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Real-time, nondestructive, and accurate estimation of plant water status is important
to the precision irrigation of winter wheat. The objective of this study was to develop
a method to estimate plant water content (PWC) by using canopy spectral proximal
sensing data. Two experiments under different water stresses were conducted in
2014–2015 and 2015–2016. The PWC and canopy reflectance of winter wheat
were collected at different growth stages (the jointing, booting, heading, flowering,
and filling stages in 2015 and the jointing, booting, flowering, and filling stages in
2016). The performance of different spectral transformation approaches was further
compared. Based on the optimal pretreatment, partial least squares regression (PLSR)
and four combination methods [i.e., PLSR-stepwise regression (SR), PLSR-successive
projections algorithm (SPA), PLSR-random frog (RF), and PLSR-uninformative variables
elimination (UVE)] were used to extract the sensitive bands of PWC. The results
showed that all transformed spectra were closely correlated to PWC. The PLSR models
based on the first derivative transformation method exhibited the best performance
(coefficient of determination in calibration, R2

C = 0.96; root mean square error
in calibration, RMSEC = 20.49%; ratio of performance to interquartile distance in
calibration, RPIQC = 9.19; and coefficient of determination in validation, R2

V = 0.86; root
mean square error in validation, RMSEV = 46.27%; ratio of performance to interquartile
distance in validation, RPIQV = 4.34). Among the combination models, the PLSR model
established with the sensitive bands from PLSR-RF demonstrated a good performance
for calibration and validation (R2

C = 0.99, RMSEC = 11.53%, and RPIQC = 16.34; and
R2

V = 0.84, RMSEV = 44.40%, and RPIQV = 4.52, respectively). This study provides a
theoretical basis and a reference for estimating PWC of winter wheat by using canopy
spectral proximal sensing data.
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INTRODUCTION

Climate change has increased the frequency and intensity of
drought events. In most part of Asia, drought has been recorded
to intensify during the last decades (Miyan, 2015), which
raises numerous challenges in agriculture. Water is one of the
important factors in plant growth and yield formation. With
the increase of water deficit, crops, such as wheat, appear to be
gradually wilted, and the rate of growth slows down, resulting in
20–40% production loss in cereal (Daryanto et al., 2017). Thus,
accurate and real-time estimation of plant water status could
help the planters to adjust the irrigation management effectively
and efficiently.

The conventional way to measure plant water content is based
on destructive field sampling and laboratory analysis, which
is always time consuming and labor demanding. In contrast,
spectral reflectance is considered as a rapid and nondestructive
technique taken into practical application (Cho et al., 2007).
Plant water condition directly influences cell turgor and internal
space of tissue resulting in the changes of leaf structure. It
causes the absorption, transmission, and reflection of light in the
leaves changing the value of canopy reflection eventually. The
near-infrared and short-infrared spectral regions are sensitive
to the water content of plant leaf and canopy (Ihuoma and
Madramootoo, 2017). Based on the theory, researchers proposed
many vegetation indices to monitor water content, such as land
surface water index (LSWI) (Xiao et al., 2005), simple ratio water
index (SRWI) (Zarco-Tejada et al., 2003), normalized difference
water index (NDWI) (Gao, 1996), and so on. Furthermore, plant
water content affects chlorophyll content and canopy size. For
this reason, previous findings indicated that bands in the visible
region can be used indirectly to assess plant water status (Das
et al., 2017; El-Hendawy et al., 2019a).

Hyperspectral remote sensing, having numerous continuous
narrow bands and providing crucial information, has shown great
potential for the accurate retrieval of plant parameters (Clevers
et al., 2010). As for plant water status, there were approaches
based on narrow band vegetation indices (Winterhalter et al.,
2011; Wang et al., 2015; Zhang and Zhou, 2015; Fang et al.,
2017) and spectral absorption features (Tian et al., 2001;
Mutanga et al., 2005; Cheng et al., 2011). However, the canopy
spectrum can generate comprehensive information which not
only extracts the expression of the target variation but also other
factors (e.g., soil background, noise of instrument) (Demetriades-
Shah et al., 1990). In order to reduce useless information
and improve the signal-to-noise ratio, the reflectance data are
properly processed or transformed before the actual analysis.
Numerous studies have indicated that different pretreatment
methods are used to predict the water status of plant, including
the first derivative (Liang et al., 2013), continuum removal (CR)

Abbreviation: C, calibration; CV, cross-validation; FC, field capacity; LV, latent
variable; MSC, multiplicative scatter correction; PLSR, partial least squares
regression; PWC, plant water content; R2, coefficient of determination; RF, random
frog; RMSE, root mean square error; RPIQ, ratio of performance to interquartile
distance; SD, standard deviation; SPA, successive projections algorithm; SR,
stepwise regression; UVE, uninformative variables elimination; V, validation; VIP,
variable importance in projection.

