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Wheat is one of the world’s most economically important cereal crop, grown on 220
million hectares. Fusarium head blight (FHB) disease is considered a major threat to
durum (Triticum turgidum subsp. durum (Desfontaines) Husnache) and bread wheat
(T. aestivum L.) cultivars and is mainly managed by the application of fungicides at
anthesis. However, fungicides are applied when FHB symptoms are clearly visible and
the spikes are almost entirely bleached (% of diseased spikelets > 80%), by when it
is too late to control FHB disease. For this reason, farmers often react by performing
repeated fungicide treatments that, however, due to the advanced state of the infection,
cause a waste of money and pose significant risks to the environment and non-
target organisms. In the present study, we used unmanned aerial vehicle (UAV)-based
thermal infrared (TIR) and red-green-blue (RGB) imaging for FHB detection in T. turgidum
(cv. Marco Aurelio) under natural field conditions. TIR and RGB data coupled with
ground-based measurements such as spike’s temperature, photosynthetic efficiency
and molecular identification of FHB pathogens, detected FHB at anthesis half-way
(Zadoks stage 65, ZS 65), when the percentage (%) of diseased spikelets ranged
between 20% and 60%. Moreover, in greenhouse experiments the transcripts of the
key genes involved in stomatal closure were mostly up-regulated in F. graminearum-
inoculated plants, demonstrating that the physiological mechanism behind the spike’s
temperature increase and photosynthetic efficiency decrease could be attributed to
the closure of the guard cells in response to F. graminearum. In addition, preliminary
analysis revealed that there is differential regulation of genes between drought-stressed
and F. graminearum-inoculated plants, suggesting that there might be a possibility to
discriminate between water stress and FHB infection. This study shows the potential of
UAV-based TIR and RGB imaging for field phenotyping of wheat and other cereal crop
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species in response to environmental stresses. This is anticipated to have enormous
promise for the detection of FHB disease and tremendous implications for optimizing
the application of fungicides, since global food crop demand is to be met with minimal
environmental impacts.

Keywords: Fusarium head blight, durum wheat, high-throughput plant phenotyping, thermal imaging, RGB
imaging, gene expression, early disease detection

INTRODUCTION

Wheat is one of the most cultivated crops worldwide, grown on
220 million hectares and its annual production is estimated to
account for more than 700 million tons, providing more than 20%
of total human food calories (Khan et al., 2020; Ma et al., 2020).
Modern wheat cultivars derive from two species: bread wheat
(Triticum aestivum L.) and durum-type wheat (T. turgidum
subsp. durum (Desfontaines) Husnache) used for pasta and low-
rising bread (Peng et al., 2011; Feldman and Levy, 2012).

The current food demand will double with a projected
population of 9 billion in 2050. In response, farmers must
grow more on their lands through sustainable intensification of
agriculture, an approach to increase yield production without
having negative effects on the environment or expanding the
agricultural footprint (Giller et al., 2015).

Wheat production is challenged by several abiotic and biotic
stresses. Among the plant fungal diseases, Fusarium head blight
(FHB) is one of the most destructive diseases leading to 10–70%
of yield loss during the epidemic years (McMullen et al., 2012).
FHB is caused by the Fusarium graminearum species complex
(FGSC), which embraces 16 different species. It is considered
the most devastating wheat disease due to the lack of resistant
cultivars, the significant yield loss and grain quality reduction,
and the health risks associated with the contamination of crops
with mycotoxin such as deoxynivalenol (DON) and zearalenone
(ZEA), produced during the infection progress (Yang et al., 2013;
Dweba et al., 2017). The spectrum of Fusarium spp. causing
FHB on wheat varies at the regional level, depending on weather
conditions. Fungal growth is favored by high temperatures and
humidity during the growing season. F. graminearum Schwabe is
the predominant species that causes FHB in many countries, in
Asia, North America, South America, and Europe (Dweba et al.,
2017; Khan et al., 2020). In field conditions, the inoculum occurs
primarily from plant residues and soils while the dissemination
of the ascospores and conidia is mainly promoted by water splash
and wind. Anthesis is the most susceptible stage to infection.
With a warm and humid climate at this stage, airborne spores
proliferate and spread intracellularly into the rachial nodes and
through the rachis until FHB symptoms are clearly visible.
The symptoms include necrosis, premature bleaching of spikes,
and shriveled kernels that negatively affect photosynthesis. At
favorable conditions, FHB develops rapidly within 3–6 days after
the infection. Given the current global warming associated with
increased temperatures, major epidemics of FHB are occurring.
Thus, proper cultivation schemes and field management are
essential to alleviate its threat (Bai and Shaner, 2004; Vaughan
et al., 2016; Ma et al., 2020; Rod et al., 2020).

Since 1995, Fusarium spp. infect wheat in Italy at various
incidence (percentage of spikes showing symptoms) and severity
(percentage of areas infected in spikes) depending on the year,
the region, and the wheat cultivar involved (Pancaldi et al., 2010).
Its incidence and severity are closely related to the amounts of
precipitation during wheat anthesis, increasing from the South
to the North of Italy, being mostly reported in the Northern-
Central regions (Shah et al., 2005; Infantino et al., 2012). Between
the two major species, T. turgidum is the most widely grown in
Italy, but is also more susceptible to FHB (Oliver et al., 2008).
Consequently, being mostly used for human consumption, the
risk of mycotoxin-contaminated grain entering the food chain is
a major concern (Boutigny et al., 2008).

Chemical control of FHB using appropriate effective
fungicides and correct application methods and timing can
reduce the severity of the disease (Blandino et al., 2012). However,
no fully effective FHB fungicide is available (Haidukowski et al.,
2012), and the application window is very narrow, spanning
just a few days around anthesis (Mesterházy et al., 2003).
Recently, an organic strategy to reduce FHB incidence and
severity was proposed, but now it needs to be confirmed
on wide areas (Francesconi et al., 2020). For these reasons,
early detection and control of FHB is a key factor to gain
maximum protection of yield (Mahlein et al., 2019) from fungal
spread and mycotoxin accumulation; in fact, there is a strong
evidence base in the research literature that a prompt and early
application of fungicides instead of applying fungicides at late
stages of infection drastically reduce the FHB spread and DON
accumulation inside the grains, instead of applying fungicides at
late stage of infection (Freije and Wise, 2015; Feksa et al., 2019;
Bolanos-Carriel et al., 2020).

Recent advances in biological and bioanalytical research
enabled genome-scale capturing of biological processes at
the molecular level in plants (Weckwerth, 2011). Though
transcripts evaluation is fundamental to understand plant
responses to pathogens, these techniques are labor-intensive,
time-consuming, destructive and slow-down the acquisition of
phenotype parameters related to the gene responses, contributing
to the phenotyping bottleneck (Furbank and Tester, 2011).
Molecular data obtained in greenhouse or field trials combined
with phenotypic and environmental data discloses a wealth of
information that can be used to improve field management
(Alexandersson et al., 2014).

For plant-pathologists, coupling transcriptomics and
phenomics to agricultural practices is likely to have a large
impact on the understanding of induced plant defenses and
pathogen spread. In fact, phenomics and transcripts analysis
can reveal important physiological changes in plants in response
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to pathogens which can help detecting infections before the
appearance of their visible symptoms. Hence, these associated
techniques have the potential to be a powerful weapon that
optimizes fungicide spraying regimes for plant pathogen
management (Alexandersson et al., 2014).

To relieve the phenotyping bottleneck, phenotypic traits
should be turned into quantifiable, objective, and consistent
measures (Ludovisi et al., 2017). Automated and high-
throughput phenotyping (HTP) provides measurements
that can track the development of a plant through its life
stages and its interaction with the environment, establishing
methodologies to detect crucial physiological traits and identify
effective genotype-phenotype relationships (Goggin et al., 2015).
These methods speed up the phenotyping process and maximize
the number of studied plants per experiment (Goggin et al.,
2015). Furthermore, they enable automated, non-destructive,
and non-invasive screening of large populations and high
dimensionality data (Li et al., 2014; Fahlgren et al., 2015).

