and the dynamics of the sugar accumulation rate,
duration, and concentration/content at maturity traits across

cultivars were studied. Other grapevine traits that can influence
sugar accumulation traits, such as phenology, berry weight, and
water deficit response, were also considered.

Characterizing Cultivars

Clustering analysis was performed to assess similarities (or not)
among cultivars across the 7 years of the study based on the date
of mid-veraison (tyer), sugar concentration at 95% of maximum
(S95_conc), and the duration between mid-veraison and the date
of 95% sugar content (Durcon). Although the physiological
mechanisms driving them differ, these traits are of agronomic
interest and the clustering (as presented in Figure 4) provides a
useful categorization of cultivars for easy reference.

Correlation analysis between the different sugar accumulation
traits of all cultivars considered together found important general
relationships between the maximum rate of accumulation,
the duration, and the date of maturity. Faster maximum
accumulation rates were generally associated with both earlier
maturity dates and shorter durations between mid-veraison and
maturity. Individual cultivars followed similar trends as the larger
group, suggesting some consistency in these behaviors across
cultivars, albeit with different slopes and intercepts.

Climate Versus Genetics

For each individual ripening trait, the results of this study give
insight into how much their variation is driven by climate,
cultivar, and climate x cultivar interaction.
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TABLE 5 | Analysis of variance as performed by type Il ANOVA showing the amount of variance in the eight sugar accumulation traits explained by different

environmental variables for all cultivars considered together.

Relative contribution of variance components (%)

Source Durcont So5_conc Fconc Feont t95_conc t95-cont So5_cont Durconc
tver 22.7 ns 12.4 7.6 43.5 ns ns 27.2
BW, 6.0 6.6 21.7 31.4 3.0 3.1 88.7 7.6
Tiv 7.7 11.9 ns 7.5 ns 8.1 1.6 ns
PAR¢_y ns 7.2 2.7 1.0 7.4 ns 0.9 8.3
RR¢_y 8.4 441 7.3 0.7 12.3 3.6 5.8 32.4
Ty_o5 13.0 ns 31.2 ns 30.7 20.9 ns 22.8
PAR,_g5 40.3 13.6 22.8 51.9 ns 59.4 ns ns
8180 1.9 16.5 2.0 ns 3.0 4.8 2.9 1.8
r2 model 71.8 36.8 28.0 47.5 44.3 77.4 70.3 32.2

ANOVA run with n = 1008 individual observations.
ns, not significant.

Analysis of variance analysis of the variation in sugar
accumulation traits, for all cultivars considered together, were
well explained by cultivar, year, and their interaction, with total
variance explained ranging between 59 and 97% across the
different traits.

For the key traits of tyer and Sgs_conc, year explained around
half of their respective variances, while cultivar explained roughly
one third. This suggests that climate was a strong driver of those
traits, with genetic variation also being important. About 19% of
variance in So5_conc Was explained by cultivar x year interaction,
suggesting an additional contribution from phenotypic plasticity.

Compared to all other sugar accumulation traits, the ANOVA
analysis found Durcyy had the lowest amount of total variance
explained (58.8%), suggesting other variables not included in the
model had an effect. Of the total variance for this trait, little
was explained by year, with both cultivar and cultivar x year
interaction each explaining about 24%. The remaining traits
generally had more variance explained by cultivar with the rest
explained relatively evenly by other factors.

Phenotypic Plasticity
Analysis of variance analysis of sugar accumulation traits, with all
cultivars considered together, found that the total variation of the
content-based sugar accumulation traits were better explained
by the selected environmental variables (48-77%) than the total
variation for the concentration-based traits (28-44%). This could
be due to the additional effect of berry dehydration on the latter
that may occur after sugar loading is otherwise complete.

The following subsections provide a detailed look at
the relationships between specific variables and the sugar
accumulation traits of individual cultivars.

Pre -and Post-veraison Effects of PAR and
Temperature

For duration as content (Durcpnt), PARy_95 had a significant
influence in 30 out of 36 cultivars and Ty_g5 had a significant
influence on 5 of 36 cultivars, although to varying degrees in
both cases. PARy_g5 and Ty_g5 were not found together in
the same model of Durcy for a given cultivar for reasons