(González-Fernández et al., 2015), and normalization (Sun et al.,
2015). Moreover, the hyperspectral data contains a large number
of bands (e.g., FieldSpec 3.0 Spectrometer has more than 1,900
bands), resulting in redundancy and multicollinearity. In the
modeling process, it also makes the number of samples much
smaller than the number of independent variables (spectral
wavelengths) used in the spectral analysis (Atzberger et al.,
2010). Partial least square regression (PLSR) is an effective
method to solve these problems. PLSR, which combines principal
component analysis and multiple linear regression, can easily
process the data matrix and solve the correlation between
independent variables. It has been used to estimate vegetation
water content (Li et al., 2008; Mirzaie et al., 2014). However,
the PLSR model with full spectrum is complicated in practical
applications. In order to remove the irrelevant information,
reduce the number of input variables, simplify the complexity
of the model, and improve the interpretability of the model,
it is necessary to select the sensitive wavelengths. There are
already many variable selection methods. Zou et al. (2010) made
a review about the variable selection methods in near-infrared
spectroscopy. Some variable selection methods were used in
plant water status, such as Bipls-SPA (backward interval PLS in
combination with successive projection algorithm) (Zhang et al.,
2012), PLSR-SR (Das et al., 2017), random frog (Chen and Li,
2020), and so on. These models established with sensitive bands
also had good prediction ability.

As an important step in quantitative spectral analysis,
data preprocessing had a significant influence on improving
PLSR model performance. PLSR is proved to be a useful
approach in selecting sensitive wavelengths (Sharabian et al.,
2014; Wang et al., 2017; Zeng et al., 2018) and quantitating
plant parameters. Considering the advantages of pretreatment,
more sensitive bands would be selected from the spectra
with optimal pretreatment. To date, few studies compared
multivariate statistical methods in sensitive band selection based
on the optimal pretreatment method. In this study, nine
common transformation methods in combination with PLSR
were initiated and compared to select the suitable transformation
method of canopy reflectance from field spectrometer data for
estimating plant water content in winter wheat. Meanwhile,
in order to reduce the input variables of the PLSR model,
sensitive wavelengths were selected by PLSR and four combined
methods [i.e., PLSR in combination with stepwise regression
(SR), successive projections algorithm (SPA), random frog (RF),
and uninformative variables elimination (UVE)].

MATERIALS AND METHODS

Site Description and Experimental
Design
The experiment was conducted from 2014 to 2016 at
the experiment station of Shanxi Agricultural University
(E112◦34′19.96′′, N37◦25′19.81′′), Shanxi Province (P. R. China).
The experimental site has a temperate continental climate
condition. The average annual temperature is 9.8◦C, the annual
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frost-free season is around 175 days, and the annual precipitation
is around 450 mm.

Experiments were conducted in a water-experiment pool. The
refilled soil in the pool is classified as Calcareous Cinnamon
soil (Alfisols in US taxonomy) with 9.60 g/kg organic matter,
57.75 g/kg available nitrogen, 22.10 mg/kg available phosphate,
and 185.48 mg/kg available potassium. The density of the soil is
1.36 g/cm3. The field capacity (FC) is 24.14%.

Jinnong 190 and Chang 4738 were planted in 2014–2015,
while Chang 4738 and Zhongmai 175 were studied in 2015–
2016. The experiments were set up in a randomized complete
block design with three replications. There were five upper limits
of irrigation for each 10-day period included in 2014–2015: W1
(80% of the FC), W2 (60% of the FC), W3 (45% of the FC),
W4 (35% of the FC), and W5 (less than 30% of the FC). There
were five irrigation regimes included in 2015–2016: I1 (four
irrigations at jointing, booting, flowering, and filling stage), I2
(three irrigations at jointing, booting, and filling stage), I3 (two
irrigations at jointing and flowering stage), I4 (two irrigations at
jointing and filling stage), and I5 (without irrigation). The upper
limit in 2015–2016 was 80% of the FC. The volume of water was
controlled by the water meter. The plot area was 6 m2. The critical
growth stages of wheat were selected based on the information
available from the previous studies (Zadoks et al., 1974). For
all treatments, the fertilizer was applied as basal dose with pure
nitrogen (urea) 150 kg/ha, P2O5 150 kg/ha, and K2O 150 kg/ha.

Canopy Reflectance Measurement
The canopy spectral reflectance was captured from jointing stage
to filling stage with a FieldSpec 3.0 Spectrometer [Analytical
Spectral Devices (ASD), Boulder, CO, United States]. The sample
dates are listed in Table 1. The spectral range of the device is
350–2,500 nm, with a sampling interval of 1.4 nm and spectral
resolution of 3 nm between 350 and 1,000 nm and a sampling
interval of 2 nm and spectral resolution of 10 nm between 1,000
and 2,500 nm. The measurements were conducted under clear
sky conditions during 10:00–14:00. The sensor with a field of view
of 25◦ was held at a height of 1 m above the canopy vertically to
cover a sensing area of the wheat canopy (∼44.4 cm in diameter).
In order to reduce the random error, spectral measurements
were determined at three sites in each plot. Ten reflectance
curves per site were averaged. A 40-cm2 BaSO4 calibration
panel was used for calibrating the baseline reflectance prior to
each measurement.

