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A primary selection target for wheat (Triticum aestivum) improvement is grain yield.

However, the selection for yield is limited by the extent of field trials, fluctuating

environments, and the time needed to obtain multiyear assessments. Secondary traits

such as spectral reflectance and canopy temperature (CT), which can be rapidly

measured many times throughout the growing season, are frequently correlated with

grain yield and could be used for indirect selection in large populations particularly

in earlier generations in the breeding cycle prior to replicated yield testing. While

proximal sensing data collection is increasingly implemented with high-throughput

platforms that provide powerful and affordable information, efficient and effective use

of these data is challenging. The objective of this study was to monitor wheat growth

and predict grain yield in wheat breeding trials using high-density proximal sensing

measurements under extreme terminal heat stress that is common in Bangladesh. Over

five growing seasons, we analyzed normalized difference vegetation index (NDVI) and

CT measurements collected in elite breeding lines from the International Maize and

Wheat Improvement Center at the Regional Agricultural Research Station, Jamalpur,

Bangladesh. We explored several variable reduction and regularization techniques

followed by using the combined secondary traits to predict grain yield. Across years,

grain yield heritability ranged from 0.30 to 0.72, with variable secondary trait heritability

(0.0–0.6), while the correlation between grain yield and secondary traits ranged from−0.5

to 0.5. The prediction accuracy was calculated by a cross-fold validation approach as the

correlation between observed and predicted grain yield using univariate and multivariate

models. We found that the multivariate models resulted in higher prediction accuracies

for grain yield than the univariate models. Stepwise regression performed equal to, or

better than, other models in predicting grain yield. When incorporating all secondary
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traits into the models, we obtained high prediction accuracies (0.58–0.68) across the

five growing seasons. Our results show that the optimized phenotypic prediction models

can leverage secondary traits to deliver accurate predictions of wheat grain yield, allowing

breeding programs to make more robust and rapid selections.

Keywords: canopy temperature, grain yield prediction, heat-stress, high-throughput phenotyping, normalized

difference vegetation index, wheat

INTRODUCTION

Wheat accounts for 26% of world cereal production and 44%
of total cereal consumption (McGuire, 2015). Rapid economic
and income growth, urbanization, and globalization are leading
to dramatic dietary shifts, especially in Asia as consumers are
increasing their consumption of wheat products (Pingali, 2007).
Wheat production needs to increase to meet the combined
growing population and expanding demand by the middle of
this century (Tilman et al., 2011). Currently, wheat yield gains
are estimated to be 0.9% per year, much less than the 1.5% per
year, which is required to meet the projected 60% increase in
global production needed by 2050 (Reserach Program onWheat,
2016). At the current rate, the global production of wheat may
only increase by 38%, which is far short of the projected demand.
Additionally, the effect of climate change, such as less favorable
growing conditions, may even further reduce wheat production
(Gammans et al., 2017). Up to 6% yield declines are projected in
wheat for each degree Celsius temperature increase if adaptive
measures such as improved germplasm are not realized (Zhao
et al., 2017).

While wheat is globally distributed and faces a variety of biotic
and abiotic challenges, in South Asia, heat is the most important
stress and critical yield limitation. Terminal heat stress is also a
common problem in temperate regions where 40% of the world’s
wheat is produced. In these areas, the temperature that ranges
from 32 to 38◦C can cause up to a 50% grain yield reduction
(Asseng et al., 2011). Heat stress is a regulated physiological
process that can affect a range of plant phenotypes such as canopy
temperature (CT) (Ayeneh et al., 2002). Fundamental research
has shown that this response is highly complex and differs at the
tissue (Thomason et al., 2018), species (Kotak et al., 2007), and
developmental stage (Tricker et al., 2018), suggesting that heat
tolerance is a physiologically and genetically complex trait.

Temperatures above the optimum level are deleterious and
cause irreversible damage, with the duration and magnitude of
temperature exposure determining the severity of yield loss. In
controlled studies with supraoptimal temperatures, a 3–5% yield
loss for every 1◦C increase of mean temperature above 15◦C
has been observed (Gibson and Paulsen, 1999). In addition to
reducing grain yield, high temperatures can reduce individual
grain mass by up to 23% (Stone and Nicolas, 1994), further

Abbreviations: BLUE, best linear unbiased estimator; NDVI, normalized

difference vegetation index; CT, canopy temperature; DTHD, days to heading;

DAYSMT, days to maturity; GRNSPK, grains per spike; GRYLD, grain yield;

HELSPSEV, Helminthosporium severity; PH, plant height; SN, number of spikes

per square meter; SPKLNG, spike length; SPLN, number of spikelets per spike.

impairing grain yield and quality (Teixeira et al., 2013). Many
of the global wheat production areas already have supraoptimal
temperature conditions, and global temperatures are predicted to
further increase between 1.7 and 4.8◦C by the end of the century
(Pachauri et al., 2014). Thus, increasing grain yield under heat
stress is a major global objective, and more efficient breeding
methods and technology are needed to increase the rate of genetic
gain in heat-stressed environments.