With regards to FHB, Fusarium spp. infects spikelets
within wheat spikes, decreasing stomatal conductance, and
thus, affecting the chlorophyll and water content (Yang
et al., 2016; Francesconi and Balestra, 2020). This allows
its early detection by color imaging and by measuring the
temperature of spikes and photosynthetic efficiency of plants
using thermometers and fluorometers, respectively (Cambaza
et al., 2019; Mahlein et al., 2019).

Red-green-blue (RGB) cameras are designed to emulate
human vision by sensing light in the visible range of the
electromagnetic spectrum (wavelengths from 390 to 700 nm).
In this range, the reflectance is predominantly influenced by
plant pigments (e.g., chlorophyll) (Mahlein, 2016). This allows
the calculation of different vegetation indices (VIs) by computing
the reflectance of a certain band of the green and red zone
of the electromagnetic spectrum (Barbosa et al., 2019; Brunori
et al., 2020). Photosynthetic response of green vegetation to
incident light is the basis of VIs where healthy plants exhibit
low red reflectance due to absorption of red light by chlorophyll
resulting in a high index value, whereas unhealthy, stressed plants
with reduced chlorophyll pigment display a low index value
(Khan et al., 2018).Therefore, RGB image analysis can serve as
an important tool that detects physiological changes in plants
caused by pathogen infections (Simko et al., 2016). On the other
hand, thermal infrared (TIR) sensors capture images containing
information about the energy emitted from body surfaces, such
as plant canopies. Plant pathogens affect the loss of water in
plants regulated by stomata (Fang and Ramasamy, 2015), altering
plant temperature where high values indicate areas with closed
stomata (Oerke et al., 2006; Chaerle et al., 2007). Thermography
can serve as a tool to measure these changes toward an early
detection of plant infections, ideally before symptoms appear
(Al Masri et al., 2017).

Unmanned aerial vehicles (UAVs) equipped with cameras and
sensors have become advanced field phenomics tools that provide
data with high spatial and temporal resolution to bridge the
gap between time consuming ground-based measurements and
satellite observations (Xie and Yang, 2020; Pineda et al., 2021).
UAVs allow rapid and non-destructive measurements and offer

much quicker turnaround times than satellites at competitive
costs (Ludovisi et al., 2017).

The application of UAV-based imaging techniques has
been broadening in several areas of agricultural sciences
thanks to their ability to analyze plant temperature and color
discrepancies between distinct biological samples (Padmavathi
and Thangadurai, 2016; Cambaza et al., 2019). Many recent
studies have exploited UAV-based sensors to monitor, detect
and phenotype plant stresses in forestry (Sagan et al., 2019),
as well as to estimate leaf nitrogen concentration (Lu et al.,
2021), water and nitrogen use efficiencies (Yang et al., 2020),
and salinity stress (Johansen et al., 2019) in different crops. Plant
pathologists are recently also benefiting from the application of
UAV-based sensors; in fact, UAV multispectral and hyperspectral
imaging have been used to detect Xylella fastidiosa (Castrignanò
et al., 2021) and FHB (Liu et al., 2020), respectively. Moreover,
these techniques are relatively easy to use and are becoming
cheaper (Dammer et al., 2011; Cambaza et al., 2019). Their
exploitation to monitor FHB can contribute significantly to
secure the cereal production systems (Mahlein et al., 2019).
In light of these advantages, UAV-mounted cameras and
sensors are expected to enable new applications in field-based
phenotyping of plant stress traits in large populations rapidly,
precisely and accurately (Berni et al., 2009; White et al., 2012;
Yang et al., 2017).

In this study, we exploited plant physiological and molecular
changes in response to Fusarium spp. infection to detect
FHB in T. turgidum (cv. Marco Aurelio) fields through
UAV-based TIR and RGB imaging. Particularly, (i) two VIs
as well as spike temperature were calculated using RGB
and TIR images, from both uninfected and infected areas
and were correlated to photosynthesis perturbation caused
by the infection. Additionally, (ii) transcripts of key genes
involved in stomatal conductance regulation were investigated
in greenhouse experiments, to explore the genotypic changes
behind the observed phenotypic perturbations (increase in
spike temperature and decrease in photosynthetic efficiency).
Furthermore, (iii) transcripts of F. graminearum inoculated
plants were compared to those obtained from drought-stressed
ones in order to investigate a differential response between these
two types of stresses.

MATERIALS AND METHODS

Plant Material and Experimental Design
of the Field Experiments
The FHB-susceptible T. turgidum cv. Marco Aurelio was the
cultivar of interest in the present work for both field and
greenhouse experiments. This genotype, grown in Central
and South Italy, is extensively used for pasta production
and it is characterized by excellent protein content and
high productivity, thus it is of high economic importance.
The experimental fields were located in Amelia (Central
Italy, 42◦31′22.9′′N, 12◦25′15.5′′E, Umbria Region) and
Avigliano Umbro (Central Italy, 42◦40′41.1′′N, 12◦27′44.6′′E,
Umbria Region). The T. turgidum field experiments were
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carried out during two consecutive years (2019 and 2020),
controlled and drip-irrigated with a nutrient solution containing
nitrogen, potassium, phosphorus, and small amounts of other
compounds. Therefore, abiotic stresses (nutrient deficiencies
and drought stress), diseases, or pests, which cause the same
symptoms as FHB, were significantly minimized. On the other
hand, fungicides for FHB management (tebuconazole and
azoxystrobin) were not applied in order to favor the FHB
natural infection. The fields were investigated periodically
(one time per day) by experts and farmers to prevent other
diseases, pests, or abiotic stress. An experimental plot was
allocated within each field, and individuated by a 20 m grid
by positioning 16 ground control points (GCPs) to be used for
georeferencing. During March, April, and May 2019 and 2020
weather data (minimum, maximum and average temperature,
and precipitation) were recorded daily by two meteorological
stations installed at 100 m distance from each field to monitor
the climate factors influencing the establishment of FHB
infection. Historical weather data (from 2010 to 2018) were
obtained from the Hydrographic service of Umbria Region1

to monitor the climatic trend of the last 11 years and to
compare minimum, average and maximum temperature values
(◦C) and average precipitations (mm) recorded during the
9-year seasonal average (2010–2018), 2019, and 2020. The
historical weather data were collected from two meteorological
stations located in Amelia (42◦33′25.0′′N, 12◦25′01.0′′E)
and Avigliano Umbro (42◦40′39.0′′N, 12◦26′13.0′′E). The
experimental design for the field experiments is illustrated in
Figures 1A,B.

UAV Campaigns
An unmanned DJI Matrice 600 multi-copter (DJI, China)
equipped with a Zenmuse X5 RGB camera (DJI, China) and a
Zenmuse XT TIR camera (DJI, China) has been used in this
study (Supplementary Figure 1). DJI Matrice 600 is a hexa-
copter (110 cm diagonal size) with a highly resistant carbon
fiber frame, offering a 15 kg take-off weight. Its maximum
transmission distance is 5 km and its maximum flight time is
40 min (Supplementary Figure 1).

The Zenmuse XT was equipped with a 9 mm f1.4 lens.
Its thermal sensitivity is less than 50 milliKelvins and the
camera enables measurements in the range −25◦C to +135◦C.
The image sensor is a focal plane array (FPA) based on
uncooled microbolometers with a spectral band response in
the range of 7.5 to 13 µm. The camera field of view is
equal to 69◦ (horizontally) × 56◦ (vertically), its resolution to
640 × 512 pixels at 30 frames per second (fps), and its spatial
resolution to 1.889 milliradians (mrad). The camera captures
images at an acquisition frequency of 30 Hz. The camera
was radiometrically calibrated to further increase temperature
measurement precision by setting external parameters during the
flight planning such as air temperature and flat field correction
(FFC). This is an offset calibration usually performed at power up,
when the camera changes temperature, and periodically during
the operation. This calibration compensates for certain errors

1https://annali.regione.umbria.it/

that build up during the camera operation. During the data
acquisition phase, the auto gain mode parameter was applied; the
camera automatically selected the optimal gain mode according
to the temperature range of the image (Deery et al., 2016; Gómez-
Candón et al., 2016; Ludovisi et al., 2017) and pictures were stored
as 14-bit digital raw images.