Plant Water Content Measurement
Samples were collected consistent with the spectral
measurements, i.e., 20 plants were clipped at ground level
in each plot and immediately put into valve bags avoiding water

TABLE 1 | Field reflectance spectra measurement dates in 2015 and 2016.

Year Date 1 Date 2 Date 3 Date 4 Date 5

2015 13 April 24 April 3 May 13 May 22 May

2016 13 April 22 April – 13 May 21 May

loss. Then, the fresh plant was weighed. Samples were dried in
an oven at 105◦C for half an hour, then dried at 80◦C to constant
weight and reweighed. Plant water content (PWC) was calculated
as Equation (1):

PWC (%) =
FW − DW

DW
× 100% (1)

Where FW is the fresh weight of wheat (g), and DW is the dry
weight of wheat (g).

Spectral Transformation Methods
In order to get rid of the instrument noise, a moving Savitzky–
Golay filter (Savitzky and Golay, 1964) with a window width
of 5 nm and a polynomial of second degree was applied. The
spectrum from 400 to 2,450 nm was selected. Due to the strong
influence of the water vapor absorption peak on the canopy
reflectance, wavelengths around 1,400 (1,350–1,400 nm) and
1,900 nm (1,800–1,950 nm) were removed.

According to previous studies, nine transformation methods
were conducted on the canopy reflectance to improve the
accuracy and select the best method in evaluating the PWC
of winter wheat. The transformation methods are listed in
Table 2, and the raw spectrum and the transformed spectra are
shown in Figure 1.

Partial Least Squares Regression
Partial least squares regression is one of the multivariate statistical
analysis methods, which is a powerful tool in chemometrics and
other fields (Wold et al., 1983). PLSR can handle data with
high dimensionality and multicollinearity by reducing extensive
collinear variables to noncorrelated factors (latent variables,
LVs) (Wold, 1966). Then, the estimation model was established
with LVs as the independent variables. In addition, the model
is a linear regression model by projecting the independent
variables and dependent variables (observable variables) to a new
space. The method summarizes the spatial change information
of independent variables, which can interpret the dependent
variable as much as possible. In order to avoid overfitting,

TABLE 2 | Transformation methods used in this study.

No. Transformation Abbreviation References

1 Raw reflectance R

2 The reciprocal reflectance 1/R
3 Logarithm of the reciprocal

reflectance
Log(1/R) Grossman et al. (1996)

4 First derivative reflectance R′ Demetriades-Shah
et al. (1990)

5 First derivative of the reciprocal
reflectance

(1/R)′

6 First derivative of logarithm of
the reciprocal reflectance

(Log(1/R))′

7 Continuum removal CR Clark and Roush (1984)

8 Multiplicative scatter correction MSC Liang et al. (2010)

9 Normalization Normalize Yu et al. (1999)
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FIGURE 1 | Average reflectance spectra and their standard deviations of the raw spectra and different transformed spectra. R is the raw reflectance of winter wheat.
R′ is first derivative of R. CR, MSC, and Normalize represent the transformations of raw reflectance by continuum removal, multiplicative scatter correction, and
normalization, respectively.

models were validated by leave-one-out cross-validation, and
the RMSECV was a basic criterion of determining the number
of the latent variables. In general, the optimal latent variable
number of the PLSR model was determined by the minimum
RMSE of cross-validation, which was the inflection point or
the location where the curve of RMSECV became smooth
(Kohonen et al., 2009).

Selection of Sensitive Bands
The aim of selecting sensitive bands is to extract the informative
bands, simplify the complexity of the model, and construct
a stable PWC estimation model. Based on a PLSR model,
regression coefficients (called B-coefficients) and the variable
importance in the projection (VIP) were commonly used as
variable selection methods. In this study, five selection methods
were used. In these methods, the first step was to selected the band
ranges by the PLSR regression coefficients (B-coefficients) and the
variable importance in the PLSR projection (VIP). B-coefficients
represent the importance of each band in predicting the
dependent variable. VIP delineates the relative importance of
each band in the PLSR model for predicting PWC. The VIP
method selects variables by calculating the VIP score for each
variable and excludes all the variables with VIP score below

threshold 1 (Maestre, 2004). The VIP value for band j was
calculated by the equation (Tran et al., 2014):

VIPj =

√√√√p×

∑M
m=1 w

2
mjSS

(
bm · tm

)∑M
m=1 SS

(
bm · tm

) (2)

Where p is the number of bands, M is the number of selected LVs,
wmj is the corresponding loading weight (the linear combination
of the independent variables that define the LVs) of the j-th band
for the m-th latent variable, and SS(bm·tm) is the explained sum of
squared Y (PWC) by the PLSR model with m-th latent variable.

