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The HapMap (haplotype map) projects have produced valuable genetic resources
in life science research communities, allowing researchers to investigate sequence
variations and conduct genome-wide association study (GWAS) analyses. A typical
HapMap project may require sequencing hundreds, even thousands, of individual lines
or accessions within a species. Due to limitations in current sequencing technology,
the genotype values for some accessions cannot be clearly called. Additionally, allelic
heterozygosity can be very high in some lines, causing genetic and sometimes
phenotypic segregation in their descendants. Genetic and phenotypic segregation
degrades the original accession’s specificity and makes it difficult to distinguish one
accession from another. Therefore, it is vitally important to determine and validate
HapMap accessions before one conducts a GWAS analysis. However, to the best of
our knowledge, there are no prior methodologies or tools that can readily distinguish
or validate multiple accessions in a HapMap population. We devised a bioinformatics
approach to distinguish multiple HapMap accessions using only a minimum number
of genetic markers. First, we assign each candidate marker with a distinguishing
score (DS), which measures its capability in distinguishing accessions. The DS score
prioritizes those markers with higher percentages of homozygous genotypes (allele
combinations), as they can be stably passed on to offspring. Next, we apply the “set-
partitioning” concept to select optimal markers by recursively partitioning accession
sets. Subsequently, we build a hierarchical decision tree in which a specific path
represents the selected markers and the homogenous genotypes that can be used
to distinguish one accession from others in the HapMap population. Based on
these algorithms, we developed a web tool named MAD-HiDTree (Multiple Accession
Distinguishment-Hierarchical Decision Tree), designed to analyze a user-input genotype
matrix and construct a hierarchical decision tree. Using genetic marker data extracted
from the Medicago truncatula HapMap population, we successfully constructed
hierarchical decision trees by which the original 262 M. truncatula accessions could be
efficiently distinguished. PCR experiments verified our proposed method, confirming that
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MAD-HiDTree can be used for the identification of a specific accession. MAD-HiDTree
was developed in C/C++ in Linux. Both the source code and test data are publicly
available at https://bioinfo.noble.org/MAD-HiDTree/.

Keywords: genome-wide association study, genotype, HapMap accession, homozygous, hierarchical decision
tree, INDEL, set partitioning, SNP

INTRODUCTION

A HapMap project aims to develop a haplotype map of a
genome of interest and describe the common patterns of genetic
variations among individuals. This always requires sequencing
and genotyping hundreds, even thousands, of individual
lines/accessions. Investigation of the sequence variation among
multiple accessions can facilitate the study of gene function by
genetic screening (Page and Grossniklaus, 2002; Østergaard and
Yanofsky, 2004), and identification of the sequence variants that
affect phenotypic traits by association mapping (Gibbs, 2003).
Sequence variation data usually are acquired by genome-wide
sequence alignment (Gollery, 2005) and subsequent genotype
calling (Nielsen et al., 2011). Due to the limitations of current
DNA sequencing technology (Kircher and Kelso, 2010) and
imperfect methods for alignment and genotype calling (Nielsen
et al., 2011, 2012), the genotype of some genetic variants
cannot be clearly called and are recorded as missing or
unknown. Additionally, genetic and phenotypic segregation can
be observed in their descendants, mainly due to the considerably
high heterozygosity (HET) rate. It has been reported that the
genome-wide mean HET rate estimated by Single Nucleotide
Polymorphism (SNP) database in a well-designed HapMap data
may be as high as∼0.2 (Li et al., 2007; Anderson et al., 2010).

