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Automated species classification from 3D point clouds is still a challenge. It is, however,
an important task for laser scanning-based forest inventory, ecosystem models, and to
support forest management. Here, we tested the performance of an image classification
approach based on convolutional neural networks (CNNs) with the aim to classify 3D
point clouds of seven tree species based on 2D representation in a computationally
efficient way. We were particularly interested in how the approach would perform with
artificially increased training data size based on image augmentation techniques. Our
approach yielded a high classification accuracy (86%) and the confusion matrix revealed
that despite rather small sample sizes of the training data for some tree species,
classification accuracy was high. We could partly relate this to the successful application
of the image augmentation technique, improving our result by 6% in total and 13, 14,
and 24% for ash, oak and pine, respectively. The introduced approach is hence not only
applicable to small-sized datasets, it is also computationally effective since it relies on
2D instead of 3D data to be processed in the CNN. Our approach was faster and more
accurate when compared to the point cloud-based “PointNet” approach.

Keywords: machine-learning, artificial intelligence, tree species classification, laser scanning, convolutional
neural networks

INTRODUCTION

Many functions and services of a forest are tied to forest structure and the structure of the individual
trees that constitute it. Therefore, structural information is not only relevant for monitoring
deforestation (Goetz and Dubayah, 2011), estimating carbon stocks (Asner, 2009) or predicting
biodiversity (Bergen et al., 2009; Dees et al., 2012), but also to enable more accurate models of
microclimatic conditions (Ehbrecht et al., 2017), the carbon cycle (Xiao et al., 2019), water cycle
(Varhola and Coops, 2013), and other tasks. For an optimized and goal oriented forest management,
detailed information on the stand structure is also essential. For example, to ensure habitat
continuity (Delheimer et al., 2019; Franklin et al., 2019), to control fire risk (Hirsch et al., 2001)
or to optimize timber yield (Kellomäki et al., 2019) and stand stability (Díaz-Yáñez et al., 2017).
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Today, three-dimensional (3D) data of forests is available
through terrestrial (e.g., Seidel et al., 2019), airborne (e.g., Abd
Rahman et al., 2009; Vastaranta et al., 2013), and even spaceborne
remote sensing platforms (e.g., Qi and Dubayah, 2016). High-
resolution 3D data on individual trees is also available for larger
areas (Koch et al., 2006; Liang et al., 2014) and provides the
opportunity to aid research in forest ecology (Danson et al.,
2018; Disney, 2019), tree architecture modeling (Bucksch and
Lindenbergh, 2008; Dorji et al., 2019), and to support forest
management in an unprecedented way (Hirata et al., 2009).
However, two major challenges must be overcome if 3D data of
forests is to be used operationally on a larger scale.

First, individual tree separation from the stand data must be
fully automatized in order to make tree-based modeling possible.
So far, most studies relied on manual selection procedures to
cut individuals from stand-level 3D data in order to enable tree-
based processing. This process may be very precise, since the
human cognitive system does an excellent job in identifying 3D
objects (Todd, 2004) and also proved to be quite reproducible
(Metz et al., 2013), but it is also very tedious. Intensive
research has tackled the challenge of automatic forest point cloud
segmentation (Li et al., 2012; Lu et al., 2014; Ayrey et al., 2017)
and recently commercial software has become available to do
the task automatically, fully objectively and with remarkable
success rates (e.g., software package “LiDAR360,” GreenValley
International, Berkeley, CA, United States1).

The second challenge lies in the automatic classification of
identified tree individuals with regard to their species. This is the
focus of the study presented here.