The Zenmuse X5 is a 16-megapixel RGB camera equipped
with an M4/3 sensor enabling it to capture detailed images at a
resolution of 4608× 3456 pixels and an ISO range of 100–25600.

The Zenmuse X5 and XT cameras were mounted on a
highly reliable gyrostabilized 3-axis gimbal (DJI, China) that
automatically stabilizes them in flight. The gimbal constantly
communicates with the UAV, and quickly compensates for every
minor movement with a precision accuracy of 0.02◦.

The 16 GCPs were used to georeference RGB images. For
calibration of thermal images, four 60 × 60 cm ground reference
panels (GRPs) consisting of two plastic panels covered by black
vinyl tape and two white Teflon R© were positioned along the
borders of each of the two study areas. A real-time kinematic
(RTK) global navigation satellite system (GNSS) CS10 model
(Leica Geosystems, Switzerland) with an accuracy of 1 mm was
used for capturing GCPs and GRPs locations.

UAV campaigns were conducted at the following phenological
stages: (i) three-quarters of inflorescence emerged (Zadoks stage
57, ZS 57) (Zadoks et al., 1974) on 6 May 2019 and 7 May
2020; (ii) anthesis half-way (ZS 65) on 17 May 2019 and 18
May 2020; and (iii) kernel watery ripe (ZS 71) on 28 May 2019
and 29 May 2020. Two flights were performed during each
campaign. The flight missions have been planned using Ground
Station Pro app (DJI GS Pro, China). Each flight lasted 11 min
covering an area of 1 ha at a nominal speed of 4 m/s and an
altitude of 20 m, during which both cameras acquired nadiral
images with 90% frontal and side overlap. To ensure similar solar
illumination angles flights were performed between 11:00 and
12:00 local time under stable cloudless and low-wind conditions
(Figures 1D,E).

Ground Measurements
For each of the 16 GCPs, a circumference of 1 m of
diameter was individuated and denominated as sampling area.
During the UAV campaigns, we manually measured the spike
temperature of sixteen randomly selected plants in each of
the 16 sampling areas using a portable infrared thermometer
(Fluke 568, Fluke Corporation, United States) with an accuracy
of ± 1% or ± 1.0◦C (whichever is greater), positioned at
10 cm distance from the spike. At the same time, the FHB
severity was calculated by counting the number of diseased
spikelets and the total number of spikelets for each of the
sixteen plants. Furthermore, the flag leaves of the selected
plants were sampled and dark-adapted for 1 h before measuring
their photosynthetic efficiency, by quantifying Fv/Fm reflecting
the potential quantum efficiency of photosystem II (Maxwell
and Johnson, 2000), with a portable fluorometer (V2.00f PAM
2000, Heinz Walz GmbH, Germany). Moreover, the spikes were
also sampled to distinguish FHB positive (FHB+) from FHB
negative (FHB-) areas by molecular identification of Fusarium
spp. (Figure 1C).

Frontiers in Plant Science | www.frontiersin.org 4 April 2021 | Volume 12 | Article 628575

https://annali.regione.umbria.it/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-628575 March 31, 2021 Time: 14:40 # 5

Francesconi et al. FHB Detection in Wheat

FIGURE 1 | Workflow of the high-throughput field phenotyping methodology and the greenhouse experiment. (A) Plant material includes Triticum turgidum (cv.
Marco Aurelio). Two fields were established in Amelia (Central Italy, 42◦31′22.9′ ′N, 12◦25′15.5′ ′E, Umbria Region, 406 m above sea level) and Avigliano Umbro
(Central Italy, 42◦40′41.1′ ′N, 12◦27′44.6′ ′E, Umbria Region, 441 m a.s.l) to host the T. turgidum plants. Sampled spikes show the symptoms of a Fusarium head
blight (FHB)-infected plant, compared to an uninfected plant. (B) An experimental plot was allocated within each field, and a 20 m grid was identified by positioning
sixteen ground control points (GCPs) to be used for georeferencing. Around each of the GCPs, a circumference of 1 m of diameter was individuated and
denominated as a sampling area. Weather data were recorded daily by two meteorological stations installed at 100 m distance from each field. (C) Within each
sampling area, the spike temperature of sixteen randomly selected spikes was measured, and their flag leaves were sampled to measure their photosynthetic
efficiency. Finally, the spikes were also sampled to distinguish FHB positive (FHB+) ones from FHB negative (FHB-) ones by molecular identification
of Fusarium spp. (D) An unmanned DJI Matrice 600 hexacopter was equipped with Zenmuse X5 red-green-blue (RGB) and Zenmuse XT thermal infrared (TIR) sensors.

(Continued)
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FIGURE 1 | Continued
The unmanned aerial vehicle (UAV) campaign allowed capturing RGB and TIR images of both experimental plots. (E) The flight missions were planned using Ground
Station Pro app (DJI GS Pro, China). The UAV was flown in the autonomous mode at a nominal speed of 4 m/s, running parallel to plant rows to ensure complete
coverage with good overlaps. (F) Image orthorectification, georeferencing, and mosaicking were performed using 16 GCPs captured with a global positioning
system (GPS). (G) The greenhouse physiological and molecular experiments where plants were subjected to three different treatments: (i) drought stress treatment
where plants did not receive water from Zadoks stage (ZS) 51 to 65; (ii) artificial inoculation treatment where spikes were uniformly spray-inoculated at ZS 65 with a
suspension of 1 × 105 conidia/mL; and (iii) mock treatment where spikes were uniformly sprayed with a suspension of Tween-20 0.05% resuspended in sterile
distilled water at ZS 65. Spikes temperature and photosynthetic efficiency of plants were recorded at 24, 48, and 72 hours post inoculation (hpi) from three
independent experiments, each experiment consisting of 20 spikes for each treatment. Four spikes were sampled for each treatment, and were ground with mortar
and pestle in liquid nitrogen until a fine powder was obtained, from which, RNA was extracted. Finally, quantitative real-time polymerase chain reaction (RT-qPCR)
was performed to investigate transcripts of key genes involved in stomatal conductance regulation; transcripts of F. graminearum-inoculated plants were compared
to those obtained from drought-stressed ones in order to investigate a differential response between these two types of stresses.

Molecular Diagnostics of Fusarium
Pathogens
Spikes were stored in a portable fridge immediately after
sampling. Afterward, different tissues (palea, lemma, glume,
rachis, and kernel when present) from each collected spike were
plated on Petri dishes containing potato dextrose agar (PDA)
and incubated at 21◦C for 72 h. The different morphotypes
were subsequentially isolated and cultured on PDA for 1 week.
After each morphotype filled the Petri dish, the produced
mycelium was gently scraped with a glass rod. 100 mg of
mycelium were grinded and DNA was extracted using 80
µL of extraction buffer composed of Tris 100 mM, EDTA
50 mM and NaCl 500 mM; after that, 32 µL of SDS 10%
(w/v) were added and the samples were incubated at 65◦C
for 10 min. 27 µL of potassium acetate 5 M were added and
the samples were placed on ice for 20 min, then centrifuged
for 20 min at 13.000 rpm. The supernatant was recovered
and 80 µL of cold (−20◦C) isopropanol were added to each
sample; then, the samples were placed on ice for 10 min
and centrifuged for 5 min at 13.000 rpm. The supernatant
was discarded and 150 µL of cold (−20◦C) ethanol (70%
v/v) were added to the samples. Samples were centrifuged
for 3 min at 13.000 rpm, the supernatant was discarded and
the DNA was resuspended in 20 µL of DNase and RNase-
free sterile distilled water and stored at −20◦C (D’Ovidio and
Porceddu, 1996). Total DNA was quantified with QubitTM