In the past decade, great success has been achieved in the
application of population genetics and genome-wide association
studies (GWASs) (Visscher et al., 2012, 2017). GWAS has become
a powerful approach to identify genotype–phenotype (G2P)
associations (Tam et al., 2019) with many tools developed (Yang
et al., 2011; Bradbury et al., 2007; Chang et al., 2015; Zhang et al.,
2016, 2018). A typical initial step in plant GWAS is to order
some HapMap accessions’ seeds and characterize their offspring’s
phenotypic traits of offspring. However, the considerably high
rate of missing and heterozygous genotypes together significantly
degrade the specificity of an accession’s original descent.
Therefore, before starting an association study, all accessions
need to be accurately distinguished and confirmed, especially
when the seeds have been propagated for multiple generations,
and the heterozygous genetic materials have segregated. The
dilemma posed by specificity degradation among accessions
make it more difficult for the verification of gene function.
Although identifying a specific accession or clear distinguishment

Abbreviations: HapMap, Haplotype Map; G2P, Genotype to Phenotype; SNP,
Single Nucleotide Polymorphism; INDEL, Insertion or Deletion; GWASs,
Genome-Wide Association Studies; SPIHT, Set Partitioning in Hierarchical Tree;
DWT, Discrete Wavelet Transform; PCR, Polymerase Chain Reaction; SAM,
Sequence Alignment/Map; VCF, Variant Call Format; BCF: Binary counterpart of
VCF; GMEF, Genotype Marker Extracting and Filtering; MAD-HiDTree, Multiple
Accession Distinguishment- Hierarchical Decision Tree; DS, Distinguishing Score;
STLs, Standard Template Libraries.

of multiple accessions should be the first step in HapMap data
analysis, to the best of our knowledge, there are no methodologies
or tools available for this purpose.

The sequence variant calling of a HapMap population can
result in millions of genetic variant markers such as SNPs
or INDELs (insertions or deletions) (Durbin et al., 2010).
These genetic variants do not only work as a foundation for
investigating the relationship between genotypes and phenotypes,
but also as a huge resource to distinguish multiple accessions.
In self-pollinated species, a homozygote’s genetic material will be
stably conserved in their offspring, and the different homogenous
genotypes of a variant marker, being polymorphic, can be used
to distinguish one accession set from the others. Several related
variant markers can be cascaded, promising to construct a
hierarchical decision tree and distinguish a specific accession
from the others.

Based on the above presumptions, we propose a novel
algorithm, inspired by the Set partitioning in hierarchical tree
(SPIHT) algorithm for encoding the discrete wavelet transform
(DWT) coefficients in image compressing (Said and Pearlman,
1996). In our algorithm, set partitioning and a hierarchical
decision tree are used to distinguish multiple accessions in a
HapMap population. Based on the difference in homozygous
genotype values, a selected marker can partition an accession
set into several distinctive subsets. If multiple genotype variant
markers are used, the accession set partitioning will recursively
proceed until all accessions are specifically distinguished or until
the procedure meets preset criteria. Along with the recursively
accession set partitioning, a hierarchical decision tree that records
the procedure detail can be constructed.

We implemented the proposed algorithms as a standalone
Linux tool using C++. Also, we developed a demonstrative
web-based tool entitled MAD-HiDTree (Multiple Accession
Distinguishment-Hierarchical Decision Tree), which is publicly
available at https://bioinfo.noble.org/MAD-HiDTree. MAD-
HiDTree will recursively partition the accession set and produce
a constructed hierarchical decision tree after receiving the user
uploaded matrix data of genotype markers. It will record the
specific path of selected markers and homozygous genotypes
for one particular subset or accession, distinguishing this subset
or accession from the others. We used the Medicago truncatula
HapMap1 data for a case study. To feasibly detect and validate the
genetic marker’s polymorphism, we favor INDELs, especially long
INDELs, because the presence and absence of an INDEL marker
can be easily visualized with PCR (polymerase chain reaction)
(Mills et al., 2006). After extracting INDEL markers and filtering
out low-quality markers, we generated a genotype marker matrix

1http://www.medicagohapmap.org/
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with 262 accessions and 1,386 markers. Based on the extracted
genotype marker matrix in a dimension of 1,386 × 262, MAD-
HiDTree can successfully build a hierarchical decision tree and
clearly distinguish the original 262 accessions.