Tree species information is often a crucial parameter in forest
inventory, for ecosystem models, or for forest management
(Terryn et al., 2020). There have been several successful attempts
to determine tree species solely based on structural attributes
from high-resolution ground-based LiDAR data. While some
studies used selected measures describing tree architecture to
predict the species (Åkerblom et al., 2017; Terryn et al., 2020),
others used bark characteristics (Othmani et al., 2013) or
combinations of several selected structural measures like tree
height, leaf area index, branch angle (Lin and Herold, 2016).
In the latter study, combinations of as many as ten structural
features proved very successful when predicting the tree species
from 3D data. Some studies attempted the species classification
task using deep learning techniques. For example, Guan et al.
(2015) applied deep learning methods in order to classify tree
point clouds collected using mobile laser scanning data in
the roads of Xiamen City, China. Their algorithm included
preprocessing steps, for example, ground points from the road
surface were removed from the 3D representations. Trees
were then individually segmented and the algorithm extracted
geometric structures, more precisely waveform representations,
of the single trees, to classify each individual using a support
vector machine classifier. This strategy was applied to ten
different tree species including 50,000 samples for training.
In order to test their algorithm, they used more than 2000
tree individuals covering the same ten species and attained

1https://greenvalleyintl.com

a classification accuracy of 86.1% (Guan et al., 2015). Terryn
et al. (2020) also used support vector machines to classify
tree species with mean test accuracies of around 80%. The
latter study reported difficulties due to increased intra-species
variability caused by size differences of the sampled trees as
well as due to convergent structural traits across species for
individuals of the same canopy class and shade tolerance group
(Terryn et al., 2020).

The recent surge in availability of 3D models has led to various
advancements in the development of 3D classification models (Qi
et al., 2016). Several different approaches to process 3D objects
like chairs vs. tables exist, including direct use of unordered
point clouds, or using artificial neural networks that work on
volumetric object representations (Maturana and Scherer, 2015;
Ben-Shabat et al., 2017; Qi et al., 2017a,b). While there are
neural networks that are able to classify 3D point clouds with
promising accuracies, compared to 2D image classification, the
results are still unsatisfactory. The reasons for that are diverse.
One major and recurrent problem is the unordered nature of
point clouds, as differently ordered points still depict the same
point cloud, resulting in N! possible representations of the same
point cloud (N = number of points). Another common problem
when trying to accurately predict species from point clouds is
that point clouds depict objects that usually differ in size. In
the particular case of 3D point clouds of trees from terrestrial
laser scanning there is the additional problem of a rather small
sample size in terms of tree number in most studies. In contrast,
airborne laser scanning (ALS) campaigns may produce point
clouds of hundreds or thousands of trees, and some pioneering
studies reported successful classifications of tree species directly
from the point cloud (Budei et al., 2018). Classifications of
deciduous/coniferous trees were also successful using airborne
data (Hamraz et al., 2019). First approaches from mobile laser
scanning have been mentioned above, but only for urban trees
(Guan et al., 2015). With regard to TLS, Zou et al. (2017)
introduced an approach for species classification that reached up
to 95.6% accuracy, using automatically extracted individual 3D
tree point clouds that were transformed into 2D images before
classification into four different species. Similarly, Mizoguchi
et al. (2019) performed a transformation of 3D point clouds into
images in order to facilitate classification tasks based on the bark
surface of two species. They reached classification accuracies also
often greater than 90%. Despite these promising results, in a
recent study, it was argued that 3D to 2D transformations come
with the cost of a considerable loss in 3D structural information
(Xi et al., 2020).

This seems intuitively right, but 2D data is not only processed
much faster than 3D data, most classification algorithms directly
using raw point clouds also achieve considerably worse results
than e.g., 2D image classification (Ben-Shabat et al., 2017; Qi
et al., 2017a,b). Therefore, it is interesting to explore the 2D
classification approach further.

Convolutional Neural Networks (CNN), first introduced by
LeCun et al., 1995, are particularly suited for image classification,
as each neuron in the network is only connected to a limited
number of other neurons (sparse connectivity). Furthermore,
CNNs share parameters efficiently (Goodfellow et al., 2016). In
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contrast to using raw point clouds, images are regularized input
data, as they are easily standardized to have the same amount of
pixels to be evaluated. The problems that come along with having
to be invariant to N! permutations are thus mitigated.

Additionally, the analysis of regions that lie adjacent to one
another is much simpler in an ordered 2D environment. The
ordered nature of images is perfectly exploited by CNN’s, as
“subpictures” of the input images are taken and connected (via
kernels) to single elements of matrices in the following layer,
connecting only adjacent pixels in this layer.

