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In this study, we defined the target population of environments (TPE) for wheat breeding
in India, the largest wheat producer in South Asia, and estimated the correlated
response to the selection and prediction ability of five selection environments (SEs)
in Mexico. We also estimated grain yield (GY) gains in each TPE. Our analysis used
meteorological, soil, and GY data from the international Elite Spring Wheat Yield
Trials (ESWYT) distributed by the International Maize and Wheat Improvement Center
(CIMMYT) from 2001 to 2016. We identified three TPEs: TPE 1, the optimally irrigated
Northwestern Plain Zone; TPE 2, the optimally irrigated, heat-stressed North Eastern
Plains Zone; and TPE 3, the drought-stressed Central-Peninsular Zone. The correlated
response to selection ranged from 0.4 to 0.9 within each TPE. The highest prediction
accuracies for GY per TPE were derived using models that included genotype-by-
environment interaction and/or meteorological information and their interaction with the
lines. The highest prediction accuracies for TPEs 1, 2, and 3 were 0.37, 0.46, and 0.51,
respectively, and the respective GY gains were 118, 46, and 123 kg/ha/year. These
results can help fine-tune the breeding of elite wheat germplasm with stable yields to
reduce farmers’ risk from year-to-year environmental variation in India’s wheat lands,
which cover 30 million ha, account for 100 million tons of grain or more each year,
and provide food and livelihoods for hundreds of millions of farmers and consumers in
South Asia.

Keywords: genotype-by-environment interaction, response to selection, genetic correlations, multi-
environmental trials, pedigree-based predictions

INTRODUCTION

Among the world’s three most important staple food crops, wheat is grown on more than 215
million hectares (ha) worldwide, producing over 735 million tons (t) of grain (USDA, 2020). In
South Asia, wheat is consumed by more than 1.8 billion people and is grown on about 47 million
ha with an annual production of almost 145 million t (USDA, 2020). More specifically, India is the
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region’s largest wheat producer, with 30 million ha of wheat area
accounting for 107 million t of grain (USDA, 2020).

The International Maize and Wheat Improvement Center
(CIMMYT) annually develops and distributes improved
wheat germplasm to hundreds of partners worldwide, free
of charge in the form of targeted yield trials and observation
nurseries. Recipients grow the trials and nurseries, keep
promising lines for their breeding programs or for direct
release and are asked to return performance data that
are collectively interpreted and shared to guide further
breeding. The data reflect significant variations in growing
environments across years and locations and serve as an
input for CIMMYT wheat breeding, resulting in lines that
are diverse and specially selected for yield potential, disease
resistance, end-use quality, and climate resilience. Research
has shown that conditions at the CIMMYT wheat research
station near Ciudad Obregón, an irrigated desert farm in
northwestern Mexico, correlate with diverse wheat-growing
environments worldwide (DeLacy et al., 1993; Lillemo et al.,
2005) and, by controlling irrigation, create a simulation of six
selection environments (SEs) that represent major CIMMYT
target regions for wheat breeding and deployment in the
developing world.

As part of CIMMYT’s efforts to describe, measure, and
analyze genotype × environment (GE) interaction in the multi-
environment testing of wheat lines, Cooper and DeLacy (1994)
identified three areas: analysis of variance, indirect selection, and
pattern analysis. Pattern analyses in the form of classification
and ordination methods (Cooper and Hammer, 1996) involve
developing biplots for the first two or three principal components
for lines and environments to portray the relationships among
environments, whereby the representation of discrimination
among lines from the classification can be superimposed on
the low-dimensional space defined by the ordination. Statistical
applications by CIMMYT and partners to assess GE in extensive
international wheat trials found that CIMMYT’s main testing
location can be associated with various international sites
(Crossa, 1990; Crossa et al., 1991; Cooper et al., 1993a,b,c,d)
within certain mega-environments (MEs) that represent the
world’s major wheat-producing areas (Rajaram et al., 1994;
Braun et al., 1996).

A target population of environments (TPE) is a variable group
of future production environments. A TPE is composed of many
environments and future years or growing seasons. Naturally,
GE may result from relatively static and predictable variation—
for example, in soil or other conditions across the field—
and dynamic, unpredictable, and often significant temporal
variability—i.e., weather over different years.

The TPE delineations are based on climate, soil, and
hydrological characteristics and can also include socioeconomic
features, such as the resource levels of farm households. There
are also different ways to group trials and environments
into a TPE. Data from environmental sensors and satellites
can be used to develop stratified hierarchical cluster analyses
(Cooper and Hammer, 1996) of sites and thus identify
homogeneous environments wherein line performances will be
highly correlated.