MATERIALS AND METHODS

Genotype Marker Matrix Data
The genotype marker matrix in.txt format is the only required
input for MAD-HiDTree. The columns of the genotype
marker matrix correspond to the individuals/accessions, and the
rows correspond to the genetic or genotype variant markers.
The matrix entry at a specific row (marker) and column
(accession) is the recorded genotype value, which can be either
homogenous alleles "0/0," "1/1," heterogeneous allele “0/1” or
a missing/unknown genotype value “./.”. Here, the allele “0”
represents the reference allele, while “1” represents the first
alternative allele, which strictly follows the Variant Call Format
(vcf) specification2.

HapMap Variant Calling Data
After the initial sequence alignment and genetic variant
calling, the HapMap data are usually stored in the sequence
alignment/map (SAM) format, or the variant format of either.vcf
or its binary version, .bcf (Li et al., 2009; McKenna et al.,
2010). The .vcf/.bcf file functionally contains a meta-information
header line and the following marker data lines, and can be
accessed and manipulated using BCFtools3. BCFtools is a set
of utilities (Danecek and McCarthy, 2016), through which a.vcf
file can be converted to the genotype matrix file. We developed
a user-friendly web-based pipeline to facilitate the creation of
the genotype marker matrix file by extracting and filtering
information from the HapMap variant calling file in a.vcf/.bcf file
called GMEF (genotype marker extracting and filtering), based
on the BCFtools command lines. The GMEF is publicly available
at https://bioinfo.noble.org/GMEF/.

The Rationale to Distinguish Multiple
Accessions Using Homozygous
Genotypes
The genotype marker matrix is the only required input data. This
can be generated from the original HapMap genetic variant data
(in.vcf or.bcf format) by BCFtools or GMEF. As described above,
the genotype marker matrix columns correspond to multiple
accessions while the rows correspond to the genotype markers.
For one accession, the status of a homogenous genotype at one
genetic marker can be stably passed onto their descendants,
and the distinctive information of two or more homogenous
genotype values at the same locus can be used to partition the
accession set into different subsets. Multiple markers can be
cascaded, promising to construct a hierarchical decision tree and
distinguish one specific accession against others.

2https://github.com/samtools/hts-specs
3http://github.com/samtools/bcftools

Figure 1 depicts the rationale on distinguishing the example
10 HapMap accessions based on the homozygous genotypes
of two genotype markers. It essentially uses the homozygous
genotypes to partition an accession set and multiple markers
to acquire more specific subsets. The original input set of
10 HapMap accessions (HM1–HM10) is partitioned into two
subsets by genotype marker 1, and the two partitioned subsets are
labeled as S1_0/0 and S1_1/1, containing seven and six accessions,
respectively, which, compared with the original input set with 10
accessions, has become more specific. The intermediate subset
S1_0/0 is partitioned into two subsets by genotype marker 2, and
the two partitioned subsets are labeled as S2_0/0 and S2_1/1,
which contain three and five accessions, respectively. We allocate
all the accessions with unknown and heterogeneous genotype
values into both distinctive subsets, fundamentally allowing a
partial overlap for information redundancy. Also, Figure 1 shows
that the homozygous genotype marker’s distinctive status is used
to partition an accession set. Therefore, an optimal marker
requires more even distribution of homozygous genotypes
across the accessions and fewer unknown and heterogeneous
genotype values.

Algorithm for Partitioning Accession Set
and Constructing Hierarchical Decision
Tree
We use the two or more distinctive homozygous genotypes
of a selected genotype marker to partition the accession set
into two or more distinct subsets. We continuously select
more genotype markers and proceed with the above accession
set partitioning recursively until a preset threshold or single
accession is met, achieving the goal of distinguishing multiple
accessions. Meanwhile, as accession set partitioning, we construct
a hierarchical decision tree containing all partitioning details.

Figure 2 illustrates the entire process of the accession set
partitioning and the accompanying hierarchical decision tree
construction. In Figure 2A, the top accession set is recursively
partitioned into four subsets by three markers. Figure 2B shows
the corresponding hierarchical decision tree consisting of three
marker nodes and four subset nodes. Also, Figure 2 shows that
the constructed hierarchical decision tree consists of two types
of nodes: the intermediate nodes representing genotype markers
and leaf nodes representing the final resulting subsets or specific
accessions. We can use the recorded node marker’s homozygous
genotype values to design the biological validation experiments
and specifically validate and distinguish each accessions.