The vulnerability of the CNN approach to aspects such as
size and position of objects in the images is thus reduced
(LeCun et al., 1998), allowing easier analysis of positional and
dimensional pattern when compared to the point clouds. The
analysis of neighboring regions is intuitively much more difficult
in 3D where the same region can be represented in N! different
ways. In case of trees, such variations include the position of
different branches or the curvature of the stem. When looking
at single batches of images much more compressed information
is provided when compared to looking at batches of 3D point
clouds, as adjacent pixels are more correlated than pixels further
apart (Raschka and Mirjalili, 2019).

Motivated by the above, we tested the performance of an image
classification approach based on CNN with the aim to classify
seven tree species from 2D representations (images) of 3D point
clouds. We were particularly interested in how the approach
would perform with and without artificially increased training
data size, which we created through “augmented” (slightly
altered) images. This issue may be particularly important for
studies that only provide a small sample of 3D point clouds
per species. For comparison of our findings with an existing
point cloud-based approach, we also applied the PointNet-
approach to our 3D data.

MATERIALS AND METHODS

Laser Scanning and 3D Tree Point
Clouds
3D tree point clouds used in this study (n = 690) originated
from several laser scanning campaigns conducted in the last
decade. All scans were captured in forest sites located in Germany
and the United States (Oregon), including managed as well as
unmanaged forests (National Parks). The sampled sites represent
a large variety in soil conditions, climatic characteristics, and
management regimes. All scans were made with a Faro Focus 3D
120 (Faro Technologies Inc., Lake Marry, FL, United States) or
a Zoller and Fröhlich Imager 5006 (Zoller and Fröhlich GmbH,
Wangen i.A., Germany). Details on the devices, scan settings, and
environmental conditions at the various studies site are provided
in the original studies cited in Table 1. However, some key
information is given in the following for a better understanding
of the data used.

The angular scan setting was the same for all scans (0.035◦
or 10285 points per 360◦) and for both scanners. Minimal scan
distance 0.6 m and 1 m for the Faro and Imager, respectively.
Maximum scan distance was 120 m for the Focus 3D and

79 m for the Imager 5006. All trees were placed within the
actual scan ranges of the scanners (never closer, never further
away). However, the scanner-to-tree distance differed among the
trees since all trees were separated from multi-scan approaches
covering larger forest areas. There were always at least four (max.:
17, mean: 7) scans capturing a tree form varying directions and
distances. Naturally, co-registered point clouds had a notable
variation in point cloud densities due to the different amounts
and distances of scans contributing to the point cloud of an
individual. Since low-resolution images were created from the
point clouds in the following (see next chapter), we dispensed
further point cloud standardization based on point cloud density.
In fact, point cloud density was much larger in all cases than what
could be depicted in the images made from the point clouds.
Therefore, the below described conversion of the point-clouds
into low-resolution images resulted in a drastic standardization in
both, resolution and density of the data before it was used further.

The beam footprint of the two devices was below 1 cm up to
a distance of 31.82 m for the Imager and 38.75 m for the Focus,
respectively. We therefore assume the effect of footprint size to be
neglectable in the data.

Those datasets that were not published so far originated from
two different studies conducted in Germany (see details provided
in Table 1). For the present study, we ignored effects of different
origins of the trees and assumed the scans comparable from the
two scanner models. Despite almost identical scan settings it is,
however likely, that the two scanner models and the variable
scan design in the field (incl. different numbers of scans per tree)
resulted in some specific characteristics of the point clouds, for
example different amounts of stray points and different point
densities, as already mentioned. To further standardize the data,

TABLE 1 | Overview on the datasets used in this study with the number of tree
point clouds per species, reference to the original studies for more detail and the
scan devices used.