fluorometer 1.01 (Invitrogen, United States) using the QubitTM

dsDNA BR Assay Kit (Thermo Fisher Scientific, United States)
and diluted to 10 ng/µL. The molecular identification of
Fusarium spp. was performed by amplifying the translational
elongation factor 1-α (TEF) sequence using the primer
pair EF1_F 5′-ATGGGTAAGGAGGACAAGAC-3′/EF2_R 5′-
GGAAGTACCAGTGATCATGTT-3′ designed to identify the
FHB complex spp. (Geiser et al., 2004). The polymerase chain
reaction (PCR) was performed following the instructions of
GoTaq R© Green Master Mix (Promega, United States) and
prepared in a total volume of 10 µL. The amplification conditions
consisted of: (i) an initial denaturation step of 2 min at 95◦C; (ii)
35 cycles of 30 s denaturation at 95◦C; (iii) 40 s of annealing at
53◦C; (iv) 60 s of elongation at 72◦C; and (v) a final elongation
step of 5 min at 72◦C. The amplicon unicity was visualized
on 1.5% agarose gel and sequenced by Sanger sequencing
(Eurofins Genomics, Germany). The resulted sequences were

submitted to BLASTn2 in order to identify the corresponding
Fusarium spp.

RGB Image Processing and VIs
Calculation
A total of 250 RGB images were acquired using the UAV-
mounted Zenmuse X5 camera. The camera exposure mode was
set to shutter priority (S) with a shutter speed fixed 1/500 s to
ensure minimization of motion blur, ISO of 100 and the white
balance to sunny mode.

Geometric camera calibration, orthorectification, and
mosaicking of the captured images were performed using
Pix4Dmapper (Pix4D, Switzerland) software, specifically
designed to process UAV images using techniques rooted in
both computer vision and photogrammetry to match conjugate
points in overlapped images and to define their relative
positions and orientations using bundle block adjustments
(Bollard-Breen et al., 2015; Nishar et al., 2016; Figure 1F). The
output of this step was the RGB orthomosaics of the study
areas for each flight mission. No filtering process was applied
to the images.

Finally, VIs from the orthomosaics were computed using
quantum geographic information system (QGIS) software
(version 3.4 Madeira - QGIS Development Team, Open Source
Geospatial Foundation). The VIs carried out were: vegetative
(VEG) (Hague et al., 2006) and green leaf index (GLI) (Louhaichi
et al., 2001). VEG and GLI were calculated using the following
formulas:

VEG =
G

Ra∗B(1−a) and

GLI =
(2∗ G− R− B)

(2∗G+ R+ B)

where R, G, and B are the reflectance of red, green and blue
channels, respectively, and a is equal to 0.667.

Inside each sampling area, leaves and spikes were not
separated in the images, because the upper part of the fields
was uniformly composed by spikes (Figures 1A,B), since wheat
canopies were very dense.

2https://blast.ncbi.nlm.nih.gov/
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TIR Image Processing and Temperature
Extraction
The UAV-mounted Zenmuse XT TIR camera captured 219
greyscale and georeferenced images. Thermal orthomosaics
were generated for each flight, and the radiometric conversion
was automatically performed using the Pix4Dmapper software
(Figure 1F). The removal of bare soil pixels was not necessary,
since the wheat planting were extremely dense, reducing the
mixed pixel problem. FLIR Tools software (2020© FLIR R©

Systems, United States) was used to calibrate temperatures in
TIR images using the temperature values of GRPs measured
immediately after the UAV flights using a portable infrared
thermometer (Fluke 568, Fluke Corporation, United States).
Calibration checks were performed by comparing the GRPs-
measured to the UAV-derived temperatures. No filtering process
was applied to the images. The extraction of temperature values
was performed for each of the 16 sampling areas. Inside each
sampling area, leaves and spikes were not separated in the images,
because the upper part of the fields was uniformly composed by
spikes (Figures 1A,B), since wheat canopies were very dense.

Plant Growth, Inoculation Conditions and
Experimental Design of the Greenhouse
Experiments
Greenhouse experiments were conducted in a glasshouse located
in Viterbo (Central Italy, 42◦25′35.8′′N, 12◦04′49.3′′E, Lazio
Region). The surface of the T. turgidum kernels was sterilized
with sodium hypochlorite (0.5% v/v) for 20 min and rinsed twice
with sterile distilled water for 5 min. The kernels were germinated
in the dark on a paper, soaked in sterile distilled water for 15
days at 4◦C to break dormancy, followed by 2 days at room
temperature. The seedlings were transferred to 40 × 20 cm pots,
filled with TYPical Brill soil (Brill, Germany) and grown at 16–
20◦C up to the boot stage (ZS 51), 20–24◦C during heading and
anthesis (ZS 53-69), and 24 –29◦C up to maturity (ZS 71-99). The
plants were fertilized using ammonium nitrate in the following
proportions and at the following stages: 20% at sowing (ZS 00),
40% at tillering (ZS 20), and 40% at heading (ZS 49) (Francesconi
et al., 2019). The highly virulent and mycotoxin-producing isolate
of F. graminearum wild type (WT) 3824 (Tomassini et al., 2009)
was cultured at 21◦C on synthetic nutrient-poor agar (SNA) to
obtain macroconidia (Mandalà et al., 2019). After 10 days on
SNA, the conidia were scraped with a glass rod after pipetting
1 mL of sterile distilled water onto the surface of a Petri dish.
The conidial suspension was recovered, and the concentration
was adjusted to 1 × 105 conidia/mL using a Thoma chamber
(0.100 mm depth and 0.0025 mm2). The inoculum was prepared
in sterile distilled water supplemented with 0.05% (v/v) of Tween-
20. Plants were subjected to three different treatments: (i) drought
stress treatment where plants did not receive water from ZS 51
to 65 (Zadoks et al., 1974; Tambussi et al., 2000); (ii) artificial
inoculation treatment where spikes were uniformly spray-
inoculated at ZS 65 with a suspension of 1× 105 conidia/mL; and
(iii) mock treatment where spikes were uniformly sprayed with
a suspension of Tween-20 0.05% resuspended in sterile distilled
water at ZS 65. The spikes were covered with clear plastic bags for

24 h to maintain high humidity levels (>80%). Spikes subjected
to drought and mock treatments were sampled after removing the
plastic bags, while the inoculated spikes were sampled 24, 48 and
72 hours post inoculation (hpi) to investigate an early response
to F. graminearum. Collected spikes were immediately stored
in liquid nitrogen at −80◦C until the extraction of RNA. FHB
severity (%) was monitored in the greenhouse by counting the
number of bleached spikelets and the total number of spikelets
for each spike from 3 to 21 days post inoculation (dpi). In
addition, spike temperature and photosynthetic efficiency were
recorded at 24, 48, and 72 hpi. The experimental design for the
greenhouse trial is illustrated in Figure 1G. Data were obtained
from three independent experiments, each experiment consisting
of 20 spikes for each treatment.