More effective bands could be selected through combining
the B-coefficients and the VIP value in band selection (Chong
and Jun, 2005). However, the combination method may select
some bands with false positive (Tran et al., 2014). Thus, it is
necessary to combine with other band selection methods. Four
other variable selection methods were studied.

Stepwise Regression
Stepwise regression is a common method of selecting variables.
The aim of the regression is to screen for significant bands by
establishing the relation between the dependent variables and the
independent variable. In this study, bidirectional elimination that
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combined forward and backward elimination was used. It is an
iterative process starting with no band. In each step, the band that
contributes the most in predicting the dependent variable will be
added to the model for a criterion of P value (P < 0.01). Then, the
P value of all bands in the model will be tested, and bands whose
P value is above the certain threshold (0.05) are removed. The
process will repeat until all significant bands are in the regression
model in estimating the dependent variable.

Successive Projections Algorithm
Successive projections algorithm is a method to solve the
collinearity problem among variables (Araújo et al., 2001). It
used a simple projection operation to obtain subsets of variables
with minimal collinearity and is a forward algorithm for band
selection. A new selected variable had the maximum projection
value on the orthogonal subspace of the previous selected
variable. The sensitive bands and the number of sensitive bands
were determined based on the smallest root mean square error
(RMSE) of cross-validation of multiple linear regression model.

Random Frog
Random frog is an efficient method for band selection in
recent years. It was based on the framework of inversible-jump
Markov Monte Carlo. In this method, PLSR was used as a
modeling method. According to definite criteria, the variable
subsets are updated constantly. When the number of iterations
is reached, the selected frequency of each variable was calculated
as the basis for eliminating redundant information (Yun et al.,
2013). It requires a threshold of probability which is usually
set empirically. Thus, a forward variable selection was used.
According to frequency, bands were ranked from the largest
to the smallest. In each iteration, the top-ranked band was
added into the PLSR model. With the leave-one-out cross-
validation, the number of bands was decided when the minimum
RMSE was reached.

Uninformative Variables Elimination
Uninformative variables elimination is proposed to eliminate
uninformative variable (Centner et al., 1996). Bands were
evaluated with the stability coefficients of the regression
coefficient (B-coefficient). A same size matrix of noise was
jointed with the spectra matrix. The PLSR prediction model
was established by the new independent variable matrix. Having
leave-one-out validation, the B-coefficient matrix with sample
in row and variable (band and noise) in column was obtained.
Then, the stability coefficients were calculated with the average
value divided by the standard deviation value of each variable
B-coefficient. Compared with noise variable, the band with lower
absolute stability coefficient would be removed.

Performance Evaluation of the
Developed Models
The experiment data collected from 2014 to 2015 (n = 150) and
from 2015 to 2016 (n = 120) were used for model calibration
(C) and validation (V), respectively. The PLSR models for
estimating the PWC were evaluated based on the coefficient
of determination (R2), RMSE, and ratio of performance to

interquartile distance (RPIQ). The calculation formulae are listed
as Equations 3–5:

R2
= 1−

∑n
i=1
(
yi − ỹi

)2∑n
i=1
(
yi − ȳ

)2 (3)

RMSE =

√∑n
i=1
(
ỹi − yi

)2

nc
(4)

RPIQ =
Q3− Q1
RMSE

(5)

Where yi, ỹi are the measured PWC and predicted PWC of the
i-th sample in different datasets; ȳ is the mean value of PWC
in the calibration and validation sets; and Q3 and Q1 are third
quartile and first quartile of the datasets, respectively. According
to the value of RPIQ, four categories of models are defined:
RPIQ between 2.02 and 2.70 illustrates a poor model where
only high and low values are distinguishable; RPIQ between 2.70
and 3.37 demonstrates a model where quantitative predictions
are possible; RPIQ between 3.37 and 4.05 exhibits a good,
quantitative model; and RPIQ > 4.05 implies an excellent model
(Ludwig et al., 2017). Generally, a robust model should have a
higher R2 and RPIQ and lower RMSE.

Data Processing Software
Stepwise regression was analyzed in SPSS 19.0 (SPSS Inc.,
Chicago, United States). PLSR models were performed with PLS
Toolbox version 6.20 (Eigenvector Research, Inc., Wenatchee,
WA, United States) that ran under MATLAB version R2010a.
Other band selection methods were performed with the same
MATLAB environment. Graphs were prepared with Origin 9.0
(Microcal, United States).

RESULTS

Variation of Winter Wheat Plant Water
Content Between Water Treatments
Figure 2 shows the PWC at the main growth stages in the
2014–2015 and 2015–2016 growing seasons. Winter wheat PWC
tended to decrease throughout the entire growing seasons of
two consecutive years, and the minimum PWC was obtained on
May 22, 2015, and May 21, 2016, respectively. The PWC was
increased with the increase of irrigation ceiling (2014–2015) and
frequency (2015–2016).