Species Number of trees Original study Scanner

Beech 163 Seidel et al., 2019 Z + F

Metz et al., 2013 Z + F

Seidel et al., 2011 Z + F

+unpublished data1 Faro

Red oak 100 Burkardt et al., 2019 Faro

Ash 39 Seidel et al., 2011 Z + F

Metz et al., 2013 Z + F

Seidel et al., 2019 Z + F

Oak 22 unpublished data2 Faro

Douglas Fir 183 Seidel et al., 2016 Faro

+unpublished data1 Faro

Spruce 158 Metz et al., 2013 Z + F

+unpublished data1 Faro

Pine 25 Metz et al., 2013 Z + F

+Unpublished data1 Faro

Total 690

1Data from research sites of the Research Training Group 2300 (https://www.uni-
goettingen.de/en/574316.html).
2Data from the DE5 research site introduced in Pretzsch et al., 2020.
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FIGURE 1 | 2D representations of 3D point clouds of an exemplary tree of each studied species. From left to right: Sessile oak (Quercus petraea L.), European ash
(Fraxinus excelsior L.), Norway spruce (Picea abies L.), Scots pine (Pinus sylvestris L.), red oak (Quercus rubra L.), European beech (Fagus sylvatica L.), and
Douglas-Fir [Pseudotzuga menziesii (Mirbel) Franco]. Trees are in scale (see scale bar on the right).

all scans were post-processed and filtered for erroneous points
as described in the original studies, which included filters for
isolated points, points with unclear reflection pattern (too dark,
too bright) and points resulting from split laser beams. The
softwares provided by the manufacturers of the two scan devices
automatically removed all these point and we used the standard
settings provided in the Faro Scene software (Faro Technologies
Inc., Lake Marry, FL, United States) and the Z + F lasercontrol
software (Zoller und Fröhlich GmbH, Wangen, Germany).

In a next step, each tree individual was manually separated
from the forest point cloud using 3D visualization software
as described in Metz et al. (2013). To do so, Scans obtained
from the Faro Scanner were processed using CloudCompare
(www.danielgm.net) and scans obtained with the Imager 5006
were processed using Leica Cyclone software (Leica Geosystems
AG, Heerbrugg, Switzerland). All individual tree point clouds
were exported as 3D point clouds in xyz-file format for further
processing. An overview of an exemplary tree for each species
considered in our study is provided in Figure 1.

Data Processing
Typical convolutional network architectures require highly
regular input data formats like those of 2D grids or 3D voxels
to perform weight sharing and other kernel optimizations. To
enable the use of image recognition and classification approaches,
we transformed the 3D point clouds into image representations.
2D representations in the form of images are ordered by nature,
since a different pixel arrangement does not lead to the same
representation of the object. Also, the different sizes of the
matrices do not play a role in images because the size of the
images is defined by the chosen number of pixels and can be
set identically for all images. To transform point clouds into
images we plotted a randomly selected sample of 6,000 points

from each tree’s point cloud to create a scatterplot. In this
approach, caution is advised since small trees may be represented
in more detail than large trees if size differences are profound.
Therefore, we compared only adult forest trees. The scatterplot
was then saved as an image with 150 × 100 pixels which are
rather large images for image classification problems. Common
image sizes from popular benchmark datasets were 28 × 28 or
32 × 32 pixels (Deng, 2012). We tested differently sized images,
but found that having less pixels in the images led to poor
representations of the trees.

For each tree’s point cloud we repeated the process for different
viewing angles (rotation in the xy-plane, see Figure 2 for an
example) to minimize the information loss of changing from a
3D- to a 2D representation.

The parameters to be determined were therefore the number
of “screenshots” per tree and hence the degree of rotation after
which a new image should be produced and the pixel size of the
saved images. In order to avoid oversimplifying our dataset and
thereby inducing overfitting into our model, we chose a fairly
conservative approach of generating ten 8-bit grayscale images
per point cloud, as illustrated in Figure 3. Since the scatterplots
had constant marker-sizes for points throughout the 3D space
(with filled circular markers of fixed size independent from the
viewpoint on the scatterplots), the 256 different gray values of
the 8-bit images were used to reflect locational differences (lighter
gray values for points further away).

Unfortunately, the dataset was not balanced with regard to
the number of samples per tree species. As it was established
that imbalanced datasets can have a significant negative impact
on training classifiers (Japkowicz and Stephen, 2002), we needed
to adjust the dataset when trying to classify all subspecies. We
generated additional tree images for those species that were
underrepresented, such as European ash, Scots pine, Norway
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FIGURE 2 | 3D scatterplots of an exemplary beech tree from two different perspectives (180◦ of rotational difference in the xy-plane).