RNA Extraction and cDNA Synthesis
Wheat spikes were ground with mortar and pestle in liquid
nitrogen until a fine powder was obtained. The RNA was
extracted from 100 mg of powder following the instructions
provided by InviTrap R© Spin Plant RNA Mini Kit (Stratec
Molecular GmbH, Germany), resuspended in RNase-free sterile
distilled water, immediately poured onto ice and quantified
with QubitTM fluorometer 1.01 (Invitrogen, United States) using
the QubitTM RNA BR Assay Kit (Thermo Fisher Scientific,
United States). To confirm the total quantity and integrity of
the RNA, 5 µL of the extracted RNA sample was subjected to
a 10-min thermal shock at −80◦C, followed by 5 min at 65◦C
and run on 1.5% denaturing agarose gel. The synthesis of cDNA
was performed using 500 ng of RNA following the instructions
provided by Xpert cDNA Synthesis Supermix with a gDNA eraser
(GriSP Research Solutions, Portugal) in a final volume of 20 µL.
To ensure that the synthesis of the cDNA and the elimination
of the gDNA had succeeded, a reverse transcription PCR (RT-
PCR) of T. aestivum Actin (TaACT) (containing an intron in
the amplified sequence) was performed following the instructions
provided by GoTaq R© Green Master Mix (Promega, United States)
in a total volume of 10 µL. The amplification conditions consisted
of: (i) an initial denaturation step of 2 min at 95◦C; (ii) 35 cycles
of 30 s denaturation at 95◦C; (iii) 40 s of annealing at 60◦C; (iv)
30 s of elongation at 72◦C; and (v) a final elongation step of 5 min
at 72◦C. The amplification run included a no-template control
(NTC) and a genomic DNA (gDNA) control. The amplicons were
visualized on 1.5% agarose gel.

Gene Expression by Quantitative
Real-Time PCR
Supplementary Table 1 shows the list of target genes, their
functions, and the corresponding primer pairs used to perform
RT quantitative PCR (RT-qPCR) (Francesconi and Balestra,
2020). Briefly, the primer pair for T. aestivum glyceraldeyde-
3-phosphate dehydrogenase (TaGAPDH) amplification is from
Jarošová and Kundu (2010), for T. aestivum pathogenesis related
protein 1 (TaPR1) from Lu et al. (2006), for TaACT from
Tundo et al. (2016), and T. aestivumβ-tubulin2 (TaTUB) and
T. aestivum ferredoxin-NADP(H)-oxidoreductase (TaFNR) from
Tenea et al. (2011). The remaining primers are from Francesconi
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and Balestra (2020). The amplification efficiency (E) of RT-
qPCR was determined for each primer pair as follows: five 1:10
serial dilutions (1:1-1:10000) were obtained for each cDNA and
amplified in four replicates. E and coefficient of determination
(R2) values were calculated by means of the slope of the standard
curve obtained by plotting the fluorescence versus the serial
dilution concentrations using the equation (Bustin et al., 2009)

E 10
(
−

1
slope

)
− 1

Reference genes with closest E values to target genes, highest
R2, and lowest variability were selected for the quantification
cycles (Cq). The relative expression levels of target genes were
calculated on the basis of the Cq values of four independent
biological replicates, each with four technical replicates, for each
plant treatment by applying the equation (Bustin et al., 2009)

Relative expression 2−44Cq

using TaACT, TaTUB, and TaFNR as reference genes and the
mock treatment to normalize the relative expression levels.
Relative expression levels of TaPR1 and TaGAPDH were
quantified as internal control of the progression of the infection
(Muthukrishnan et al., 2001) and changes in photosynthesis
(Zhang et al., 2013). The RT-qPCR was performed following the
instructions provided by Rotor-Gene Q (Qiagen, Germany) and
Xpert Fast SYBR (uni) MasterMix (GRiSP Research Solutions,
Portugal), in a final volume of 10 µL. The amplification
conditions consisted of: (i) an initial denaturation step of 3 min
at 95◦C; (ii) 40 cycles of 5 s denaturation at 95◦C; (iii) 30 s of
annealing at 60◦C; and (iv) 20 s of elongation at 72◦C. A final
melt cycle (70–99◦C) was performed to confirm the unicity of
the amplicons. NTC controls were included and the amplification
was considered negative when a value of Cq ≥ 38 was detected
(Bustin et al., 2009).

Photosynthetic-Related Parameters
Measurements
Spike temperature and photosynthetic efficiency were measured
for each plant treatment as performed during the field trial,
described in section “Ground Measurements.” Photosynthetic-
related parameters were measured for three independent
replicates, each consisting of 20 individual spikes, for
every treatment.

Statistical Analyses
One-way analysis of variance (ANOVA) was performed to
analyze FHB severity, ground-measurements (temperature and
photosynthetic efficiency) of FHB+ and FHB- spikes during
the UAV-campaigns, UAV-based VEG, GLI and temperature of
FHB+ and FHB- sampling areas during the UAV-campaigns,
gene expression values, and temperature and photosynthetic
efficiency of drought stressed and inoculated plants during the
greenhouse experiments. One level of significance (p < 0.01) was
computed to assess the significance of the F values. A pairwise
analysis was carried out using Tukey’s honest significant
difference (HSD) test at 0.99 confidence level. Statistical analyses

were performed using XLSTAT 2020.4 software (Addinsoft,
France). Principal component analysis (PCA) was carried out
to classify spike temperature, photosynthetic efficiency and VEG
or GLI or UAV-based temperature values coming from FHB+
or FHB- areas and gene expression values, spike temperature
and photosynthetic efficiency coming from drought stressed or
F. graminearum inoculated plants. Heatmap was carried out by
computing the z-score of the relative gene expression values. PCA
and heatmap were computed by using ClustVis software (Tartu,
Estonia)3 (Metsalu and Vilo, 2015).

RESULTS

Weather Conditions Influencing the FHB
Severity
Registered data were compared to historical data (2010–2018)
(Figure 2A), showing that May 2020 was particularly hotter
than 2010–2019 (the recorded average temperatures were 20◦C,
14◦C, and 18◦C in May 2020, May 2019 and May 2010–2018,
respectively), while May 2019 was characterized by high daily
average rainfall (7 mm) compared to May 2020 (2 mm) and the
9-year seasonal average (5 mm). These conditions favored the
naturally occurring FHB in the fields of interest. In fact, in 2019,
FHB severity (Figure 2B) reached 59% and 92% at ZS 65 and
71, respectively, indicating that the wet season (mean relative
humidity was > 70%) was particularly favorable for the FHB to
spread. Although April and May 2020 were not characterized by
frequent rains (average precipitation of 2 mm), low precipitations
favored a moderate FHB infection with a severity of 27% and 68%
at ZS 65 and 71, respectively.

Ground-Based Measurements During the
UAV Campaigns
Figure 3 illustrates the results obtained by ground-based
measurements during the UAV campaigns. The molecular
identification of FHB was performed by amplifying the TEF
sequence from a bulk sample obtained from the samples collected
in each sampling area, producing an amplicon of 700 bp. At
ZS 57, all the sampling areas resulted FHB- in both 2019 and
2020; at ZS 65, 10 of the 16 sampling areas were FHB+ in
2019, while 6 sampling areas were FHB+ in 2020; at ZS 71,
all the sampling areas were FHB+ in both 2019 and 2020
(Figure 3A). In 2019, thirty Fusariummorphotypes were isolated:
ten morphotypes were F. graminearum, eleven were F. poae, eight
were F. avenaceum, and one was F. proliferatum. In 2020, twenty-
four morphotypes were identified: ten were F. graminearum,
ten were F. poae and four were F. avenaceum. The isolated
morphotypes and the data resulted from the BLASTn analyses
are listed in Supplementary Table 2. Ground-based spike
temperature values recorded in 2019 and 2020 revealed that
FHB+ spikes had a higher temperature than the FHB- ones at ZS
65 (Figures 3B,D). On the other hand, photosynthetic efficiency
had an inverse relationship with the FHB severity: variable

3https://biit.cs.ut.ee/clustvis/
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FIGURE 2 | (A) Changes in maximum (yellow triangles), average (grey crosses) and minimum (blue squares) temperature (T), and precipitation (simple bar) of weather
data recorded in 2019 in comparison with weather data recorded in 2020 and historical weather data from 2010 to 2018 for March, April, and May. The plotted
values were obtained by averaging the mean daily values for each considered period. Weather data for 2019 and 2020 were recorded daily by two meteorological
stations installed at 100 m distance from each of the experimental fields located in Amelia (Central Italy, 42◦31′22.9′ ′N, 12◦25′15.5′ ′E, Umbria Region) and Avigliano
Umbro (Central Italy, 42◦40′41.1′ ′N, 12◦27′44.6′ ′E, Umbria Region). Historical weather data (2010–2018) were collected from the Hydrographic service of Umbria
Region (https://annali.regione.umbria.it/). The historical weather data were collected from two meteorological stations located in Amelia (42◦33′25.0′ ′N,
12◦25′01.0′ ′E) and Avigliano Umbro (42◦40′39.0′ ′N, 12◦26′13.0′ ′E). (B) Severity percentage of Fusarium head blight (FHB) in Triticum turgidum (cv. Marco Aurelio) at
Zadoks stage (ZS) 57, 65, and 71 in 2019 and 2020. Data represent averages and standard errors of 256 spikes (16 spikes for each of 16 visible targets). Asterisks
(**) refer to the statistical analyses performed using one-way analysis of variance (ANOVA) with Tukey’s honest significant difference (HSD) post hoc test at 0.99
confidence level and p < 0.01.

fluorescence/maximum fluorescence (Fv/Fm) demonstrated to be
lower in FHB+ than in FHB- at ZS 65 (Figures 3C,E).