The complexity of heat stress means that the breeding
programs cannot use a single strategy to improve heat tolerance.
Some plant adaption mechanisms to avoid and minimize heat
stress include early flowering (Ishimaru et al., 2010) and stomatal
closure (Liu et al., 2018). The difference in the expression of these
traits provides an opportunity to improve wheat if this beneficial
genetic variation can be accurately measured. Traditionally,
before the discovery of DNA and molecular markers, plant
breeders selected promising lines only on the basis of phenotype.
By generating large numbers of crosses and evaluating successive
generations in a wide range of environments, superior individuals
could be identified. While great improvements have been
made in this fashion, as the number of lines to evaluate
increases, breeders are faced with the challenge of precisely
phenotyping large populations within a short time to identify the
best progeny.

With the advent of low-cost, high-throughput genotyping
technologies, breeders have access to high-density genomic data
(Morrell et al., 2012). While molecular markers have aided
in breeding objectives (Bernardo, 2008), breeding programs
continue to face a combined challenge of characterizing breeding
lines precisely and rapidly (McMullen et al., 2009; Araus and
Cairns, 2014). Unraveling complex traits, such as heat stress,
requires precise, and accurate phenotypic data to connect the
phenotype to the genotypic data (Cobb et al., 2013). Phenotyping
is now considered the bottleneck of crop improvement, but it is
crucial to fully realize the benefits of plant breeding (Araus and
Cairns, 2014).

Increasing grain yield, especially under extreme terminal heat
stress, is a primary goal of the national breeding program in
Bangladesh. While grain yield is the primary trait of interest,
it can be estimated using remote or proximal sensing data
(Lillesand et al., 2014). Any trait that is correlated with the
primary trait can be considered a secondary trait in selection
and can potentially be used to reduce evaluation time and cost
(Rutkoski et al., 2016). If the secondary traits can be accurately
phenotyped within the breeding program, these secondary traits
can be used to predict the primary trait and to improve genetic
gain particularly earlier in the breeding cycle before advancement
to replicated yield trials. Two potential secondary traits that are
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amendable to high-throughput measurements include spectral
reflectance and canopy temperature (CT) (Pask et al., 2012).

Remote sensing of spectral reflectance is based on the ability
to measure the electromagnetic reflectance of plants. The cells
and tissues of plants have wavelength-specific absorbance and
reflectance properties that make spectral reflectance a trait that
can be rapidly and quantitatively measured (Montesinos-López
et al., 2017). Remote sensing has been widely used in agriculture
with different vegetation indices providing a non-destructive,
real-time measure of crop growth. The normalized difference
vegetation index (NDVI) is one of the most commonly used
vegetation indices based on the reflectance of red and near-
infrared light. It can be used to characterize crop growth stages,
evaluate crop density, and predict crop yield (Rutkoski et al.,
2016). In crops, such as maize, wheat, sorghum, and barley,
scientists have identified significant correlations between biomass
and NDVI with some correlation coefficients above 0.70 (Chen
et al., 2011). The values of NDVI, especially 2–3 weeks before
and after heading, are highly correlated with grain yield in wheat
(Babar et al., 2006).

Another trait that can be used to evaluate crop status is CT.
Crop CT is the surface temperature of the plant canopy and is
related to the amount of transpiration that results in evaporative
cooling. CT plays an important role in the observation of the
crop-water relationship, which is a factor of crop yield, and CT
has been shown to have the potential for selecting heat- and
drought-tolerant genotypes in stressed environments (Reynolds
et al., 2009). Several important biological factors such as root
length and biomass, stomatal conductance, number of stomata,
metabolic activities, and photosynthate translocation result in
variation in CT between different genotypes (Reynolds et al.,
2012). Mason et al. (2013) suggested that CT is a complex trait
controlled by loci of small effect with most of the loci having
pleiotropic effects on traits such as plant height (PH) and days
to heading (DTHD). Even though the exact mechanism of CT
difference is unresolved, research has shown that the correlation
between CT and grain yield in wheat is generally negative
under heat-stressed environments providing selection strategies
to identify heat-tolerant lines (Amani et al., 1996; Gutierrez et al.,
2010; Mason and Singh, 2014).

While CT can be easily measured using handheld infrared
radiometers (Pask et al., 2012) and often hasmoderate heritability
(Lopes et al., 2012), the application of CT in breeding has been
limited due to the inconsistent nature of the CT measurements.
CT is impacted by a variety of environmental factors such as
solar radiation intensity, atmospheric temperature, humidity,
soil moisture, and wind speed, which can quickly change
throughout the day (Reynolds et al., 2012). The complexities of
CT measurements suggest that it is important to determine how
to effectively use CT to select better yielding lines in large wheat
breeding programs under heat-stressed environments.