The principle is to use the least amount of markers to
distinguish all the accessions; therefore, the selected marker
should have better capability than other markers to distinguish
the accession set. Here, we propose a distinguishing score (DS) to
measure a selected marker’s distinguishing capability:

DS =
AN − UN −HN

AN

TG−1∑
i=0

TG∑
j=i1

P∗i/iPj/j (1)

Where AN, UN, HN and TG represent the number of all
accessions, the number of accessions with unknown genotypes,
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FIGURE 1 | An example on distinguishing 10 HapMap accessions based on the homozygous genotypes of two genotype markers.

FIGURE 2 | Illustration of the proposed algorithm. (A) Partitioning an accession set. (B) Construction of a hierarchical decision tree.

the number of accessions with heterogeneous genotypes and the
number of homozygous genotypes, respectively. The i/i and j/j
represent the two alleles of each homozygous genotype, while Pi/i
, and Pj/j are the percentage of homozygous genotype i/i and
j/j, respectively.

For a bi-allelic marker, there will be only two homozygous
genotype status: “0/0” and “1/1.” The formula to calculate DS can

be simplified as:

DS =
AN − UN −HN

AN
P0/0 ∗ P1/1 (2)

In an ideal case, where UN = 0 and HN = 0, only
homozygous genotypes remain, and the percentages of the two
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homozygous genotypes meet:

P0/0 + P1/1 = 1.0 (3)

It is easy to acquire the maximum DS score for a bi-allelic
genotype marker as:

DS = 0.25, when P0/0 = P1/1 = 0.5.

From the formulas 1–3, we see that the above mathematical
definition of DS can fairly measure the marker’s distinguishing
capability. For one marker, the fewer unknown and
heterogeneous genotypes and the more even the distribution
of homogenous genotypes across all the accessions is, the
higher the DS score.

Figure 1 provides the rationale for using different
homozygous genotype status of a genotype marker to partition a
larger accession set into more-specific smaller accession subsets.
Figure 2 shows that the multiple selected markers can be used to
partition the top accession set to a discernable level recursively,
and the information recorded in the accompanied hierarchical
decision tree can be used to design the biological experiment
for verification. The algorithm for accession set partitioning
and hierarchical decision tree construction can be refined
and dissected into two separate but cross-related subroutines:
subroutine I for accession set partitioning and subroutine II
for subset significance testing. Figure 3 depicts the flowchart
between the two subroutines.

Subroutine I is for partitioning an accession set, applying to
all of accession sets to be partitioned and can be described as
following:

1. Calculate and sort the DS scores for all the
genotype markers.

2. Select the optimal marker with the maximum DS score.
3. Partition the inputting accession set into different subsets

according to the distinctive homozygous genotypes.
4. Allocate the accessions with heterogonous or unknown

genotypes into one of the partitioned subsets.
5. Call subroutine II (Figure 3B) to test the significance of the

partitioned subsets.

The subroutine II is called by subroutine I to test the
significances of the partitioned subsets, and can be described as
following:

1. Test the significance of the first subset:
If the current subset size is larger than the preset threshold,
recursively call subroutine I to partition the current subset.
Otherwise, output this subset.

2. If any subsets that have been not tested, get the next subset
for testing. Otherwise, return to the calling point.

Essentially, the whole procedure is an iterative and recursive
process for accession set partitioning and subset significance
testing. A hierarchical decision tree will be gradually constructed
during the accession set partitioning process. In the SPIHT
algorithm for image compressing, the DWT coefficients are
recursively partitioned into subsets, and the topology architecture
is organized as a hierarchical tree. A subset’s significance is

determined by the maximum of the absolute values of the
wavelet coefficients in the subset (Said and Pearlman, 1996).
Inspired by SPIHT, we modified and utilized this concept
in HapMap data analysis to distinguish multiple accessions.
Here, the significance of a subset is simply defined as the
accession number.