UAV-Based TIR and RGB Imaging for
FHB Detection
Recorded weather data indicated that during the two UAV-
campaigns conducted at ZS 65, the average daily air temperature
and humidity values were 15◦C (2019), 21◦C (2020), and 67%

(2019) and 72% (2020), respectively. Supplementary Figure 2
shows the 16 sampling areas resulting from RGB (A and C)
and thermal images (B and D) in Amelia (Supplementary
Figures 2A,B) and Avigliano Umbro (Supplementary
Figures 2C,D). PCA (Figure 4) demonstrated that VEG
(A), GLI (B), and UAV-based temperatures (C) distinguished
between FHB+ and FHB- plants at ZS 65 for both the 2019 and
2020 campaigns. Moreover, box-plots indicate that VEG (D),
GLI (E), and UAV-based temperature values significantly differed
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FIGURE 3 | Molecular identification of Fusarium head blight (FHB) and ground-based temperature and photosynthetic efficiency measurements recorded in
concurrence with unmanned aerial vehicle (UAV) campaigns conducted at Zadoks stage (ZS) 57, 65, and 71 of Triticum turgidum (cv. Marco Aurelio) in 2019 and
2020. (A) Molecular identification of Fusarium spp. using 1.5% agarose gel of the translational elongation factor 1-α (TEF ) sequence (700 bp) in spikes of isolates
obtained from the 16 sampling areas, sampled in 2019 and 2020 at ZS 57, 65, and 71. At ZS 57, none of the 16 sampling areas resulted FHB positive (FHB+) during
both 2019 and 2020 UAV campaigns; at ZS 65, 10 and 6 sampling areas were FHB+ in 2019 and 2020, respectively; at ZS 71, all sampling areas were FHB+ during
both 2019 and 2020 UAV campaigns. M represents a 100 bp DNA Ladder (Jena Bioscience); C- represents the negative control and C+ represents the presence of
F. graminearum wild type (WT) 3824. The figure is obtained from four gels and the original pictures of the gels are available upon request. (B,D) Box-plot of the
spikes’ temperature (◦C) and (C,E) photosynthetic efficiency (Fv/Fm). The data represent averages and standard errors for 256 spikes (16 spikes for each sampling
area) from 2019 (B,C) and 2020 (D,E). Different letters refer to the statistical analysis performed using one-way analysis of variance (ANOVA) with the Tukey’s honest
significant difference (HSD) post hoc test at 0.95 or 0.99 confidence level and p < 0.05 or p < 0.01.
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between FHB+ and FHB− areas during the two UAV-campaigns
(2019 and 2020). The average VEG values (D) recorded in FHB−
areas were 1.46 and 1.42, while in FHB+ areas were 1.00 and
1.02 in 2019 and 2020, respectively. The average GLI values (E)
recorded in FHB− areas were 0.21 and 0.13, while in FHB+
were 0.09 and 0.10 in 2019 and 2020, respectively. The average
UAV-based temperature values (F) recorded in FHB− areas were
18.32◦C and 18.94◦C, while in FHB+ were 21.06◦C and 20.94◦C
in 2019 and 2020, respectively.

Monitoring of FHB in the Greenhouse
The progress of FHB severity was monitored in F. graminearum-
inoculated plants in the greenhouse from 3 to 21 dpi (Figure 5A).
The severity gradually increased reaching values close to 100%
at 17 dpi, confirming the susceptibility of T. turgidum cv. Marco
Aurelio. Figure 5B shows the FHB symptoms at 21 dpi. While
no symptoms were observed on the mock treatment, few non-
necrotic bleached spikelets appeared on drought-stressed plants.

Monitoring Spike Temperature and
Photosynthetic Efficiency Between
Mock, Drought, and Inoculated
Treatments
Figure 6 shows the temperature of spikes (Figure 6A) and
the photosynthetic efficiency (Figure 6B) after the three
treatments. Compared to the mock treatment, the temperature
increased and the photosynthetic efficiency decreased in drought-
stressed and inoculated plants, confirming a perturbation of
the photosynthetic activity. In fact, the more the infection
progressed, the higher the differences in spike temperature
and photosynthetic efficiency between the inoculated and mock
plants: inoculated spikes reached a temperature of 17.89, 18.48,
and 18.67◦C while mock spikes measured 17.12, 16.44, and
16.19◦C, at 24, 48 and 72 hpi, respectively; the photosynthetic
efficiency measured 0.719, 0.695 and 0.618 Fv/Fm for the
inoculated spikes and 0.794, 0.793 and 0.801 Fv/Fm for the mock
at 24, 48 and 72 hpi, respectively. Notably, F. graminearum
infection perturbated the photosynthetic parameters more than
drought stress, highlighting that, by using these measures,
it is possible to distinguish between drought-stressed and
FHB−infected plants.

Expression Pattern of the Genes
Regulating Stomatal Conductance by
RT-qPCR
E, R2, and the stability of the reference genes were calculated
to validate the RT-qPCR results. E ranged from 0.9652 to
1.2741 and R2 from 0.9651 to 0.9954. Standard errors (SE)
among the Cq values of the three reference genes ranged from
0.198 to 0.369 indicating their stable expression under the three
different treatments.

Since metrics derived from TIR and RGB images allowed the
detection of infected spikes at ZS 65, the greenhouse experiments
were designed to investigate the differential stomatal regulation
response in proximity of the same phenological stage.

Moreover, drought-stressed plants were studied to
observe their gene expression differences with plants under
F. graminearum inoculation. Figure 7A shows a heatmap of
the relative expression values of plant genes under drought
stress and F. graminearum inoculation at 24, 48, and 72
hpi. Supplementary Table 3 provides the relative expression
values, SE, and the HSD test computed at 0.99 confidence
level. Under terminal drought stress, T. aestivum allene oxide
synthase (TaAOS), T. aestivum terpene synthase (TaKSL),
T. aestivum mitogen-activated protein kinases (TaMAPK),
T. aestivum calcium dependent protein kinase (TaCDPK),
T. aestivum phosphatase (TaABI), T. aestivum MYB domain
transcription factor (TaPIMP), T. aestivum NADPH oxidase
(TaRBOH), and T. aestivum zeaxanthin epoxidase (TaZEP)
were slightly up-regulated showing expression values ranging
from 1.254-fold to 1.892-fold. Among the different time-
points of F. graminearum inoculation (24, 48, and 72 hpi),
the relative expression values of TaAOS, T. aestivum abscisic
acid (ABA) aldehyde oxidase (TaAAO), T. aestivum ABA
receptor (TaREC), T. aestivumβ-1,3-glucanase (TaBG), TaMAPK,
TaCDPK, T. aestivum epoxycarotenoid dioxygenase (TaNCED),
TaRBOH, and TaZEP gradually increased from 24 to 72 hpi,
while T. aestivum hydroperoxide lyase (TaHPL) and T. aestivum
cytochrome P450 (TaCYP450) were down-regulated. Notably, the
expression patterns of TaKSL, TaAAO, TaREC, TaBG, TaCYP450,
TaNCED, and TaZEP were different between drought-stressed
and F. graminearum-inoculated plants. In particular, in the
inoculation treatment, at 72 hpi TaREC, TaBG, TaNCED, and
TaZEP were strongly up-regulated (5.729, 5.143, 4.988, and
4.256-fold change, respectively) while TaPR1 and TaGAPDH
were gradually up-regulated from 24 to 72 hpi, indicating that the
F. graminearum infection perturbated the innate immunity and
physiological photosynthesis of the plants. Figure 7B represents
the PCA obtained by computing relative gene expression values,
spike temperature and photosynthetic efficiency values from
drought-stressed and F. graminearum inoculated plants. PCA
demonstrated that these data distinguished between hydric stress
and F. graminearum inoculation.