Both CT and NDVI can be measured multiple times
throughout the growing season that gives a powerful approach
to capture the temporal dynamics of the growing crop. Using
just a single measurement to evaluate lines in a breeding
program neglects the temporal dynamics of plant growth and
development (Crain et al., 2018). Incorporating a combination

of multiple variables that show a strong correlation between
secondary and primary traits can be used to develop precise
inferences about crop phenotypes such as grain yield prediction
using secondary traits (Guo et al., 2014). While NDVI and
CT have been advocated for plant selection, minimal work has
been carried out on incorporating multiple measurements into
selection decisions.

As precision phenotyping becomes more routine in breeding
programs, new challenges include how to best utilize and
translate these data into improved prediction models and
selection strategies (Tester and Langridge, 2010). The
objective of our study was to evaluate how dense, temporal
phenotypic measurements from the proximal sensing of
NDVI and CT as well as other agronomic traits could be used
within the national plant breeding programs of Bangladesh
to assess line performance in heat-stressed environments.
Additionally, an emphasis was placed on statistical modeling
that could account for highly correlated measurements of
secondary traits.

MATERIALS AND METHODS

Experimental Design and Field
Management
We evaluated different sets of 540 advanced lines from
the International Maize and Wheat Improvement Center
(CIMMYT) in each of the five growing seasons (i.e., 2015–16,
2016–17, 2017–18, 2018–19, and 2019–20) in Bangladesh. Each
year, the sets of 540 lines from CIMMYT were evaluated as new
heat-tolerant material became available, and additionally, there
were seven different local checks including BARI Gom 26 or
BARI Gom 30, which served as the benchmark check variety of
Bangladesh. All lines were evaluated in the high heat-stressed
environment at the Regional Agricultural Research Station
(RARS), Bangladesh Agricultural Research Institute (BARI),
Jamalpur, Bangladesh (N 24.93, E 89.93, 23 masl). The climate of
this region is hot and humid leading to an overall heat-stressed
environment, classified as ME5A according to the CIMMYT
wheat mega-environment classification system (Rajaram et al.,
1993).

To manage spatial variability, the lines were placed in multiple
trials each growing season. Each trial consisted of 60 entries
including 53 breeding lines and 7 check varieties. Complete trials
were planted within a given day each year with planting dates
for each season of December 4–8, 2015; November 25–28, 2016;
November 29–30, 2017; November 28, 2018; and December 05,
2019. The trials were arranged in an alpha lattice design with two
replications for a total of 120 plots in each trial. Each replication
was composed of 12 blocks with 5 entries randomly assigned to
each block. The plots were composed of 6 rows of 4.17-m length
and on 20-cm row spacing for a total experimental plot size of 5
m2. Plots were separated by a 40-cm alley. The 2015–16 season
had a total of 10 trials. Subsequent years had a total of 11 trials,
with the 11th trial representing the second-year testing of the
highest performing lines from the previous season.
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The recommended agronomic practices of the Bangladesh
Wheat Research Center were followed during the growing
season. Fertilizer application consisted of 100:26:50:20:5:1 kg/ha
of N:P:K:S:Zn:B, respectively, each year. Irrigation was applied as
needed to prevent water deficit. In the 2015–16 growing season,
three irrigations were applied at tillering, heading, and grain
filling, while from 2016–17 to 2019–20, two irrigations were
applied at tillering and booting (Zadoks et al., 1974). Manual
weeding was completed every season to keep the plots weed-free.
No pesticides were applied during the growing seasons.

Trait Measurement
We considered grain yield as the primary trait, CT and NDVI as
sensor-based secondary traits, and all other traits as agronomic
traits. The total grain yield of each of the plots was harvested,
dried, weighed, and divided by the plot size (5 m2) to get
yield (kg/m2) and then converted into metric tons per hectare.
Throughout the growing season, phenotypic data were recorded
for agronomic traits such as ground coverage (GrndCov),
DTHD, days to maturity (DAYSMT), PH, grains per spike
(GRNSPK), leaf blight disease due to Helminthosporium severity
(HELSPSEV), number of spikes per unit area (SN), number
of spikelets per spike (SPLN), spike length (SPKLNG), and
thousand grain weight (TGW). GrndCov was a visual estimation
of ground covered by the biomass of the crop beginning 30
days after sowing and continuing at 15-day intervals. DTHD was
recorded as the number of days to when 50% of total plants in
a plot had extended a spike from the leaf sheath. DAYSMT was
recorded when 80% of the plants in a plot had peduncles that had
turned from green to golden. Plant height was measured as the
length from ground level to the apex of the spike excluding awns.
The total number of grains from five spikes was counted and
divided by five to get the number of GRNSPK. The HELSPSEV
was scored according to the scale for appraising foliar intensity
of wheat diseases (Saari and Prescott, 1975). The number of total
heads per square meter (i.e., SN) was assessed by measuring the
number of spikes counted from a 3.5-m-long 20-cm spacing (0.7
m2) and converted into the number of spikes per square meter.
SPKLNG was measured on a representative spike within the plot
as the length from the base to the tip of a spike excluding awns.