FIGURE 3 | Illustration of augmented point cloud views on the beech tree shown in Figure 2 from ten different viewing angles with rotations of the point cloud
around all three axis combined. Additionally, we applied small vertical and horizontal shifts, added Gaussian noise, image sharpening and a change of contrast but
those are hardly notable in the images.

spruce and Douglas-fir. To do so, we made use of classical data
augmentation techniques. The datasets were thereby extended
with newly generated, plausible examples. The transformations
we applied were a weak rotation, a small vertical and horizontal
shift, added Gaussian noise, image sharpening and a change of
contrast. Those techniques were applied to all species, but we

enhanced the number of underrepresented trees more severely.
We did not try to create a completely balanced dataset as we
would either have to delete additional trees, thus reducing the
size of the dataset further, or create a large amount of images
from the more scantily available species, thereby reducing the
datasets variance and risking oversimplification of the dataset.
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We conducted a strict split of training and test data prior to data
augmentation in order to avoid any overlap between training data
and those images used for testing the approach. Each tree’s images
were either completely in the training dataset or completely in the
test data based on a random assignment of individuals.

Image Classification Using a
Convolutional Neural Network
We chose a fairly simple and easy to implement network
architecture, closely resembling the LeNet 5 architecture
introduced in LeCun et al. (1998). We implemented the network
using Keras (Chollet, 2015).

The network consists of four convolutional-, four
maxpooling- and two dropout layers. Across the entire model,
we used a fixed kernel size of 3 × 3. The kernels were all applied
to the images in small 2D windows. The chosen filter size seems
rather small for the large size of the input images of 150 × 100
pixels. However, the 5× 5 filters used in LeNet 5 did not perform
as well as the 3 × 3 filters. The output of a convolutional layer,
consisting of multiple kernels, are multiple feature maps. These
maps are two dimensional arrays. Throughout the complete
network we used the Rectified Linear Unit (ReLU) activation
function [f (x) = max(x, 0)].

The 150 × 100 input images were fed into the first
convolutional layer using eight filters with a stride size of one.
The first convolutional layer is followed by the first maxpooling
layer with receptive fields of size 2 × 2 and a stride size of one
pixel and the purpose of shrinking the size of the respective
feature map and reducing the complexity of the model (O’Shea
and Nash, 2015). Furthermore, positional invariance over local
regions is enabled.

Although images do not induce the same problems as
unordered point clouds, it is desirable to be invariant to certain
positional invariances in the images. In the maxpooling layers,
the feature maps are processed one small field at a time. The
elements of one field are pooled using the maximum function,
as Scherer et al. (2010) found that maxpooling can lead to faster
convergence. The subsequently following second convolutional
layer consists of sixteen 3 × 3 filters and is again followed by a
maxpooling layer. The third convolutional layer consists of 32
3 × 3 filters and is followed by the first dropout layer. The 0.3
dropout layer had the purpose of reducing overfitting problems

and in line with Hinton et al. (2012) drastically improved
the model’s performance. Generally, dropout has the effect of
forcing units within a layer to probabilistically take on more
or less responsibility for given inputs. Feature detectors were
deleted during training (Baldi and Sadowski, 2013) with the
predetermined probability of 30%. To compensate the loss of
these feature detectors, the remaining feature detectors needed
to be adjusted to obtain continuously accurate prediction results,
thus successfully generalizing the given input images. The 0.3
dropout layer was followed by the last convolutional layer of 64
3 × 3 filters. We subsequently flattened the 64 feature maps and
led them into a fully connected layer consisting of 128 neurons.
The fully connected layer was followed by the second dropout
layer, this time deleting feature detectors during training with
a probability of 50 percent. The last fully connected layer in
our model, the classification layer, has seven output units, as we
classified seven different tree species.

For the final output layer, we used a different activation
function, namely the softmax activation function which
transforms the input vector to a probability vector. Thus, we
used the commonly used cross-entropy loss function, strongly
penalizing bad predictions (Géron, 2017) and optimized the
models loss using the Adam optimizer.