Once the partitioning the accession set is finished, the
hierarchical decision tree consisting of the selected genotype
markers as intermediate nodes, homozygous genotype values
labeled in branches, and the final output accessions or subsets as
terminal nodes, will be output. If we set the significance threshold
as 1, we can partition the accession set completely and output the
specific distinguished individual accessions.

The above description indicates that the accession set
partitioning by bi-allelic genotype markers will result in a full
binary tree in which every node in the tree has either zero
or two children (Black, 2014). Therefore, a perfect scenario to
partition 2M (M is an integer) accessions by perfect bi-allelic
genotype markers will produce a perfect binary tree. Here, the
perfect bi-allelic genotype marker means that it can partition the
accession set into two equal subsets, and there are absolutely
no accessions labeled as unknown or heterogonous genotype
values. The perfect binary tree means that all intermediate marker
nodes have two children, while all leaf nodes have only one
specific accession and the same depth (Black, 2019). In this
ideal scenario, 2M − 1 perfect bi-allelic markers will completely
partition the original 2M accessions. If we preset the subset
significance as a size of 2N (N is another integer), the set
partitioning of original 2Maccessions will need 2M−N

− 1 perfect
bi-allelic markers, and the final constructed hierarchical decision
tree will consist of 2M−N

− 1 intermediate marker nodes and
2M−N terminal subset nodes.

Design and Implementation
To distinguish multiple accessions in a HapMap population, we
used the distinctive homozygous genotypes of genetic markers
to partition the top accession set and construct a hierarchical
decision tree. To tolerate the considerable amount of missing
and heterogeneous genotypes, we adopted a strategy to allocate
them into the distinctive subsets. The genotype marker matrix
data is the only input data, which can be acquired from the
original genetic variant calling HapMap file by the command
lines of BCFtools. We developed MAD-HiDTree to distinguish
multiple accessions. We also developed several peripheral tools
and related scripts to assist the analysis in different scenarios.
Figure 4A depicts an overview of how to use MAD-HiDTree.
In scenario 1, the genotype matrix data is available; therefore,
the user only needs to submit the genotype marker matrix
data to MAD-HiDTree and call a Matlab script to illustrate
the generated hierarchical decision tree. In scenario 2, the user
can use the original HapMap genetic variant calling data in
either.bcf or.vcf format to create the genotype marker matrix
data through command lines of BCFtools or our GMEF web
tool. We developed GMEF based on the command lines of
BCFtools. GMEF also hosts several versions of M. truncatula
HapMap data, and we are committed to hosting other HapMap
data upon user requests.
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FIGURE 3 | Flowchart of the proposed algorithm that includes two cross-related subroutines. (A) Subroutine I for partitioning an accession set. (B) Subroutine II for
testing the significance of accession subset.

FIGURE 4 | Design and implementation of MAD-HiDTree. (A) Flowchart of data analysis using MAD-HiDTree at different scenarios. (B) The MAD-HiDTree web
user-interface for data submission and parameter configurations. (C) The output page of MAD-HiDTree.

We rationally designed the MAD-HiDTree into three function
modules: accession set partitioning, accession subset significance
testing, and DS score calculation. The first two function modules
are recursively called by each other, so inherent complexity does
exist. We chose standard C/C++ as the programming language
and used Standard Template Libraries (STL) for implementation.
All codes were written and compiled using Code::Blocks in a
Linux environment.

MAD-HiDTree only requires three inputting parameters: one
text file for the genotype marker matrix, one bool variable to

indicate whether reusing the selected marker and one integer
variable to specify the output subset significance size. When
one genotype marker is chosen for accession set partitioning,
the marker and the homogenous genotypes are recorded in the
constructed hierarchical decision tree. Logically, a used marker
can be reused in the later subset partitioning, but the user can
opt not to reuse the marker. The preset subset significance
threshold determines the outputting subset size and the recursion
depth. Suppose we set the output subset significance threshold
as one and the available markers are large enough. In that case,
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MAD-HiDTree will recursively partition the accession set and
finally output the specific distinguished accessions. As we know,
the recursion depth determines the stack level and also affects
memory consumption.