Secondary traits of CT and NDVI data were collected from
8 to 15 times during the growing seasons (8, 14, 12, 13, and
15 time points for the 2016–17, 2017–18, 2018–19, and 2019–
20 seasons, respectively). The measurements represented plant
growth from tillering through senescence (Zadoks et al., 1974)
with measurements taken from 11 a.m. to 2 p.m. corresponding
to solar noon on each day of observation. CT was measured
using a handheld infrared thermometer (IRT) (Apogee, Logan,
UT, USA), which provided a high accuracy, non-contact surface
temperature measurement from −30 to 65◦C with a precision of
±0.124◦C. The IRT readings were taken at a 30◦ angle from the
horizon for measurement and 70 cm above the crop canopy (Pask
et al., 2012). The IRT functions at 0.6 hertz, but only the average
CT was recorded for each measurement. NDVI was collected
using a GreenSeeker handheld sensor (Trimble Inc. Sunnyvale,
CA, USA). The GreenSeeker was used by passing the sensor
75 cm over the crop canopy. Two-person teams were employed

for CT and NDVI collection, with one person operating the
instrument and the other person recording the data. It took∼3 h
with two teams (i.e., four people) to measure CT and NDVI of
all plots. The data were recorded in the Field Book program (Rife
and Poland, 2014).

Data Analysis
All analyses were completed in R software (Team, 2017) by using
packages including lme4 (Bates et al., 2015), leaps (Lumley, 2017),
tidyverse (Wickham et al., 2019), glmnet (Friedman et al., 2010),
plyr (Wickham, 2011), ggplot2 (Wickham, 2016), caret (Williams
et al., 2018), PerformanceAnalytics (Peterson et al., 2014), and
readr (Wickham et al., 2017).

Statistical Analysis
A mixed model to account for the trial design was used to obtain
the best linear unbiased estimators (BLUEs) for each genotype
using the following model fit separately for each trial:

yij = µ + gi + rj + bn(j) + eij (1)

where yij is the observed phenotypic response variable (GRYLD,
CT, . . . , NDVI) for the ith genotype, jth replicate; µ is the overall
mean of the individual trial; gi is the fixed effect of ith genotype
(line) with i taking the values 1–60; rj is the random effect of jth
replicate with j corresponding to 1 or 2 with a normal distribution
N(0, σ

2
r ); bn is the random effect of nth block, nested within

replicate j, where n ranges from 1 to 12 distributed as N(0, σ 2
n );

and eij is the residual effect for genotype i in replicate j with a
normal distributionN(0, σ 2

e ). BLUEs were calculated for each site
year individually.

To estimate heritability for each trial, a random term
for genotype was used in equation (1), resulting in variance
components used to calculate broad-sense heritability. The
heritability was estimated using the following formula (Holland
et al., 2003):

H2
=

σ
2
g

σ
2
g +

σ
2
e
r

(2)

where σ
2
g is genotypic variance, σ

2
e is residual model variance,

and r is the number of replications, which is two. The heritability
estimates were calculated for all agronomic traits during the
growing season and for each of the time points of NDVI and
CT observations. In addition to calculating heritability on a trial
basis, we estimated BLUEs and variance components across the
full experiment each year for each trait using the followingmodel:

yijk = µ + tk + gi(k) + rj(k) + bl(ij) + εijk (3)

where yijk is the phenotype of the trait of interest for ith genotype,
jth replicate, and kth trial;µ is the overall mean of the population;
tk is the random effect of the trial with k taking values 1–11 with
a normal distribution N(0, σ

2
k
); gi is the random effect of ith

genotype (line) nested within trial with i taking the values 1–
60 with a normal distribution N(0, σ

2
i ); rj is the random effect

of jth replicate nested within trial with j corresponding to 1 or
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2 with a normal distribution N(0, σ
2
j ); bl is the random effect

of nth block, nested within trial i and replicate j, with n from
1 to 12 distributed as N(0, σ

2
n ); and εijk is the residual effect

for the ith genotype jth replicate in the kth trial with normal
distribution N(0,σ 2

e ).

Statistical Models for Grain Yield
Prediction
Using the BLUEs for each trait, four different statistical models
were used to predict grain yield using multiple measurements
of NDVI, CT, and agronomic traits. The models included
stepwise regression and three shrinkage regression models of
ridge regression, least absolute shrinkage and selection operator
(LASSO) regression, and ElasticNet regression (Hastie et al.,
2001). In all models, we used all the secondary traits and
agronomic traits collected from the field to predict grain yield.
The stepwise regression performed forward selection followed
by the backward elimination (Friedman et al., 2010, pp. 58–60).
The shrinkage models function by shrinking the estimated effects
toward zero. These models add a penalty that allows variables to
have a coefficient close to or equal to zero. The tuning parameter
lambda thus determines the amount of shrinkage. The LASSO
regression model performs L1 regularization (i.e., the absolute
value of the residual error term), and it can select variables by
eliminating variables with a coefficient of zero (Hastie et al., 2001,
p. 68). The ridge regression performs L2 regularization (i.e., the
squared value of residual error term), and the coefficients cannot
be zero, thus retaining all variables in the model (Friedman
et al., 2010, pp. 61–68). The penalty for the ElasticNet regression
is a combination of ridge and LASSO regression, allowing for
both variable shrinkage and feature selection (Hastie et al.,
2001, pp. 72–73; James et al., 2013). The models were built
in an iterative process; for each year, we evaluated models
with NDVI only, CT only, and all secondary and agronomic
traits together.