Correlation of PWC and Canopy
Transformed Reflectance
The correlation coefficients between PWC and canopy reflectance
with different transformation methods are shown in Figure 3.
Correlations were negative in the range of the bands implemented
in this study. Compared with raw canopy reflectance, curve
with normalized transformation exhibited the same pattern and
kept the basic features. 1/R and log(1/R) showed an opposite
curve pattern compared with raw reflectance. The transformation
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FIGURE 2 | Winter wheat plant water content (PWC) at different growth stages in 2014–2015 (A) and 2015–2016 (B). Vertical bars represent the standard deviation
(SD) of PWC. W1, W2, W3, W4, and W5 represent the irrigation upper limits which were 80, 60, 45, 35, and less than 30% of the field capacity, respectively. I1
represents four irrigations at jointing, booting, flowering, and filling stage. I2 demonstrates three irrigations at jointing, booting, and filling stage. I3 shows two
irrigations at jointing and flowering stage. I4 represents two irrigations at jointing and filling stage. I5 is the treatment without irrigation.

FIGURE 3 | Correlation coefficient between PWC and canopy reflectance and its transformation in winter wheat. R is the raw reflectance of winter wheat. R′ is the
first derivative of R. CR, MSC, and Normalize represent the transformations of raw reflectance by continuum removal, multiplicative scatter correction, and
normalization, respectively.

methods with derivation can obviously enhance the correlation
in the visible regions to raw reflectance, up to 0.76 for R′.
The correlation coefficients for the treatment of CR significantly

decreased. Multiplicative scatter correction (MSC) coefficients
did exhibit the same pattern to R. The exception was that MSC
was positive in the visible region.
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PLSR Model for Estimating PWC Based
on the Full Spectrum
The RMSE trend of the PLSR model leave-one-out cross-
validation based on different spectral transformation models is
shown in Figure 4. Except for CR, the number of LVs for different
transformation methods was selected by the minimum RMSECV.

To quantify the PWC of winter wheat, the data from 2014
to 2015 through different pretreatments were used to establish
the PLSR models. The data from 2015 to 2016 were used as an
external validation to the PLSR models. The comparative analysis
of the prediction accuracy of PLSR models based on different
spectral transformations is listed in Table 3 and Figure 5. The
results showed that the PLSR model based on the full spectrum
was suitable for estimating the PWC with R2

C values above 0.87,
except for the CR. The models based on the reciprocal method
and the derivative method did show a higher R2

C (R2 > 0.90)
and RPIQC (RPIQ > 6.0) and lower RMSEC (RMSE < 31%).
In addition, the models with derivative method (PLSR-4, PLSR-
5, and PLSR-6) exhibited less LVs than the other treatments
(except for CR). On the other hand, the performances of PLSR-5
and PLSR-6 in validation were poorer than PLSR-4, illustrating
that the model was optimal. Therefore, among all the spectral
transformation methods, the first derivative reflectance was
superior in estimating the PWC in winter wheat.

PLSR Model for Estimating PWC Based
on the Sensitive Bands
Selection of the Sensitive Bands
In order to simplify the model and avoid overfitting, sensitive
bands were selected based on the first derivative transformed
spectrum. The B-coefficients and VIP values derived from the
PLSR-4 model indicated the importance of different bands in
predicting PWC (Figure 6). The VIP and B-coefficients did show
similar trends. First, bands where the VIP value was above 1
(the threshold of VIP) or the absolute values of B-coefficients
were greater than the criterion (the mean of absolute value
of B-coefficients) were selected. Due to the redundancy and

inefficiency of the band, four methods (SR, SPA, RF, and UVE)
were then used to further select the sensitive bands. The results of
the method of using VIP and B-coefficient values of PLSR to select
bands (denoted as B+VIP) and the four band selection methods
are shown in Figure 6. B+VIP extracted the largest range of
sensitive bands. In addition, other methods effectively reduced
the number of sensitive bands, especially SR. The locations of
the selected bands using different methods were similar, and they
were located in the spectral regions centered at about 680, 860,
980, 1,285, 1,580, 1,660, 1,980, 2,184, 2,250, 2,350, and 2,430 nm.
Most of the sensitive bands were distributed in the near-infrared
and short-wave infrared regions.

PLSR Model Based on Sensitive Bands
Using the sensitive bands selected in the Selection of the
Sensitive Bands section, new PLSR models were established
for estimating the PWC of winter wheat (Table 4), and the
relationships between the measured value and the predicted
value in model validation are shown in Figure 7. The models
with sensitive bands demonstrated robust performance in model
calibration (R2

C > 0.80, RMSEC < 45%, and RPIQC > 4.2).
Compared with the method (B+VIP of the PLSR model), the
number of variables selected by the combined variable selection
methods was reduced by at least 75%. Except for B+VIP-RF,
the model accuracies were slightly reduced. Take B+VIP-SR
for example, only 21 bands were selected to build the new
model. The model accuracies were reduced in calibration and
validation with R2 differences of 0.02 and 0.07 and RMSE
differences of 4.22 and 15.3%, respectively. Among different
variable selection methods, 244 sensitive bands were extracted
through B+VIP-RF, and the model established by these sensitive
bands performed best during model calibration and validation
(R2

C = 0.99, RMSEC = 11.53%, RPIQC = 16.34; R2
V = 0.84,

RMSEV = 44.40%, RPIQV = 4.52). Considering the number
of variables and model performance, the combination of PLSR
and RF (B+VIP-RF) was optimal. According to RPIQV, the
new model had good accuracy for PWC. In Figure 7, the data

TABLE 3 | Performances of PLSR models for PWC based on different spectral transformation methods.