The models’ output were thus specific probabilities for each
tree, expressing the certainty for a label prediction (Buduma and
Locascio, 2017). The accuracy of the model was evaluated with
an independent test dataset. From the full set of trees, some
trees and the corresponding images were randomly selected for
testing (Table 2). The species of each tree in the test dataset was
predicted with the model and compared to the actually observed
tree species. To obtain a unique classification, the species with the
highest probability was always selected.

For comparison with an existing approach, we also tested
the performance of the PointNet approach on our point clouds.
While the original PointNet approach is based on 1024 points per
input point cloud, we decided to use a higher number of points
for the difficult task of classifying tree species. We were able to
work with randomly picked number of 2048 points from each
trees point cloud based on our computational resources. As the
patterns and shapes that make the point cloud trees recognizable
are more likely in the treetop, we decided to cut of the lowest
30% of points. Although this appears to be a lot, only about ten
percent of the absolute height of the trees was actually cut, as the

TABLE 2 | Number of images created through rotational views on the point clouds as well as added images through the augmentation.

Species Number of
trees

Number of
images

Number of images
after augmentation

Number of images for
training after augmentation

Number of images for
testing after augmentation

Beech 163 1,630 1,630 (unchanged) 1,280 350

Red oak 100 1,000 1,000 (unchanged) 810 190

Ash 39 390 790 720 70

Oak 22 220 620 580 40

Douglas Fir 183 1,830 1,830 (unchanged) 1,460 370

Spruce 158 1,580 1,580 (unchanged) 1,270 310

Pine 25 250 650 600 50

Note that images of an individual tree are always all in either training or testing data (train-test-split), never mixed.
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FIGURE 4 | Confusion matrix of the species classification with image augmentation applied. Shown are the classification cases in decimals (times 100 = percent).
The matrix is to be red from left to right (row wise) only.

point density is naturally higher in the lower parts of the trees.
This yielded significantly more recognizable representations of
the trees, at least for the human eye. To increase the sample size,
we repeated the random pick of points ten times per tree. Finally,
a strict train-test-split was conducted again.

RESULTS

We successfully transformed the 3D point clouds into images
by creating images from different perspective views on the
point clouds. After image creation from ten perspectives per
tree and additional image augmentation for underrepresented
tree species, our data consisted of 4040 (50%) deciduous and
4060 (50%) coniferous tree images, with some images used for
training and the remainder used for testing (see also Table 2).
For comparison, Table 2 also shows the number of images
used for testing the performance of the CNN approach without
image augmentation.

Tree species classification based on our approach had an
overall accuracy of 86.01% with augmentation applied. The
confusion matrix (Figure 4) shows that the model very accurately
classified Douglas-Fir trees (93% correct), Scots pine trees (92%
correct), European beech trees (94% correct), and to some
extent also Norway spruce trees (84%) and oaks (82%). The
model was less accurate in the prediction of red oaks (63%)
and ashes (77%).

With no augmentation applied, the overall accuracy dropped
to 80.2% (Figure 5) with accuracies particularly dropping for
those species with small initial sample sizes. Oak dropped to
68% accuracy, ash to 64% and pine to 68%. Surprisingly, for red
oak, an increase from 63 to 81% accuracy was observed in the
unaugmented dataset.

When it comes to confusion in the classification, it was
found that for European beech confusion mainly occurred with
European ash, while it was the other way around for ash (mostly
confused with beech). Both species were also confused with oak
and for European beech some confusion occurred also with
Norway spruce. For Douglas-Fir and Norway spruce, we found
that confusion mainly occurred both ways between these two
species. Pine was in 6% of the cases misclassified as beech and in
rarer cases as Douglas-fir (2%). Finally, red oak misclassification
occurred with all other tree species, mostly though with other
deciduous species (beech: 16%; oak: 6%; ash: 11%) and only in
5% of all cases with coniferous species (Douglas-Fir: 2%; spruce:
1%; pine: 2%).

Without augmentation, we observed greater confusion of
species with small sample size (pine, ash and oak) with red oak
and among each other.