of collinearity (r = 0.73, P < 0.05). This, however, does not
imply that there were no effects of temperature on cultivars
when Ty_g¢5 was not included in the regression. All cultivars
ripened between DOY 190 and 290 in any given year. During
this period, days are already getting shorter, thereby reducing
the amount of received PAR, while temperature is at its peak
and relatively stable for approximately 20 days after tye before
starting to decrease more steeply in September. In this study,
the variation in PAR for a given temperature is therefore
higher at high temperatures. In a year with early phenology,
the sugar accumulation period may coincide with both higher
temperature and PAR. This may be important as it has been
shown that increased light and temperature levels may increase
the photosynthetic rate of plants (McIntyre et al., 1982).
A reduction in Durcen¢ is possible if more sugar was partitioned
to the berries through an increased rate of photosynthesis.
Conversely, with a late phenology, a cultivar may ripen under
lower temperature and light conditions. This in turn reduces the
rate of photosynthesis and theoretically increases the duration of
the sugar accumulation period. The effects of PAR¢_, and T¢_,
on Sg5_conc Were found to be consistently small. For Durcont,
the variables PAR¢ , and Tg¢, were not found together in
the same model for reasons of collinearity. Higher levels of
PAR prior to mid-veraison, when days were longer, might have
resulted in higher amounts of sugars accumulated. The 95%
maximum sugar content trait (So5—cont) showed only sporadic
relationships between either temperature, or PAR, whether
before, or after mid-veraison.

Effects of the Timing of Mid-Veraison

The trait tye; may have an indirect effect on sugar accumulation.
It drives the start of ripening and may be a factor in
determining both the length of time available for ripening and
the temperatures that the vine and berries will experience during
ripening. The veraison date is influenced by both cultivar genetics
and environmental conditions prior to veraison, in particular
temperature (Parker et al., 2011). This makes tye, somewhat
of a proxy for those conditions driving the plasticity of sugar
accumulation traits.

Frontiers in Plant Science | www.frontiersin.org 11

February 2021 | Volume 12 | Article 624867


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Suter et al.

Grape Berry Sugar Accumulation Traits

Arinarnoa

Ugni Blanc
Petit Verdot
Roussanne
Carignan
Carmenere
Morrastel
Castets

Chenin Blanc
Cabernet Franc
Tempranillo
Prunelard
Petite Arvine
Chardonnay
Touriga Nacional
Hibernal

Grenache
Cabernet-Sauvignon il

Marselan 1 i
Gamay 1 il
BX9 Al - _
Cot - i - -
Riesling - li
Pinot Noir A L 1-_
Viognier - il -
Mourvédre w =
axs I -
Sauvignon Blanc A o = !
Merlot - i -
Tinto Cao 1 o - !
Saperavi Al -

Touriga Franca - kd - !

Sémillon 4 i =
Muscadelle 4 L
Sangiovese il =

Assyrtiko - il

Contribution to variance in Dur,,,, (%)

B RR, W PAR,,
Tf_v Yer
B BwW, PAR, g5
Tyos &"C

FIGURE 5 | Stacked bar plots of the variance components determined by
multiple linear regression for trait Durcont. The cultivars are ordered based on
the percentage explained by PAR;_,. The independent variables included
were RRi_y, PARt_y, Ti_y, PAR,_g5, Ty—95, tver, BWy, and 8'3C. The —and +
represent the directions in which coefficients of variables moved.
Supplementary Table 6 provides a numeric form of this figure.
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FIGURE 6 | Stacked bar plots of the variance components as determined by
multiple linear regression for the trait Sgs_cont. The cultivars are ordered based
on the percentage explained by BW,,. The independent variables included
were RR:_y, PAR;_y, Ti—v, PARy_g5, Ty—_05, tver, BWy, and the trait Durcont.
3'8C was included as a linear term, whereas (3'3C)? was included using a
power term into the regression. The —, + and —/+ represent the directions in
which coefficients of variables moved. Where —/+ was only designated to the
variable (3'3C)? because of its inherent quadratic character. Supplementary
Table 7 provides a numeric form of this figure.
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FIGURE 7 | Stacked bar plots of the variance components as determined by
multiple linear regression for the trait Sgs_conc. The cultivars are ordered
based on the percentage explained by RR¢_,. The independent variables
included were: RRi_y, PAR_y, Tr_v, PARy_os, Tv_gs, tver, and BW,. 8'3C was
included as a linear term, whereas (3'3C)? was included using a power term
into the regression. The —, + and —/+ represent the directions in which
coefficients of variables moved. Where —/+ was only designated to the
variable (3'3C)2 because of its inherent quadratic character. Supplementary
Table 8 provides a numeric form of this figure.

In this study, the duration of the sugar accumulation as
content (Durcont) decreased with delayed tyer in 19 out of 36
cultivars, although to varying degrees. Cultivars with delayed
tyer ripened in less favorable conditions, and may be eventually
halted, resulting in lower sugar contents and shorter Durcop. In
the 2013 growing season, not only were sugar accumulation rates
lower, but final sugar contents were also lower for all cultivars
(Figure 3). Date of mid-veraison (tyer) only showed sporadic
relationships with 95% maximum sugar content (Sg5_cont) and
sugar concentration (S95_conc)-