No. Spectral transformations Calibration dataset (2014–2015) Validation dataset (2015–2016)

LVs RMSECV RC
2 RMSEC RPIQC RV

2 RMSEV RPIQV

1 R 8 40.99 0.88 35.35 5.33 0.78 75.03 2.68

2 1/R 12 48.38 0.91 30.78 6.12 0.82 47.81 4.20

3 log(1/R) 10 42.10 0.90 31.97 5.89 0.83 58.63 3.43

4 R′ 6 40.73 0.96 20.49 9.19 0.86 46.27 4.34

5 (1/R)′ 4 47.43 0.91 30.87 6.10 0.73 52.43 3.83

6 (log(1/R))′ 4 40.84 0.91 29.95 6.29 0.81 50.54 3.98

7 CR 4 69.27 0.65 59.42 3.17 0.53 79.29 2.53

8 MSC 9 41.17 0.89 33.18 5.68 0.82 71.06 2.83

9 Normalize 8 39.67 0.88 34.70 5.43 0.83 56.64 3.55

Latent variable indicates the number of latent variables selected by the model. RC
2 and RV

2 represent the coefficient of determination of model calibration and validation,
respectively. RMSEC, RMSECV, and RMSEV represent the root mean square error of calibration, cross-validation (leave-one-out) and validation, respectively. RPIQC and
RPIQV represent the ratio of performance to interquartile distance of the calibration and validation models, respectively. R is the raw reflectance of winter wheat. R′ is the
first derivative of R. CR, MSC, and Normalize represent the transformations of raw reflectance by continuum removal, multiplicative scatter correction, and normalization,
respectively.
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FIGURE 4 | RMSECV of PLSR models with the number of latent variables (LVs) based on different transformation methods. R is the raw reflectance of winter wheat.
R′ is the first derivative of R. CR, MSC, and Normalize represent the transformations of raw reflectance by continuum removal, multiplicative scatter correction, and
normalization, respectively.

points were close to the 1:1 line, indicating good estimation in
different ranges of PWC.

DISCUSSION

Methods for Spectral Proximal Sensing
Data Preprocessing in Estimating Water
Content
In the estimation with hyperspectral remote sensing, the
disturbing factors (e.g., soil background and instrument noise)
had a negative influence. By using suitable preprocessing and
transformation, the accuracy and stability of the prediction model
were improved. In this study, nine transformation methods were
analyzed and compared. Compared with raw reflectance (R),
the correlation between CR and PWC significantly decreased
(Figure 3). The poor correlation with PWC was associated with
the result of the transformation. The location and reflection
feature of spectral absorption of variables is emphasized by
CR transformation, and the values are normalized (Clark and
Roush, 1984; Mutanga et al., 2005). However, the absorption
features of parameters, in addition to water content, are also

enhanced. It may result in the pattern of RMSECV fluctuated
with the increase in the number of LVs (Figure 4). On the
contrary, other transformation methods increased the correlation
to some extent and did show good performance (R2

C > 0.87,
RMSEC < 36.00%, and RPIQC > 5.30) in model calibration.
Consistent with Zhang et al. (2012), derivative transformations
reduced the complexity of the model with less LVs but showed
better correlation and good performance in water content
estimation (Figure 4 and Table 3). The full-spectrum model with
the first derivative transformation was the optimum (Table 3),
indicating its advantages in estimating plant water content
with canopy reflectance. Derivative transformation resolved
overlapping spectra and emphasized the weak but meaningful
peak (Shibayama et al., 1993). In this study, soil may contribute
more to the canopy reflectance of plant under severe water
stress. The first derivative transformation could suppress the
spectral response of the soil background by converting it into a
constant (Demetriades-Shah et al., 1990), and it could eliminate
the effects of canopy architecture difference under various water
conditions. In addition, our study elucidated that the correlation
analysis can be used as an elementary selection method for
spectral transformations.
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FIGURE 5 | The correlation between measured and predicted values in estimating PWC in winter wheat based on different transformation methods. The dotted line
represents the 1:1 line. R is the raw reflectance of winter wheat. R′ is the first derivative of R. CR, MSC, and Normalize represent the transformations of raw
reflectance by continuum removal, multiplicative scatter correction, and normalization, respectively.