For each model, a cross-validation approach was evaluated
to determine the predictive ability for yield using the trial
structure of the CIMMYT trials. As related lines (e.g., full
sibs) are evaluated in the same trial, this approach prevents
highly related, full- or half-sibling lines, from predicting their
own performance. In the cross-validation scheme, all entries
from 10 (9 in 2015–16 and 2018–19 seasons) trials were
used to fit the model, and the prediction was completed on
the 11th (10th in 2015–16 and 2018–19 seasons) trial. This
process was repeated by dropping a single trial fitting the
model and predicting the left-out trial until all entries had been
predicted. The reported prediction accuracy was assessed as
the correlation between the predicted value and the BLUEs for
grain yield.

DATA AVAILABILITY STATEMENT

All phenotypic data and code for analysis have been placed in the
Dryad Digital Repository available at: https://doi.org/10.5061/
dryad.vdncjsxrz.

RESULTS

Over five seasons where we evaluated ∼2,700 lines along with
a local check variety for grain yield, which ranged from a low
of 2.4 to a high of 3.5 ton ha−1. Overall, the 2020 field season
had the highest average yield whereas 2016 was the lowest yield
(Supplementary Figure S1). In general, these yields are lower
than experienced in most global areas where the mean global
wheat yield is estimated to be 3.4 ton ha−1 (Ritchie and Roser,
2013). This is likely due to the high heat stress found in the
Bangladesh environments. To identify new candidate varieties
for farmers, we evaluated the CIMMYT germplasm compared
to the local check varieties. Within the CIMMYT germplasm,
each year there were lines that exceeded the local check, with
some lines being highly superior. For each season of the 540 lines
evaluated, 24% to 56% of the lines were higher yielding than the
check varieties (Supplementary Figure S2). Based on these tests
and observations, there are opportunities to improve wheat yield
in Bangladesh and heat-stressed areas.

Broad-Sense Heritability
We observed moderate-to-high broad-sense heritability
(repeatability) for grain yield and other agronomic traits, across
the five seasons from 2015–16 to 2019–20 when considering the
entire experiment (all trials together) (Table 1) and also on an
individual trial basis (Supplementary Tables S1–S5). For the
agronomic traits such as DTHD, DAYSMT, and PH, we observed
a consistent and high heritability. The highest heritability was
recorded from DTHD (H2 = 0.97; followed by DAYSMT, H2 =

0.90) across the trials and growing seasons.
For secondary trait measurements, the sensor-based NDVI

and CT had heritability ranging from low to high (i.e., from 0 to
0.74). The CT showed a narrower range of heritability compared
to that of the heritability of NDVI (Figure 1), but the heritability
of CT was almost always lower than that of NDVI. The highest
value of heritability was calculated as 0.56 for CT and that for
NDVI was 0.74. We observed that the values of heritability
for both NDVI and CT were higher at the grain filling stage
(i.e., mid-February–mid-March, indicated as two vertical lines on
Figures 1, 2) than the early growth stages.

Correlations Between the Measured Traits
The phenotypic correlations were calculated for all measured
agronomic traits, considering all trials together to determine
the relationship between them and GRYLD (Table 1). We also
calculated the correlations between yield and other agronomic
traits for individual trials (Supplementary Tables S6–S10).
DTHD showed a moderate but negative correlation with grain
yield in all the seasons. DAYSMT also showed a negative
correlation in three of the five growing seasons. The highest
correlation was observed between TGW and GRYLD (r = 0.49)
followed by GRYLD and SN (r = 0.41) in the 2017–18 season.
The most consistent correlation of grain yield was observed for
PH and TGW across the growing seasons.

The correlation between the measured CTs at individual time
points and GRYLD ranged widely with a trend of being strongly
negative at the start of the season to a positive correlation at the
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TABLE 1 | Broad-sense heritability of agronomic traits and correlation between agronomic traits and grain yield (GRYLD) for five growing seasons from 2015–16 to

2019–20 for wheat grown in Bangladesh.