Based on the PointNet approach, we did not achieve
competitive accuracies. Classification accuracy was 23% for
beech, 43% for Douglas-Fir, 20% for oak, 0% for ash and pine,
79% for spruce and 83% for red oak. The confusion matrix for
the results obtained with PointNet is shown in Figure 6.
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FIGURE 5 | Confusion matrix of the species classification without image augmentation. Shown are the classification cases in decimals (times 100 = percent). The
matrix is to be red from left to right (row wise) only.

DISCUSSION

When dealing with LiDAR-based tree point clouds, classification
of tree species is difficult since characteristics such as the tree
bark or leaf structure, which are often used for classifications
based on the human eye, are not necessarily available from a
laser scan. While the bark structure may be a useful feature
for species identification in very close-range scans (cf. Othmani
et al., 2013; Mizoguchi et al., 2019) it may not appear in
required detail at greater scanning distances. We are also not
aware of studies that utilized solely leaf characteristics for tree
species classification from laser scan data, even though leaf area
index, a trait of all leaves together rather than individuals, was
used in a pioneering study (Lin and Herold, 2016). In fact,
leaf information from point clouds was denoted as “trivial” for
species classification tasks (Xi et al., 2020), since classification
should not depend on seasonality in the data (Hamraz et al.,
2019). Furthermore, the spatial resolution of many laser scanners
is not suitable to address detailed morphological differences
among leaves. Hence, leaves, just like the bark, seem to
be rather difficult to use for species classification from data
obtained via terrestrial, mobile or airborne laser scanning in an
operational way.

For these reasons, we decided to follow some pioneering
studies by making use of the total tree architecture rather than
specific structural elements. Puttonen et al. (2011) reported an
accuracy of 65.4% when using LiDAR data from mobile laser

scanning for tree species classification. Almost one decade later,
Xi et al. (2020) conducted a benchmark test on the classification
performance of several widely applied deep learning and machine
learning algorithms that can be used for tree species classification
and reported accuracies between 78 and 96% for nine tree
species. Since the direct use of point clouds is computationally
demanding, we followed a different approach based on image
representations of the point clouds.

The overall accuracy of our approach was promising (86%)
and we argue this is because the transformation of 3D to
images enabled us to make use of the strong, already existing
image classification techniques based on CNNs. In an attempt to
compare our results from the CNN approach to the performance
of the point-cloud based PointNet approach, we failed to achieve
competitive results from the latter, all species considered. The
small sample sizes for oak, pine and ash (<40 trees) may explain
the bad performance for these species. For beech and Douglas-
Fir the accuracies were low despite the larger sample sizes,
particularly due to misclassification as spruce (see Figure 6).
Overall, all tree species showed great confusion with spruce in
the PointNet approach. Only for spruce itself and for red oak
the PointNet approach yielded results in the range of the CNN-
based approach. We have no explanation for the “attraction” of
spruce or the high accuracy in the classification of red oak from
the 3D data. However, the point cloud-based approach required
a much greater computational effort and showed an overall weak
performance on six out of seven tested species.
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FIGURE 6 | Confusion matrix of the species classification with PointNet based on the point clouds. Shown are the classification cases in decimals (times
100 = percent). The matrix is to be red from left to right (row wise) only.

In contrast, we see great potential in the application of the
CNN approach, particularly as it allows for additional image
augmentation, which can strongly increase the sample size of
the training data. This is crucial for small samples, like those
for pine, ash and oak in our study. Such small sample sizes
are not uncommon for terrestrial laser scanning campaigns in
general. The observed overall difference in classification with and
without image augmentation was 6% and largely attributed to
a profound loss in classification accuracy of tree species with
small sample sizes. While this clearly indicates the benefit of the
augmentation approach, we also observed a surprising increase
in accuracy for red oak (18%), a species that was not directly
affected by the augmentation (no images augmented at all). When
comparing the confusion matrices (Figures 4, 5) we can see
that augmentation resulted in less confusion of red oak with
ash and also with beech. A reduced confusion of red oak with
ash is likely directly associated with the very low number of
ashes in case of no augmentation and hence a reduced intra-
species variability in the data of ash. The observed reduction of
confusion of red oak with beech cannot be directly explained
with augmentation, since images of neither of the species
were augmented. While it is difficult to associate differences
in prediction accuracies of two different CNNs directly to a
specific cause, we hypothesize that in our case the differences
are most likely attributed to a different training data set picked
during the random train-test-split. If datasets are small (red
oak = 100 trees) the effect of randomly picked training data can

be fairly large, in our case a reduction in confusion of red oak
with beech of 9%.