Approaches to Sensitive Band Selection
Five variable selection methods were used to extract the sensitive
bands for PWC estimation. The numbers of input variables
(sensitive bands) of the estimation models were significantly
reduced, and B+VIP-SR had the most effects. The number of
sensitive bands was reduced to only 21. Compared with the full
spectrum, the calibration model with sensitive bands selected by
B+VIP had higher estimation accuracy and better stability. This
indicated that variable selection could reduce model complexity
and improve model performance due to the removal of irrelevant
and interference variables (Krishna et al., 2019). The B-coefficient
and VIP value of the PLSR model reflected the weight of variables
in predicting PWC, and they can be used as the basis for band

selection (Sharabian et al., 2014; Wang et al., 2017). The criterion
of the two parameters used in this study is effective to make
it a good variable selection method. However, the number of
selected bands is still very large, and further band extraction
is needed. Thus, this method can be used as an initial band
selection method.

On this basis, the other four methods were used to
further reduce the number of sensitive bands. Comparing four
combined band selection methods, the new calibration models
demonstrated similar results, with high R2 and RPIQ and low
RMSE. This indicated that the four methods used in this study
were effective. Among the four methods, SPA showed the lowest
R2 and the highest RMSE in model calibration, followed by
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FIGURE 6 | The distribution of sensitive bands with the first derivative transformation selected with different methods. Also shown are B-coefficient (gray line) and
variable importance in projection (VIP) (black line) of the PLSR model based on the first derivative reflectance. B+VIP represents the joint analysis of regression
coefficients and the variable importance in the projection of PLSR model. SR, SPA, RF, and UVE represent stepwise regression, successive projections algorithm,
random frog, and uninformative variables elimination, respectively.

TABLE 4 | The performance of PLSR models based on the first derivative
spectrum sensitive bands.

Method Number Calibration dataset Validation dataset

(2014–2015) (2015–2016)

RC
2 RMSEC RPIQC RV

2 RMSEV RPIQV

B+VIP 987 0.97 17.59 10.71 0.85 44.93 4.47

B+VIP-SR 21 0.95 21.81 8.64 0.78 60.23 3.34

B+VIP-SPA 145 0.81 44.67 4.22 0.62 63.89 3.14

B+VIP-RF 244 0.99 11.53 16.34 0.84 44.40 4.52

B+VIP-UVE 115 0.88 34.81 5.41 0.85 60.74 3.31

B+VIP represents the joint analysis of regression coefficients and the variable
importance in the projection of the PLSR model. SR, SPA, RF, and UVE
represent stepwise regression, successive projections algorithm, random frog,
and uninformative variables elimination, respectively. RC

2 and RV
2 represent

the coefficient of determination of model calibration and validation, respectively.
RMSEC, RMSECV , and RMSEV represent the root mean square error of calibration,
cross-validation (leave-one-out) and validation, respectively. RPIQC and RPIQV
represent the ratio of performance to interquartile distance of the calibration and
validation models, respectively.

UVE. It may be explained by the fact that SPA had selected the
bands with minimum collinearity while ignoring some important
bands and containing the noise information (Soares et al., 2013).
Although SPA was performed on the basis of the PLSR (B+VIP)
method, the noisy bands may still be selected. It indicated that
B+VIP cannot remove all noisy bands. As for UVE, a previous
study had proved that it can effectively extract sensitive bands
(Yang et al., 2015). It determined invalid bands by comparing
the stability coefficient of spectrum and noise. On the basis of
PLSR, some effective bands with lower stability coefficient may
be deleted, which resulted in the decreasing of model accuracy.
It indicated that the combination of PLSR and UVE is not
appropriate. With respect to the other methods, they showed

good capabilities in band extraction. SR played a vital role in
variable selection in a small number of samples, contributing to
more reliable results. The result of PLSR-SR was similar to that
of previous studies (Li et al., 2017; Wang et al., 2017; Xie et al.,
2020), which reported that PLSR-SR could extract the effective
sensitive bands and build the estimation model with acceptable
accuracy. In addition, since only 21 bands were selected, PLSR-
SR has the potential for developing the new instrument. RF can
effectively extract sensitive bands (Table 4), which was proven by
studies (Chen and Li, 2020). With 244 bands, PLSR-RF showed
better or similar accuracy than PLSR in model calibration and
validation, respectively. It indicated the advantages of RF in
band extraction. Furthermore, the model accuracy has difference
between the validation dataset and calibration dataset. In this
study, two experimental datasets of different varieties and water
stress treatments were used for model calibration and validation.
Although the selected bands have good performance in model
calibration, changes in cultivars and cultivation environment may
cause the displacement of sensitive bands, resulting in some
changes in the model validation. Considering the number of
bands and the performance of model calibration and validation,
PLSR-RF was the optimal method.