Traits 2015–16 2016–17 2017–18 2018–19 2019–20

H2 r H2 r H2 r H2 r H2 r

Days to heading 0.94 −0.05 ns 0.94 −0.29*** 0.97 −0.32*** 0.94 −0.16*** 0.96 −0.19***

Days to maturity 0.72 0.30*** 0.90 −0.01 ns 0.90 −0.01 ns 0.88 −0.04 ns 0.87 0.08*

Plant height 0.51 0.35*** 0.57 0.24*** 0.35 0.27*** 0.28 0.31*** 0.44 0.38***

Number of spikes per m2 0.75 0.33*** 0.03 0.22*** 0.35 0.41*** 0.05 0.06 ns 0.18 0.36***

Number of spikelets 0.31 0.10* 0.28 0.04ns 0.19 −0.03 ns 0.29 −0.10* 0.15 0.00 ns

Kernels per spike 0.80 0.14*** 0.36 0.16*** 0.19 −0.01 ns 0.07 0.14*** 0.15 0.10*

Thousand kernel weight 0.47 0.25*** 0.55 0.28*** 0.61 0.49*** 0.52 0.17*** 0.41 0.33***

Grain yield 0.72 − 0.66 − 0.56 − 0.30 − 0.39 −

Spike length 0.42 0.05 ns 0.36 0.05 ns 0.30 0.20*** 0.29 0.00 ns − −

H2 = Broad-sense heritability, and r = Correlation between grain yield and agronomic trait. ns not significant. *Significant at the 0.05 probability level. **Significant at the 0.01 probability

level. ***Significant at the < 0.001 probability level.

final measurement (Figure 2). The strongest correlations were
recorded from the CTmeasurement taken during the grain filling
stage (i.e., mid-February–mid-March, indicated as two vertical
lines on Figures 1, 2). The correlation between CT and GRYLD
was more consistent in the 2017–18 season and had the least
consistency in the 2015–16 season.

Generally, NDVI tended to show positive correlations with
GRYLD at early to middle growth stages (Figure 2). Out of a
total of 63 individual days of NDVI measurement at five growing
seasons, 58 days showed a significant correlation with GRYLD.
The positive correlation, however, changed at the later crop
growth stages of all the seasons, where the correlations between
NDVI and GRYLD were negative and the correlations between
CT and GRYLD were positive.

There were strong correlations between multiple days of
secondary trait measurements across seasons, and it was
common for the correlation between different time points of
NDVI to have correlations of 0.3. Relationships between different
CT time points were often not as highly correlated as NDVI.

Yield Prediction Using Univariate Model
Yield predictions were developed by implementing a prediction
model tested for accuracy with a cross-fold validation strategy.
Overall, using a single secondary or agronomic trait, the results
were inconsistent with the prediction accuracies ranging from
0 to 0.59. The prediction accuracy of individual secondary
traits varied greatly depending on the trait and the time of
measurement (Figure 3), with traits measured around grain
filling providing the highest values, while traits early or late in
the growing season had inconsistent values.

Yield Prediction Using Multivariate Models
Using four different multivariate models, the accuracy of
grain yield prediction was estimated by using a cross-
validation strategy where the accuracy was the correlation
of the predicted value and the genotypic BLUE. The yield
prediction accuracy of the models varied widely from
0.17 to 0.68 (Table 2). When using all traits as predictor
variables, it was apparent that the stepwise regression

performed similar to shrinkage models, but the proportion
of variance explained by the model was always substantially
higher than other models. The stepwise regression was
consistently the best among the models deployed with
LASSO regression, ridge regression, and ElasticNet regression
performing similarly.

Difference in the Sensor-Based Secondary Trait

Selection
Grain yield prediction models were developed iteratively
with two distinct secondary traits, namely, NDVI and
CT, and other agronomic traits with prediction accuracy
in the range of 0.17–0.45 for using CT only (Table 2).
Using NDVI, the prediction accuracy was usually higher
than using CT alone ranging from 0.32 to 0.58. When
we incorporated both NDVI and CT into the model, the
prediction accuracy further increased ranging from 0.37 to
0.58. Incorporating all traits together resulted in the highest
overall prediction accuracies ranging from 0.43 to 0.68 across the
experiment years.

DISCUSSION

Phenotypic Evaluation
The national priorities for wheat breeding programs in
Bangladesh are focused on improving heat tolerance to develop
early maturing varieties with improved yield and superior grain
quality. Such breeding efforts necessitate selecting promising
lines from large breeding trials. Precise phenotyping is the most
important prerequisite to decide which individuals should be
selected. The observed heritability for the evaluated physiological
high-throughput traits of NDVI and CT was consistent with
the previous literature (Reynolds et al., 1994). Most of the
CT showed negative correlation, while most days of NDVI
observations showed positive correlation and as such should be
the useful parameters for selection of superior breeding lines
(Babar et al., 2007; Crain et al., 2017). Overall, the sensor-
based traits had higher correlations than other agronomic traits
and in the context of breeding are amendable to much higher
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FIGURE 1 | Broad-sense heritability of the normalized difference vegetation index (NDVI) and canopy temperature (CT) for days after sowing in five growing seasons

from 2015–16 to 2019–20. The horizontal dotted lines represent the heritability of grain yield. The vertical dashed lines indicate average days to heading, and the

dotted lines represent the average days to physiological maturity.

throughput and rapid measurements. However, we also noted
that caution should be taken during CT andNDVI data collection
as weed population and irrigation management timing could
influence the data. Higher weed population could increase
NDVI values, and the higher transpiration after irrigation
could increase CT expression. Such breeding trial management
should be taken into consideration when using these proximal
sensing measurements and developing prediction models and
selection criteria.