When the analysis is completed, MAD-HiDTree will generate
three text files: one file to record the generated hierarchical
decision tree, and the other two files to record the used marker
index list and accession list for each output subset, respectively.
We also developed two Matlab scripts to visualize the generated
hierarchical decision tree. One script is responsible for reading
and converting the information from the.txt file. The other
script is responsible for displaying the tree and annotating the
homozygous genotypes, using the Matlab “tree layout” function.

RESULTS

Submission of Representative Genotype
Maker Matrix Data to MAD-HiDTree
An example INDEL genotype marker matrix
(Supplementary File 1) was extracted from our hosted
M. truncatula HapMap data and stored as a genotype marker
matrix in a dimension of A = 1386 × 262. This data was
further used to demonstrate and evaluate the performance
of MAD-HiDTree in different scenarios. On the web page,
MAD-HiDTree (Figure 4B) requires the user to configure two
simple parameters: whether to reuse markers, and the threshold
for outputting subset size. Here, we set the subset size as 30 and
choose not to reuse markers. On clicking the “submit” button,
the MAD-HiDTree will iteratively and recursively analyze the
uploaded data to partition the accession set and construct the
hierarchical decision tree. Once the analysis is complete, MAD-
HiDTree will display a pop-up window (Figure 4C), prompting
the user to download three results files (Supplementary File 2):
HiDTree.txt, MarkerList.txt, and SubsetList.txt, which record
the information of the generated hierarchical decision tree, the
selected marker index list and the final partitioned accession list
for each output subset, respectively.

Illustration and Biological Explanation of
MAD-HiDTree Results
A hierarchical decision tree can be visualized (Figure 5) by our
custom Matlab script (Supplementary File 3) that interprets
the hierarchical decision tree file, such as “HiDTree.txt,” which
can be downloaded from the MAD-HiDTree result output
page. Figure 5 illustrates an example hierarchical tree contains
29 intermediate marker nodes and 31 leaf subset nodes. Two
different symbols denote the marker nodes and subset nodes.
The homozygous genotypes are also labeled as different decision
directions. The path from the top node to the subset leaf
node demonstrates what genotype markers and homozygous
genotypes are needed to distinguish the specific subset from
others clearly. For example, subset 1 can be specifically
distinguished by “marker 1” under genotype “0/0,” “marker 2”
under genotype “0/0,” “marker 3” under genotype “0/0,” “marker
4” under genotype “0/0,” and “marker 5” under genotype “0/0.” In

TABLE 1 | MAD-HiDTree performance evaluation at different parameter settings.

Parameters Performance

Marker reuse Subset size No.
markers

No. subsets Running time
(s)

No 30 29 31 4

Yes 30 26 29 3

No 20 42 44 5

Yes 20 37 40 4

No 10 73 75 7

Yes 10 65 68 6

No 5 124 126 11

Yes 5 120 123 10

No 1 351 347 22

Yes 1 359 362 25

contrast, subset 23 can be specifically distinguished by “marker
1” under genotype “0/0,” “marker 2” under genotype “1/1,” and
“marker 22” under genotype “1/1.”

The “SubsetList.txt” output file records all the output subsets,
along with the information of the contained accessions and the
path information from the top node to the leaf node for each
subset. The selected markers for the hierarchical decision tree
can be retrieved and mapped to the original row/index in the
genotype marker matrix through the “MarkerList.txt” output file.

In short, the three returned files from MAD-HiDTree provide
the comprehensive information needed for the distinguishing of
the multiple accessions, and the layout figure by the Matlab script
offers an intuitive and straightforward decision tree view that
visualizes the distinguishment of multiple accessions.