Sensitive Bands for Plant Water Content
Estimation
The sensitive bands selected through five variable selection
methods did exhibit similar spectral regions with the central
band being 680, 860, 980, 1,285, 1,580, 1,660, 1,980, 2,184,
2,250, 2,350, and 2,430 nm (Figure 6). It indicated that these
central bands were useful in the estimation of winter wheat
PWC. These sensitive bands were distributed in each spectral
range studied. The new models based on the sensitive bands
exhibited good estimation power with the RPIQ of model
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FIGURE 7 | The correlation between measured and predicted values in estimating PWC in winter wheat using the sensitive bands with the first derivative
transformation selected by SR in model validation. The dotted line represents the 1:1 line. B+VIP represents the joint analysis of regression coefficients and the
variable importance in the projection of PLSR model. SR, SPA, RF, and UVE represent stepwise regression, successive projections algorithm, random frog, and
uninformative variables elimination, respectively.

calibration and validation above 3.1. It is consistent with previous
studies, showing that the combination of visible, near-infrared,
and short-wave infrared bands certified robust performance
(Zhang et al., 2013; Bendig et al., 2015; Kusnierek and Korsaeth,
2015). Using the method of B+VIP-RF, the estimation model
had the best performance and the bands were located around
400–410, 500, 645–690, 770–850, 930, 980–995, 1,100, 1,165,
1,220, 1,290, 1,450–1,480, 1,550–1,590, 1,610–1,750, 1,960–1,990,
2,200, and 2,230–2,360 nm. It had been proved that the
near-infrared and short-wave infrared spectral regions (900–
2,500 nm) were directly affected by water (Gao and Goetz,
1994; Yebra et al., 2013). Majority of the sensitive bands were
in the short-wave infrared region which may provide more
information. Specifically, 980–995, 1,220, 1,450–1,480, 1,750,
and 2,230–2,360 nm were near the major water absorption
bands at 970, 1,200, 1,450, 1,750, and 2,250 nm (Danson
et al., 1992; Shibayama et al., 1993; Pu et al., 2003; Clevers
et al., 2008). The region of 1,150–1,260 nm was proved to
be one of the optimal bands for ground-based remote sensing
of vegetation water content (Sims and Gamon, 2003). The
2,230–2,360-nm bands were located in the region of 2,080–
2,350 nm which can be used for water content estimation,
but it was strongly affected by the soil reflectance when the
cover is less than 100% (Ripple, 1986). Concurrently, many
selected sensitive bands were indirectly relevant to the plant
water content. The selected bands located in the visible region
were related to the absorption of chlorophyll content in plants
(Yebra et al., 2013; Steidle Neto et al., 2017). Band valleys

around 500 and 680 nm did show a good correlation with
the chlorophyll pigments representing the color characteristics
(Yu et al., 2014). This can be explained by that water content
exhibited a significant correlation with chlorophyll content and
other pigments (Jaleel et al., 2009; Keyvan, 2010; Din et al.,
2011). Some bands were located in the near-infrared region,
which reflected the internal structure of the cells. It is mainly
because plant water status directly influences cell turgor and
internal space of the tissue resulting in the change of internal
scattering. Some bands were selected in the specific region
which were associated with the absorption of protein for the
N–H asymmetry stretch and amide II at 1,980 nm and C–
H stretch at 2, 240 nm (Curran, 1989; Sandra et al., 2000).
Presumably, it is because of the close relationship between water
status and protein.

Estimation of Plant Water Content With
Multivariate Statistical Methods
As a powerful multivariate statistical method, PLSR models
had good performance in estimating the PWC of winter
wheat (Tables 3, 4). In model validation, the data distributions
from different growth stages were inconsistent (Figures 5, 7),
indicating that model performance was affected by plant growth
stages. The results were in accordance with previous studies
(Rischbeck et al., 2016; Wang et al., 2017). Plant development
was related to plant internal structure, substances, and function,
which would affect the location of sensitive bands in different
growth stages. As the growth period is promoted, the data
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points of majority models were getting closer to the 1:1 line,
and the RMSE of the measured and predicted PWC decreased
(data not shown), with the minimum RMSE appearing on May
21. It indicated that the filling stages performed better than
the other stages. In addition, the model performance was not
only affected by the plant growth but also by the cultivars
and experimental treatment (El-Hendawy et al., 2019a,b). In
this study, the influence of these factors on multivariate
statistics was not considered, and further research would be
conducted in the future.

CONCLUSION

In this study, the results demonstrated that the canopy spectral
proximal sensing data could be used for estimating the PWC
of winter wheat in an accurate and nondestructive way. Among
different spectral transformation methods, the first derivative
transformation had closer correlation with PWC, and the PLSR-
4 model was more effective in calibration and validation,
indicating that the first derivative transformation was the optimal
method for processing the canopy spectral data in estimating
PWC. The sensitive bands extracted by the combination of
PLSR and RF obtained the best performance. The verification
accuracy of the model slightly decreased compared with the
full-spectrum model, which is acceptable. The comprehensive
method (PLSR-RF) performed best in extracting the sensitive
bands and building a simple and stable model. The findings of

this study provide technical support for large-scale monitoring of
plant water status by using canopy spectral proximal sensing data
in field production.
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