Modeling Yield Prediction
We evaluated how measured traits could be used to predict
grain yield through a variety of statistical models. We

used a univariate model to predict grain yield using the
phenotypic data as we intended to compare the univariate
model to more complex multivariate prediction models. We
observed that the univariate models had lower prediction
accuracies than any of the multivariate models tested in this
study. Using a cross-fold validation, the multivariate stepwise
model performed well, with the addition of more variables
increasing the power of yield prediction. We found that the
stepwise regression was the best among the four multivariate
models deployed in predicting grain yield using secondary
traits in wheat. The stepwise regression model worked as
forward selection and backward elimination processes and
finally provides the number of variables that should be
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FIGURE 2 | Correlation between grain yield and sensor-based secondary traits of NDVI and CT for observations on days after sowing in five wheat growing seasons

from 2015–16 to 2019–20. The horizontal dotted lines represent the correlation value of 0. The vertical dashed lines indicate average days to heading, and the vertical

dotted lines represent the average days to physiological maturity.

included in the regression model. We found that the stepwise
regression model excluded some of the secondary traits as
they had multicollinearity and were excluded from the model
(Supplementary Table S11).

Application to National Breeding Programs
In a developing country like Bangladesh, genotyping facilities
are not yet available. However, field-based phenotyping protocols
are available, and these approaches can be implemented across
national programs. Hence, within Bangladesh, the phenotypic
modeling is directly applicable for the implementation in applied
breeding programs for yield prediction and more tractable than
selection based only on genomic profiling. Our study supports
that large amounts of phenotypic data can be collected with
low-cost phenotyping tools.

While the ability to incorporate high-throughput phenotyping
(HTP) data in breeding programs is anticipated to increase

genetic gains (Haghighattalab et al., 2016; Crain et al., 2018;
Krause et al., 2019; Singh et al., 2019; Wang et al., 2020), many
of these studies relied on large amounts of resources for both
phenotyping and computing. For example, Wang et al. (2019a)
used unmanned aerial vehicles to collect HTP imagery. These
images were then computationally stitched together followed
by the trait extraction using high-performance computers. In
the studies by Crain et al. (2018), Rutkoski et al. (2016), and
Volpato et al. (2021), expensive phenotyping equipment [i.e.,
global positioning system (GPS) or multispectral scanners] was
used to evaluate plants. To our knowledge, this is the first study
that was conducted with low-cost tools and analysis that could
be completed with a personal computer (i.e., resources available
to many national breeding programs). These methods should
be approachable for any breeding program, enabling the data
of secondary traits to predict the primary trait of interest and
increase selection accuracy. As HTP data collection improves, we
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FIGURE 3 | Correlation between predicted grain yield and observed grain yield (prediction accuracy) for five wheat growing seasons in Bangladesh from 2015–16 to

2019–20. Each prediction has been made by using a univariate model with one variable of the phenotypic data.

anticipate that unmanned aerial vehicle imagery may be able to
replace the phenotyping employed in this study. While current
results are promising (Krause et al., 2019; Wang et al., 2020),
the resources such as skilled technicians, hardware, and software
are not at a level that is currently practical in many national
breeding programs. While we envision the resources becoming
more affordable and user-friendly in the future, the methods we
utilized are immediately applicable and eliminate the need to
have entire phenotyping research teams that are often suggested
for HTP.

In these breeding trials, we evaluated a large diversity of elite
breeding germplasm that showed much promise in identifying
superior performing candidate varieties for Bangladesh. Overall,
there was a high proportion (24–57%) of the evaluated lines
that outperformed the local check varieties such as BARI Gom
26 and BARI Gom 30 (Supplementary Figure S2). In addition,

the average yield of selected entries (i.e., top 10% of evaluated
lines) each year was ≥1 ton above the yield of the benchmark
local checks (Supplementary Table S12). These observations
and favorable selection results support the upward prospects
of continued selection of heat-tolerant breeding materials and
the development of new, superior candidate varieties for the
supraoptimal temperatures found in Bangladesh. The combined
use of more rapid selections with the proposed phenotyping tools
and selection methods can further accelerate the identification of
these superior candidate varieties.

Our goal was to improve the wheat yield prediction by using
secondary traits and statistical models that could accommodate
highly correlated variables (Supplementary Table S11). While
we investigated models with secondary and agronomic data, the
sensor-based data of NDVI and CT can be measured easier
than agronomic traits that can require more time and often
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TABLE 2 | Yield prediction accuracies for five wheat growing seasons from 2016 to 2020 in Jamalpur, Bangladesh, using four different multivariate models.