Pre-veraison Effects of Rainfall
Rainfall (RR¢_,) prior to mid-veraison had significant
relationships with Durcont, S95—conts and Sos_conc across 25,
14, and 34 of 36 cultivars, respectively. Any physiological
response to rainfall prior to mid-veraison is most probably
driven by its effect on soil water status. In the absence of any
available soil water, or water potential measurements prior to
veraison, rainfall provides a good surrogate. The variability
associated with evapotranspiration (the other parameter besides
rainfall important in determining soil water status) is accounted
for by average temperature and PAR from mid-flowering to
mid-veraison as already included in the model when significant.
Rainfall prior to veraison was found to decrease berry sugar
concentrations. An increase in soil water content might have
resulted in an increased water supply to the berries and caused
a subsequent dilution of Sgs_conc. In line with the previous
statement, rainfall between budburst and veraison was found to
be strongly correlated with berry weight at veraison (r = 0.77,
P < 0.05). Another concurrent dilution effect may have been
caused by partial failure of fruit-set and expansion (referred to
as millerandage and coulure in French, or hens and chickens in
English) caused by rainfall prior to mid-veraison. These two
conditions can bring about a reduction in the number of berries
per bunch, while increasing the size of the remaining berries.
Regarding its effect on reducing Durcon, the affect of
rainfall prior to mid-veraison is more difficult to explain. Such
rainfall may increase vine vigor and thereby the rate of sugar
accumulation, which is generally related to Durcon across all
cultivars (Table 3).

Effects of Berry Weight at Veraison

Berry weight at mid-veraison appeared to be an important
driver of final sugar content (Sg5_cont) for almost all cultivars
in this study. Houel et al. (2013) obtained the same results for
a wide range of cultivars and reasoned that cell division and
cell expansion after anthesis were the main drivers of berry
size. Any water deficit during the period could restrict berry
cell division and thereby its potential final size (Shellie, 2014).
On the other hand, cultivars such as Petit Verdot and Viognier
vary little in berry weight. These cultivars are known for their
relatively small and stable berry size to begin with and for
these cultivars, the length of the sugar accumulation period
explains most of the variation in Sgs5_cont. However, for 21 out
of the 36 cultivars, increased berry weight also increased Durcont.
A plausible explanation would be that bigger berries hold more
sugar, and it takes more time to fill them.
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Effects of the Duration of the Sugar Accumulation
Period

Durcont was included as a variable in the multiple regression
analysis to evaluate the effect of the length of the sugar
accumulation period on Sgs_cont (Figure 6) and no significant
relationships were found. For some cultivars Sg5_cont Was quite
variable for a given Durcy (e.g., Merlot and Mourveédre). For
these cultivars it was the level of water deficit and berry weight at
mid-veraison that were also major determinants of So5_cont.

Effects of Water Deficit (813C)

For the trait of 95% maximum sugar content (Sgs_cont) and
95% maximum sugar concentration (Sgs_conc) Water status post-
veraison as measured by 3'3C had an important effect for 25
and 18 cultivars of 36, respectively. $!>C was only sporadically
related to Durcopt and to a small degree. For some cultivars, the
effect of water deficits was found to be linear. This was generally
the case for cultivars that either did not experience weak or
severe water deficits in the seven seasons in this study. Otherwise,
this relationship with 5!*C was best characterized by a power
function, with higher sugar content or concentration when water
deficit was moderate, and lower sugar content or concentration
when water deficit was either weak or strong. This finding is
consistent with van Leeuwen et al. (2009). Comparison of $13Cis
useful within but not across cultivars, because high sugar contents
may be reached at different levels of water deficits. When water
deficit is moderate, shoot growth is more reduced compared to
photosynthesis (Pellegrino et al., 2005). Hence, more sugar is
available for berry ripening. This effect, combined with smaller
berries under water deficit (Ojeda et al., 2001), results in higher
sugar concentrations. Also, water deficit after veraison can lead to
berry shrinkage by dehydration when the sum of xylem efflux and
berry transpiration exceed phloem influx (Keller, 2006). Severe
water deficits decrease photosynthetic activity and thereby limit
sugar accumulation in berries (Zufferey et al., 2000). A dilution
effect may occur at low water deficits as berry growth may be
faster than sugar accumulation (Santesteban and Royo, 2006).
Also, at low water deficits the rate of sugar accumulation appears
to decrease relative to moderate water deficit stress. This might be
due to more partitioning of sugar to vegetative growth over berry
ripening (Dry and Loveys, 1998). Additionally, the response of
berry growth to water deficit can also depend on the crop load
(Trégoat et al., 2002).