Performance Evaluation
We developed the MAD-HiDTree specifically to distinguish
multiple accessions in a HapMap population. In principle, it only
requires a set of genotype marker matrix data and two simple
parameters to be configured. The two parameters include a bool
variable to indicate whether reusing the selected markers and an
integer variable to define the output subset size. When setting
the integer variable for the subset size as 1, individual accession
will be precisely determined. We used the same genotype
marker matrix data with 1,386 markers and 262 accessions and
submitted it to MAD-HiDTree in different combinations of
the two parameters. We recorded all MAD-HiDTree returned
results, the two types of the hierarchical decision tree’s node
components as markers and subsets, and the entire running
time at different parameter combinations. Table 1 shows these
performance evaluation results.

Table 1 shows that the preset subset size threshold greatly
affects the number of markers, the number of outputting
subsets, and the running time. The smaller the subset size,
the more markers used, and the more specific output subsets
and the longer the running time will be. The parameter
option of whether to reuse a marker in the subsequent
accession set partitioning only moderately affects the overall
performance. Because the accessions with unknown genotypes or
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FIGURE 5 | Visualization of an example hierarchical decision tree.

heterogeneous genotypes are put into all the partitioned subsets
with distinctive homozygous genotypes, information redundancy
does exist, and some accessions may be classified into multiple
output subsets. When we preset the output subset size as 1, we
find that it is not the original 262, but rather 347 and 362 specific
accessions that are output in the two scenarios: to reuse and not
reuse the marker, respectively. In application, one can choose any
one of the decision paths for the repeated accessions; the recorded
markers and homozygous genotypes can be used to identify one
accession from other accessions.

Biological Experiment Validation
To biologically validate the proposed method and that the
extracted markers can be used to distinguish a specific accession,
we need to set the subset size as 1, which will let MAD-
HiDTree generate a very deep hierarchical decision tree. In
this scenario, each leaf node represents a specific accession and
has a corresponding path starting from the root node. We can
specifically identify an accession if we validate all the markers and
homozygous genotypes of a specific path.

The original Medicago Hapmap population contains 262
accessions. The accession HM101 (A17) was used as the
reference for genome sequencing. Therefore, all the homozygous
alleles from HM101 are labeled as “REF,” otherwise labeled
as “ALT” indicating the polymorphism. We selected accession
HM014 as an experiment example and searched all the
marker-homozygous genotype paths from the very beginning
root node to the leaf node representing accession HM014.
The marker-genotype path containing 9 related INDELs that
determine the accession HM014. We extracted the 9 related
INDEL markers and recorded the corresponding information

(Supplementary Table 1). The recorded homozygous genotypes
(Supplementary Table 2), “0/0” and “1/1” means the alleles
between accessions HM014 and HM101 are exactly the same
or different, respectively, need to be validated one by one.
Based on this INDEL information, we accessed the flanking
sequences around the 9 INDEL markers and designed the
forward and reverse primers (Supplementary Table 3). The
uniqueness of the primer’s sequence in whole genome should be
carefully checked because it essentially determines that the PCR
product covering the sequence gap in the INDEL marker can be
successfully amplified.

We extracted the gDNA from the leaf tissue, and each
accession had three plants. The description of Medicago
Hapmap accessions and the method to sample and extract
gDNA can be referenced in our previous publication
(Supplementary Document 1). Following the manufacturer’s
protocol, we used Ex Taq (Takara Bio Inc.) PCR amplification.
The resulting PCR products of the 9 selected INDEL
markers are illustrated in Supplementary Figure 1. From
Supplementary Figure 1, we can verify the correctness of
the marker-homozygous genotype chain: (1,007; 1/1)→(623;
1/1)→(90; 0/0)→(897; 0/0)→(798; 1/1)→(913; 0/0)→(727;
1/1)→(422; 1/1)→(284 0/0). Obviously, there is no difference
between HM014 and A17 at markers #90, #897, #913, and #284,
and discernable difference at marker #1,007, #623, #798, #727,
and #422. The results indicate that we can use the two typical
classes of homozygous genotype as 0/0 and 1/1, for the partition
of the accession subset. For an unknown Medicago Hapmap
accession, if we verify the above marker-homozygous genotype
path and get similar PCR results as in Supplementary Figure 1,
we can confidently claim it as accession HM014. In real
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applications, we can extend the above method and procedure to
identify other accessions.