Yield predictors Models 2015–16 2016–17 2017–18 2018–19 2019–20

r R2 r R2 r R2 r R2 r R2

Canopy temperature (CT) Stepwise 0.17 0.07 0.45 0.26 0.34 0.31 0.39 0.14 0.23 0.25

LASSO 0.17 0.06 0.44 0.24 0.33 0.28 0.39 0.10 0.22 0.23

Ridge 0.17 0.08 0.44 0.25 0.34 0.30 0.40 0.11 0.23 0.23

ElasticNet 0.17 0.08 0.44 0.25 0.34 0.30 0.40 0.11 0.23 0.23

Normalized difference vegetation index (NDVI) Stepwise 0.35 0.20 0.34 0.10 0.43 0.36 0.58 0.36 0.42 0.33

LASSO 0.35 0.19 0.32 0.08 0.42 0.35 0.58 0.35 0.42 0.32

Ridge 0.36 0.21 0.32 0.08 0.42 0.35 0.58 0.35 0.41 0.32

ElasticNet 0.36 0.21 0.32 0.08 0.42 0.35 0.58 0.35 0.42 0.33

NDVI and CT Stepwise 0.38 0.29 0.48 0.27 0.48 0.42 0.58 0.37 0.43 0.37

LASSO 0.37 0.27 0.45 0.23 0.44 0.37 0.56 0.31 0.41 0.33

Ridge 0.38 0.28 0.47 0.25 0.44 0.38 0.56 0.32 0.42 0.33

ElasticNet 0.38 0.28 0.46 0.24 0.44 0.38 0.57 0.34 0.42 0.33

Agronomic
†

Stepwise 0.53 0.30 0.53 0.33 0.57 0.48 0.40 0.14 0.60 0.48

LASSO 0.53 0.29 0.53 0.32 0.57 0.47 0.41 0.13 0.59 0.46

Ridge 0.53 0.30 0.53 0.32 0.57 0.48 0.41 0.13 0.60 0.47

ElasticNet 0.53 0.30 0.53 0.32 0.57 0.48 0.41 0.13 0.60 0.47

All Traits Stepwise 0.58 0.46 0.68 0.50 0.64 0.58 0.65 0.43 0.64 0.57

LASSO 0.58 0.44 0.66 0.48 0.62 0.52 0.62 0.39 0.62 0.51

Ridge 0.58 0.44 0.67 0.49 0.62 0.52 0.62 0.39 0.61 0.51

ElasticNet 0.58 0.43 0.67 0.49 0.62 0.52 0.63 0.39 0.61 0.51

Yield predictions were based on the cross-fold validation where accuracy is the correlation (r) between the best linear unbiased estimator and the cross-fold validation predicted yield

for each trial. R2 is the percent variance explained by the prediction model.
†
Agronomic traits include days to heading, days to maturity, plant height, spikes per square meter, spike length, spikelets per spike, grains per spike, and thousand grain weight.

cannot be measured until the end of the season. Supporting the
value of these physiological sensor measurements in breeding,
the yield prediction with only the sensor-based data showed
prediction power almost as high as the prediction using all traits
together. These sensor-based traits are easy tomeasure repeatedly
during the season. This allows breeders to use the sensor-
based traits to predict grain yield with flexibility depending on
the available equipment and to implement yield prediction on
small observation plots. If facilities are limited, NDVI could be
used instead of CT for yield prediction. Regardless of the exact
type of the sensor-based measurement, breeders will have the
ability to increase prediction power by incorporating secondary
traits. Breeders can use secondary trait measurements, which
are obtained during the growing season, to increase selection
accuracies prior to harvesting the plots and ensure that the
high-yielding plots are harvested. This is of particular interest
if these secondary traits can be measured on smaller plots
at earlier generations in the breeding cycle enabling more
intense selection prior to lines entering into replicated yield
testing (Krause et al., 2020).

CONCLUSION

Overall, we found that the proximal sensing of NDVI and
CT data was valuable in developing prediction models for
yield. When multiple measurements were obtained throughout

the growing season, the multivariate prediction models were
much more accurate than the models using a single time
measurement. Grain yield prediction was also improved by the
incorporation of agronomic traits such as DTHD, DAYSMT, and
tiller numbers. While less tractable to measure the full suite of
agronomic traits (e.g., spikelet number), the incorporation of the
routine agronomic measurements into prediction models can be
useful for predictions in the breeding program. If future high-
throughput technology allows simple image-based measurement
of the agronomic traits (Wang et al., 2019a,b), these traits
could be measured on large populations and incorporated into
prediction models.

This study demonstrated that high prediction accuracy for
grain yield can be obtained using the full combination of
proximal sensing and agronomic traits with multivariate models.
These traits can be measured on small (e.g., <1 m2) plots
that are used for early generations in the breeding program.
Using these same prediction models, it could be possible to
generate accurate predictions of grain yield at this stage, where
current labor and time constraints prevent harvest assessment.
Additionally, using new HTP platforms and unmanned aerial
vehicles that can capture NDVI and CT, these measurements can
potentially be expanded to tens of thousands of plots. By making
predictions and more accurate selections much earlier in the
breeding cycle, there is considerable potential to increase genetic
gain, particularly for difficult and complex selection targets such
as grain yield under heat stress.
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