In general, we found that if the input data (of a given class;
here: species) for the training of the CNN contained trees from
a broad spectrum of growing conditions (here: red oak and
beech) and the training dataset was rather small at the same
time, classification success rates were lower compared to other
species. Varying site conditions, management approaches, stand
ages, and stand densities in each location resulted in different
phenotypes of trees of the same species, but those trees were
of course assigned to one class (here: red oak). This affects the
accuracy of each species’ classification differently, since each
species’ data originated from a varying amount of study sites and
varying degrees of heterogeneity among the study sites. However,
despite the small training data sample size of pine, this species was
classified with high accuracy. We argue, this is because all Scots
pine trees originated from a single study site with homogenous
growing conditions for all trees.

Another reason for a confusion during the classification may
be that species have a rather strong morphological resemblance.
For example, Douglas-Fir was confused with Norway spruce
and vice versa, which seems reasonable given the similarities in
overall tree shape. Again, the small sample of pine trees was likely
morphologically homogenous enough to allow for a very high
classification accuracy despite small data size. This indicates a
low variability in our dataset of pine trees, which is in contrast
to that of beech (many different kinds of stands), Douglas-fir
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(Germany and United States) or red oak (ten different sites
in Germany; cf. Burkardt et al., 2019). While the large sample
sizes of these species may have compensated the negative
effect of a large variety of tree shapes within a class, red oak
classification accuracy was still rather low (Figure 4). Here,
confusion occurred with all other species, but mostly with other
deciduous species. We argue that this can be explained with
the strong morphological differences among the observed 100
red oak trees, originating from ten different study sites (ten
individuals per cite) within different management histories and
distributed across Germany.

Considering the above, we see great potential for the approach
presented here. Image augmentation can be used to enhance
the dataset when sample sizes are small and the image-based
approach can be used whenever computational efforts must be
kept at a minimum.

We recommend using a standardized scan setting during data
acquisition, with both scan resolution and number of scans per
tree as constant as possible. Furthermore, it is advised to apply
identical post-processing steps (tree segmentation, filtering) to all
trees used in a study. We finally recommend to avoid applying our
approach to trees of vastly different sizes, such as juvenile trees
and mature trees at the same time. This may result in different
levels of detail represented in the images and consequently affect
the classification accuracy.

CONCLUSION

We conclude that the presented data transformation and image
classification methods seems to be a valid approach for classifying
3D point clouds of trees with regard to species based on
CNNs and image augmentation. We found that a classification
accuracy of 86% for the seven tested tree species was possible
despite small initial sample sizes and remarkable variation in
the morphologies within tree species classes. Only in cases
were both issues were present, namely a large within-species
morphological variability and a small sample size, we observed
lower classification accuracies. The PointNet approach used for
comparison suffered from the small sample size and did not yield
a competitive classification accuracy on our data, despite much
greater computational effort.

Our approach of removing one spatial dimension from the
initial data may come at the cost of a loss in characteristics

that may be helpful for the classification task. However, using
2D representations created from different perspectives on the
original 3D objects may have reduced such a loss of information.
At the same time, the capabilities of existing deep learning
algorithms with regard to 2D image classifications are remarkable
and became only available through the reduction in dimension.
Improvements of the classification accuracies for selected species
could likely be achieved when a larger dataset can be used for
training, since low accuracies were, with the exception of pine,
associated with small sample sizes. This leads to the conclusion
that small sample sizes are not necessarily a problem if the
properties of the object class (here the structure of pine trees)
are remarkable enough. Together with available automated tree
segmentation approaches, we see great potential for operational
use of the presented method in future forest inventories.
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