DISCUSSION

Changes in temperature and color of spikes are a result of the
physiological defensive response of T. turgidum to FHB. Indeed,
a thickening of the vascular bundles occurs when the infection
moves from the floret to the rachilla which causes an increase
in temperature, a decrease in photosynthesis efficiency, and a
reduced transpiration due to limited water supply and stomatal
closure (Kang and Buchenauer, 2000; Kheiri et al., 2019). These
physiological changes allow remote sensing techniques to detect
and quantify FHB in T. turgidum non-destructively.

Previous studies have revealed the potential of remote sensing
methods in detecting and assessing plant diseases. For example,
Oerke and Steiner (2010) detected FHB using thermal imaging
only at a late infection stage, when it was too late for the disease
to be controlled. Al Masri et al. (2017) studied the effect of the
primary infection site by F. graminearum and F. culmorum using
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FIGURE 4 | Principal component analysis (PCA) of unmanned aerial vehicle (UAV)-based (A) vegetative index (VEG), (B) green leaf index (GLI), (C) temperature at
Zadoks stage (ZS) 65. PCA was performed by using ClustVis Software for p < 0.05 to distinguish between FHB+ and FHB– areas. Box-plot of UAV-based (D) VEG,
(E) GLI, and (F) temperature from FHB– and FHB+ areas. Data were recorded during 2019 and 2020. The data represent averages and standard errors for four
measurements for each sampling area from 2019 (B,C) and 2020 (D,E). Different letters refer to the statistical analysis performed using one-way analysis of variance
(ANOVA) with the Tukey’s honest significant difference (HSD) post hoc test at 0.95 or 0.99 confidence level and p < 0.05 or p < 0.01. Only the data deriving from 1
year were compared.
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FIGURE 5 | (A) Fusarium head blight (FHB) severity (%) in Triticum turgidum
(cv. Marco Aurelio) from 3 to 21 days post inoculation (dpi) during the
greenhouse experiments. (B) FHB symptoms in T. turgidum at 21 dpi. The
data was derived from the averages and standard errors of three treatments
(F. graminearum-inoculated, drought-stressed, and mock) with at least 20
plants for each, and three independent experiments for each treatment.

thermography under controlled conditions and they observed
that FHB infection significantly increased the temperature of
spikes as it progressed from 6 to 29 dpi. Mahlein et al. (2019)
demonstrated that Fusarium-infected spikelets showed higher
temperatures and lower Fv/Fm values compared to mock control
using a digital thermo-camera and a chlorophyll fluorometer. The
authors recorded temperature and Fv/Fm values in entire spikes
to detect FHB infection at 5 and 7 dpi.

Red-green-blue imaging was widely employed to detect FHB-
infected and FHB-damaged kernels (Jaillais et al., 2015; Cambaza
et al., 2019; Abbaspour-Gilandeh et al., 2020), but few studies
explored this technique to detect FHB on spikes. Huang et al.
(2020) proposed an FHB diagnostic model of disease severity
based on the fusion of RGB and spectral imaging. The results
showed that the model was able to identify FHB severity in plants
with an accuracy of 92%, thereby providing a technical basis for
timely and effective control of FHB. Dammer et al. (2011) made

FIGURE 6 | Box-plots of (A) spike temperatures (◦C) and (B) photosynthetic
efficiencies (Fv/Fm) of Triticum turgidum (cv. Marco Aurelio) plants subjected to
mock (M), drought stress (DS) and Fusarium graminearum artificial inoculation
(24, 48, and 72 hours post inoculation (hpi)) treatments during the greenhouse
experiments. The data was derived from the averages and standard errors of
three treatments (F. graminearum-inoculated, drought-stressed, and mock)
with at least 20 plants for each, and three independent experiments for each
treatment. Different letters refer to the statistical analysis performed using
one-way analysis of variance (ANOVA) with the Tukey’s honest significant
difference (HSD) post hoc test at 0.99 confidence level and p < 0.01.

use of RGB imaging to detect FHB in the field. Experimental
plants were artificially infected with a spore suspension and
RGB images were captured and analyzed to detect the disease
symptoms. The authors found a linear correlation between RGB-
derived and visually observed disease levels in plants. Qiu et al.
(2019) accurately detected FHB in the field using RGB imaging.
RGB-derived data correlated with the number of diseased spikes
tallied by manual count. These results are in agreement with
those obtained in our study since we observed an increase
in temperature and a decrease in photosynthetic efficiency
in FHB-infected spikes. Moreover, UAV-based measurements
distinguished FHB+ and FHB− areas, confirming that TIR and
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FIGURE 7 | (A) Heatmap of relative expression level of the genes selected in Triticum turgidum (cv. Marco Aurelio) exposed to drought stress (DS) and Fusarium
graminearum-inoculated at 24, 48, and 72 hours post inoculation (hpi)) treatments. The expression values were normalized to the mock treatment and to T. aestivum
actin (TaACT ), T. aestivumβ-tubulin2 (TaTUB), and T. aestivum ferredoxin-NADP(H)-oxidoreductase (TaFNR) as reference genes. The heatmap was constructed by
plotting the z-score of the relative gene expression values and it was generated by analyzing data with ClustVis Software. The red color represents the up-regulated
genes, while the blue color the down-regulated genes. (B) Principial component analysis (PCA) of relative gene expression values, spike temperature and
photosynthetic efficiency to distinguish between drought stress and F. graminearum infection during the greenhouse experiments. PCA was performed by using
ClustVis Software for p < 0.05.

RGB imaging are powerful tools for FHB detection. To the best
of our knowledge, for FHB detection, TIR and RGB cameras have
only been employed on ground-based phenotyping platforms,
minimizing their portability and limiting the scale at which they
can be used. Thus, this is the first study demonstrating that UAV-
mounted TIR and RGB cameras enable rapid characterization of
T. turgidum and detection of FHB in the field, overcoming the
limitations associated with ground-based phenotyping.