Further, once we verify all of the possible marker-
homozygous genotype paths of the hierarchical decision
tree, we can claim that we have identified the entire
Hapmap accessions. We are aiming to achieve this goal
and realize the identification of the whole Medicago
Hapmap accessions in the future. At the same time, we will
collect the phenotypes for each HapMap accession, such
as pictures of each accession at different growing periods,
different tissues, etc. We envision that the combination of
molecular markers and phenotype information will provide
more comprehensive information for HapMap accession
distinguishing, identification, and validation.

DISCUSSION

When design the algorithm to distinguish multiple accessions, we
presumed the considerately high accuracy of the final genotype
marker matrix, and the stable conservation of homozygote’s
genetic material among their offspring. Regarding the case
study using the Medicago Hapmap data to identify Medicago
accessions, we chose not SNP but INDEL to generate the
genotype marker matrix, because we think that it could be
easy to validate INDEL markers’ polymorphisms based on the
PCR product size.

In real application, some recorded homozygous genotype
number may be wrong due to base-calling and/or alignment
errors because of the limitations in sequencing technology
when generating the Medicago HapMap data over a decade
ago. Therefore, we need to check the correctness of each
marker’s genotype number among multiple accessions.
Once confirmed, we need to remove and/or replace the
markers with wrongly called genotype number from the
genotype matrix.

Once the hierarchical decision tree is constructed, the
PCR experiment for validation will proceed. The difference
of the INDEL’s polymorphism reflecting PCR product size
should be carefully considered, which is indeed determined
by the molecular experiment detection capability and wet-
lab researchers’ experience. Additionally, researchers need
to consider the specificity of the genome region when
designing the primer sequences. Furthermore, considering
the nature of the established decision tree’s hierarchical
structure, we suggest testing and validating the decision path
from the root of the decision tree, gradually adjusting and
refining some unfit markers, and eventually optimizing all
chosen markers.

The genotype marker matrix data that MAD-HiDTree
requires can be from any genetic variant markers as long as
biological experiments can validate it. It is reported that some
practical approaches have been developed to validate both the
INDEL and SNP genotype markers’ polymorphism (Kim et al.,
2016). In principle, the discernible genotype numerical tags
as “0/0,” and “1/1” are only used to classify and partition
the accessions into different accession groups. Therefore, if

we can avoid the genetic segregation issues at their offspring
in self-pollinated species, we can use heterozygous genotypes
to build additional discernible accession groups. For a bi-
allelic marker, we only need to use three numerical tags
as “0/0,” “1/1,” and “2/2” to represent the two homozygous
genotypes and one heterozygous genotype, respectively. Such
type of genotype marker matrix can be well supported
by our web tool MAD-HiDTree, the analysis result will
generate a hierarchical decision tree, which will not a binary
tree but a polytree.

CONCLUSION

We introduced a novel distinguishing score (DS) to measure a
selected marker’s differentiating capability, using homogenous
genotypes of a genetic marker to distinguish one accession
set against another. Inspired by the set-partitioning theory in
computer science, we proposed a new algorithm to distinguish
multiple HapMap accessions by recursively partitioning
accession sets and constructing a hierarchical decision tree.
We successfully developed a demonstrative online tool called
MAD-HiDTree, which analyzes the inputting genotype matrix
data and construct a hierarchical decision tree by recursively
partitioning the accession set. It is worth note that when the
integer variable for the subset size is set as 1, individual accession
can be precisely determined. The specific path for an output
accession or subset is recorded by the selected markers and
homozygous genotypes, which can be used to distinguish this
accession or subset from others. Using the genotype matrix
data extracted from the M. truncatula HapMap project, we
constructed the hierarchical decision trees at different parameter
combinations, efficiently distinguishing the original 262
accessions. We validated one accession with PCR experiments
and verified that our proposed method and MAD-HiDTree
could identify a specific accession. We can naturally extend
the method and procedure to other accessions. Therefore, our
method and MAD-HiDTree tool are useful in generating a
molecular marker database for distinguishing accessions for
HapMap projects.
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