Effect of Leaf Area to Yield Ratios on
Traits

The effect of yield (and its components) on sugar accumulation
traits has been well-reported (Sadras and McCarthy, 2007; Dai
et al., 2011; van Leeuwen and Darriet, 2016). Yield data was not
recorded for the first 6 years of measurements and therefore was
not included in the analyses. The grapevine canopy leaf area
was estimated to be between 2.0 and 2.4 m? per meter of row.
According to Kliewer and Dokoozlian (2005) maximum levels of
total soluble solids and berry weight are attained when leaf to fruit
ratios are higher than 0.8-1.2 m? kg~ . In such case, the canopies
would be able to support 1.7-3.0 kg of fruit per meter of row.
Although not consistently measured, occasional bunch counts

and bunch weight assessments indicate that crop loads were lower
than these levels in the vast majority of years. To the extent
that actual leaf area to fruit load ratios may have limited sugar
accumulation, this could explain some of the variance (residuals)
not explained by the models.

Significance of Findings From the

Perspective of Climate Change

A major concern in agriculture, and in particular in grape
growing for wine production, is that crop yields and quality may
be significantly affected by climate change (Fraga et al., 2012),
speaking to the need for adaptational strategies. Crop genetic
diversity is a valuable resource to exploit as an adaptation to
a changing climate (Morales-Castilla et al., 2020) and planting
cultivars that are better suited to a region’s changing climate
would allow grape growers to maintain cultivation in their
current location.

Although the great genetic variation within the V. vinifera
species is a valuable resource for adaptation (Wolkovich et al.,
2018), phenotyping of relevant traits across the wide range
of cultivars has been limited. Most existing data have been
collected in cultivar repositories, which have not been planted
with replicates, making it impossible to separate environmental
from genotypic variability (Destrac Irvine and van Leeuwen,
2016). This study allowed for the evaluation of key traits relevant
to winemakers and researchers regarding sugar accumulation
in the context of climate change. Using multiple regression
analysis, the variation in key sugar accumulation traits can be
largely explained by climate variables such as PAR, temperature,
and water status (both before and after mid-veraison), and by
physiological variables such as berry weight and date of mid-
veraison. The extent to which these different variables affected
sugar accumulation traits, however, varied across grape cultivars.
More research is needed to unravel the exact mechanisms
underlying the differential genotypic responses of traits to
environmental variables. Adaptation to climate change cannot
be based on temperature alone and crop responses cannot be
generalized across genotypes, even within species.

Climate change induces excessively high sugar levels in grapes,
resulting in wines with increased alcohol content (Duchéne and
Schneider, 2005). It also results in earlier ripening, moving the
ripening period to a part of the season when high temperatures
are not optimum for producing high quality wines (van Leeuwen
et al., 2019). Phenotyping specific sugar-related ripening traits
across a wide range of cultivars provides useful information
to growers, when adaptation to climate change drives them to
change cultivars.

In this study we focussed only on sugar accumulation
traits. Sugar, however, is only one of many determinants for
grape cultivar suitability in wine regions. Other important
traits include, but are not limited to, WUE, photosynthetic
capacity, yield, and berry composition (e.g. organic acids, aroma
precursors, tannins, color, etc.). Future research should focus
on characterizing these key traits and their interaction with
the environment to ultimately select for grape cultivars under
future climate regimes. Also, the results observed in this study

Frontiers in Plant Science | www.frontiersin.org

February 2021 | Volume 12 | Article 624867


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Suter et al.

Grape Berry Sugar Accumulation Traits

are likely to depend on climate, soil, clone, and rootstock.
So to complement the results from this study it would be
very useful if experimental vineyards like VitAdapt were set
up in other winegrowing regions with different soils, clones,
and rootstocks and under different climatic conditions. Such
initiatives are already underway, such as the GreffAdapt project
in Bordeaux where 55 different rootstocks are tested (Marguerit
et al., 2018), and the BritAdapt project in the United Kingdom
with a similar experimental set up as that in VitAdapt. The
common garden design of the VitAdapt experimental vineyard
provides a prototype for such experimental designs and is worth
being reproduced in other winegrowing areas around the world.

CONCLUSION

A sigmoidal model was successfully fit to weekly berry sugar
accumulation data and key sugar accumulation traits were
quantified. Cultivars were then clustered and characterized
according to these traits. The variations in sugar accumulation
traits for all cultivars, when considered together, were explained
well by cultivar, year, and their interaction, highlighting the
relative roles of genetic variation, climate factors, and phenotypic
plasticity. As seen extensively in the literature and in practice,
this study confirmed that increasing temperature has a significant
effect on grapevine phenology, leading to advanced harvest
dates. The results of this study, however, also showed that
sugar accumulation traits were affected by other factors both
antecedent and concurrent to veraison. Although the specific
physiological mechanisms by which these traits respond to
environmental variables remain to be identified, results of this
study provide useful information to inform grower selection
and management of cultivars in vineyards affected by climate
change. Determining suitability of grapevine cultivars for existing
or new winegrowing areas cannot be based on a single factor,
as is currently done in most studies. Moreover, the major
factors driving grape ripening dynamics cannot be generalized
across cultivars.
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