In the present study, the relative expression level of genes
involved in stomatal regulation was evaluated at ZS 65 to
elucidate the genetic mechanism responsible for the phenotypic
response to perturbation of photosynthesis, and to establish
whether or not a differential gene response exists between
drought-stressed and FHB-infected T. turgidum. Stomatal
closure is the primary response of plants to water deficit,
controlled by abscisic acid (ABA), a key hormone involved in
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controlling many aspects of plant growth, development, and
responses to a variety of biotic and abiotic stresses (Daszkowska-
Golec and Szarejko, 2013; Duarte et al., 2019). Our results are
in agreement with the literature since the majority of stomatal
closure positive regulating genes involved in ABA biosynthesis
(TaKSL, TaZEP, TaCDPK, TaMAPK, TaRBOH, andTaPIMP) were
induced, while the negative regulators (TaCYP450, TaBG, and
TaREC) were down-regulated after being exposed to drought
stress. In contrast, some positive regulators of stomatal closure
(TaNCED, TaAAO, and TaHPL) were down-regulated while a
negative regulator (TaABI) was induced. Our findings support
the hypothesis stating that hydric stress conditions do not
completely induce stomatal closure in drought-tolerant wheat
varieties, which correlate with lower level of closure-inducing
genes and higher expressions of genes negatively regulators of
stomatal closure (Xue et al., 2006; Ji et al., 2011; Rampino
et al., 2012; Gallé et al., 2013). Moreover, recorded temperature
values of spikes in the greenhouse revealed that Marco Aurelio is
moderately tolerant to drought stress since temperature measures
of plants exposed to drought stress did not significantly differ
from the mock. However, amongst the distinctive responses
between drought-stressed and F. graminearum-inoculated plants,
TaAAO, TaREC, TaBG, and TaNCED were down-regulated
in the former and up-regulated in the latter. On the other
hand, TaMAPK and TaCDPK were up-regulated in drought-
stressed but not in F. graminearum-inoculated plants at 24
hpi. Spikes temperature and photosynthetic efficiency values
of F. graminearum-inoculated plants differed significantly from
the mock and notably, at 72 hpi, the photosynthetic efficiency
allowed the distinction between F. graminearum-inoculated and
drought-stressed plants. These observations can be extremely
helpful to develop further methodologies aimed at distinguishing
between drought-stressed and FHB-infected plants in the
field. In this regard, biotic and abiotic stresses need to be
distinguished in order to optimize practical field management.
Shaik and Ramakrishna (2014) segregated biotic and abiotic
stresses in rice by applying machine learning approaches
to the expression levels of a set of stress-responsive genes.
Focusing on the use of imaging, hyperspectral sensors are
the most suitable to distinguish biotic and drought stresses
in many crops (Jones, 2011; Susič et al., 2018). To date,
most of the research studies distinguish between drought and
disease infection applied separately, while Ramegowda and
Senthil-Kumar (2015) amply reviewed experimental evidence
suggesting that, under combined drought and biotic stress,
plants exhibit tailored physiological and molecular responses.
Such tailored responses occur only in plants exposed to
simultaneous stresses and such information cannot be inferred
from individual stress studies.

Additionally, in F. graminearum-inoculated plants, most of
the positive regulators of stomatal closure (TaAOS, TaKSL,
TaAAO, TaNCED, TaPIMP, TaRBOH, and TaZEP) were induced
from 24 to 72 hpi while TaMAPK and TaCDPK were up-
regulated at 48 and 72 hpi, confirming that early stomatal
closure is the physiological mechanism behind the increasing
temperature and decreasing photosynthetic efficiency in spikes.
The negative stomatal closure regulators TaBG and TaREC

were also remarkably up-regulated, while TaCYP450 was down-
regulated. Our results are in agreement with the literature data,
reporting the induction of TaBG and TaREC and the down-
regulation of TaCYP450 in FHB-susceptible wheat cultivars.
TaBG belongs to the pathogenesis-related proteins family (PR2)
in wheat, which is known to be induced as a defense mechanism
in response to biotic and abiotic stresses (Muthukrishnan et al.,
2001). Particularly, De Zutter et al. (2017) investigated the
T. aestivum response to a combined attack of F. graminearum
and Sitobion avenae aphids, and observed the consistent up-
regulation of PR1 and PR2. Another study (Francesconi and
Balestra, 2020) demonstrated that TaPR1 and TaPR2 were
induced in an F. graminearum-susceptible T. aestivum (cv.
Rebelde) but not as much as in the FHB-resistant T. aestivum
(cv. Sumai3). The up-regulation of TaREC could be explained by
evidence supporting that it may be involved in FHB susceptibility,
since Gordon et al. (2016) found thatREC silencing inT. aestivum
(cv. Chinese Spring) resulted in slower progression of FHB
symptoms and decreased DON content in wheat heads. On the
other hand, TaCYP450 was down-regulated in F. graminearum-
infected T. turgidum. In fact, much evidence indicated that
CYP450 plays an active role in wheat resistance against FHB and
DON accumulation. Strong CYP450 accumulations were found
in F. graminearum- and DON-resistant but not in susceptible
wheat cultivars (Li et al., 2010; Gunupuru et al., 2018; Francesconi
and Balestra, 2020). Several studies also demonstrated that
CYP450 was able to detoxify DON in vitro (Ito et al., 2013) and
in vivo (Gunupuru et al., 2018).

The present study proved that UAV-based TIR and RGB image
analysis can detect FHB infections at ZS 65. This can improve
different aspects of FHB management and plant breeding. For
example, our methodology allows timely detection of FHB and
mapping affected locations in the field, thus optimizing the
application timing and amount of fungicides needed to control
the disease (Oerke and Steiner, 2010). It can also provide valuable
information about the severity of FHB and help meet future
food traceability requirements. Indeed, the ability to monitor
FHB severity before further processing of harvested kernels
can help determining whether the grains fit for human or
animal consumption, with special regard to mycotoxin content
(Dammer et al., 2011). For such purpose, the image-assisted
analysis coupled with prediction modeling could be a valuable
method to predict and detect the accumulated mycotoxin in
the grains (Battilani, 2016; Leplat et al., 2018; Fernando et al.,
2021). Several research studies reported also the accumulation
of mycotoxin in absence of macroscopic symptoms, while
microscopic analysis revealed that the host cells drastically
changed after the infection (Brown et al., 2010; Peiris et al., 2011;
Alisaac et al., 2021). For such reasons, the detection of mycotoxin
in asymptomatic spikes could be successfully achieved by using
multispectral imaging (Bauriegel et al., 2011; Dammer et al.,
2011; Leplat et al., 2018) to support the mycotoxin traceability
performed by the costly techniques based on chromatography
(Tittlemier et al., 2021). Furthermore, the presented methodology
can help quantifying host resistance to FHB in pre-breeding
and commercial breeding trials (Yang et al., 2017), speeding-up
breeding programs.
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CONCLUSION

The rapid detection of FHB is a key factor to gain maximum,
environmentally sustainable protection of yield. To maximize
FHB disease control efficiency, we explored the use of UAV-
based RGB and TIR imaging supported by ground-truthing to
detect the presence of FHB in T. turgidum (cv. Marco Aurelio).
The present study revealed that: (i) stomatal closure is the
physiological mechanism responsible for temperature increase
and photosynthetic efficiency decrease in T. turgidum spikes
during FHB infection; (ii) VIs and temperatures extracted from
RGB and TIR imaging data can detect these physiological
changes; and (iii) different transcriptional regulations exist
between drought-stressed and F. graminearum-inoculated plants.
These findings provide mechanisms for the detection of FHB
in T. turgidum and shed light into new valuable genomic
information to further develop a phenotyping method able
to distinguish between drought-stressed and FHB-infected
plants in the field.

Research in plant stress physiology is benefiting from new
types of precision disease management technologies based on
phenomics, genomics, and transcriptomics data. In the last
decade, plant genomics and phenomics have matured to the point
where, applied together, they can drastically reduce bottlenecks
in phenotypic and genotypic evaluation of plant traits (Flood
et al., 2011; Murchie et al., 2018; van Bezouw et al., 2019) and
when coupled with artificial intelligence and exascale computing,
they can accelerate the development of new crop varieties with
improved yield potential and enhanced tolerance to biotic and
abiotic environmental stresses (Harfouche et al., 2019; Streich
et al., 2020). Their implementation and application will elucidate
the architecture of plant physiological mechanisms to develop
innovative tools to be applied in a new green revolution
(Ray et al., 2013). To date, no studies have been carried out
attempting to use UAV-based TIR and RGB imaging data for the
detection of FHB in T. turgidum. Developing trait measurement
methodologies that combine phenomics and genomics to detect
plant diseases can provide a timely warning of their imminent
threat, allowing decisions to be made in time for fungicides to be
effective, reducing the costs and negative environmental impacts
of their unnecessary applications. Further research is needed to
test the reproducibility of UAV-based phenomics in different
environments and to explore their potentiality to distinguish
between biotic and abiotic stresses.
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