SEs are where a breeder selects lines. The SE is identified as
predicting the performance in a given TPE, but the SE may not
itself belong to the TPE. To determine if lines tested in the SE
are useful to predict the performance of those in the TPE, it is
important to (1) compute the genetic correlations between the
lines in the SE vs. the same (or related) lines in the TPE and
show relatively high correlations between performances in both;
(2) screen lines in the SE, with the repeatability (broad-sense
heritability), where the SE is higher than the TPE; and (3) ensure
that the SE allows a large number of lines to be screened at a low
cost, such that the SE provides a high selection intensity.

In this study, we aimed to define TPEs for wheat breeding in
India using historical meteorological and soil data and to estimate
the genetic correlation, the direct and correlated response to
selection between the TPEs and the SE of Ciudad Obregón, the
prediction ability of the SE in Mexico, and the grain yield (GY)
gains in each TPE over time.

MATERIALS AND METHODS

Data
We used GY data from crop cycles 2001–2002 to 2016–2017
of Elite Spring Wheat Yield Trials (ESWYT) nurseries tested in
India and at the CIMMYT-Ciudad Obregón research station (27◦
37’ N, altitude 39 masl, average annual rainfall 330 mm). Trials
were conducted under five SEs:

(1) Beds with five irrigations (B5IR): Trials were grown on
raised beds with full (optimal) irrigation, meaning about
500 mm of available water and an optimal sowing date of
late November–mid December.

(2) Flat five irrigations (F5IR): Trials grown on the flat with
optimal irrigation and optimal sowing date.

(3) Beds with two irrigations (B2IR). Trials were grown on
raised beds with partial irrigation of about 260 mm of
available water and optimal sowing date.

(4) Flat drought (FDRT): Planted trials were grown on the
flat with about 180 mm of available water, creating severe
drought conditions, and optimal sowing date.

(5) Beds late heat (BLHT): Trials were sown in February, a non-
optimal planting month that subjects the crop to terminal
heat stress, and optimally irrigated.

The 41 trial locations across India (Table 1) provided 245 site–
year combinations. The ESWYT is distributed yearly on request
and consists of 49 genotypes plus a local check included by
cooperators at the trial site. The genotypes included are selected
after 2 or 3 years of testing at CIMMYT-Ciudad Obregón.
CIMMYT generates some 9,000 new wheat lines each year that
are tested between November and April under optimal conditions
(Stage 1) at the Ciudad Obregón station. From those, 1,000
selected lines are tested in six simulated environments (Stage
2) that include varying levels of drought and high-temperature
stress, as well as optimal conditions. About 250 lines from Stage
2 are advanced for further testing in three of the six simulated
environments (Stage 3). At that point, seed from the lines is also
multiplied in a Karnal bunt-free area in Mexico for use in ESWYT
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and other trials and nurseries. ESWYT entries change each year,
resulting in a lack of connectivity between years of evaluation.
Data are not provided for 2002–2004 because the trials were not
grown in the described SEs in those years.

Definition of the Target Population of
Environments
Daily data from 2003 to 2016 for nine meteorological variables
(MVs) for locations in India (Table 1) were obtained from the
NASA Langley Research Center (LaRC) POWER Project funded
through the NASA Earth Science/Applied Science Program. In
addition, nine soil-related variables (SVs) for each location were
obtained through the Soil Grids application of the International
Soil Reference and Information Centre. The MVs and SVs are
listed in Table 2. Each MV was averaged over periods of 20
days starting from November 23 each year and reaching 120
days. The starting date used was the median in the range of
planting dates in India.

For each location, 63 MV and SV variables were used for
principal component analysis (PCA) with the correlation matrix
of the data to infer the number of groups (TPEs) that explain
most of the variation. We then conducted hierarchical clustering
of the groups based on Euclidean distance, according to Ward
(1963). The cluster solution (k) was equal to the number of
groups identified in the PCA.

The TPEs were plotted on a map of India and interpolated by
fitting a Thin Plate Spline regression (Wood, 2003), with a model
to fit:

yi = f (xi) + εi (1)

where yi is the response variable, xi are covariates, f () is a
d dimensional surface smoothing function, and ε′is are model
residuals distributed as independent and identically distributed
random variables with mean 0 and variance σ2. Thin plate splines
were used to estimate f by finding the function g that minimizes:

‖ y− g‖2
+ λJmd(g) (2)

where y is the vector of data,
g =

(
g (x1) , g (x2) g (x3) , . . . , g (xn)

)
′, Jmd(g) is a

penalty functional that measures the change of g, and λ is
a smoothing parameter.

Trial Analysis in India Target Population
of Environments
After defining India TPEs using environmental data, we
performed a multi-environment trial analysis of GY by year
and TPE. The following model was used to estimate variance
components:

y = µ+Es+Rj+Rj(Es)+Gi+GEij+εijs (3)

where µ is the general mean, Es is the fixed effect of the
environments (s = 1, . . ., n), Rj is the random effects of
the replicates (j = 1, 2), Gi is the random effects of the
genotypes (i = 1,. . ., 50), GEij represents the random effect of
GE interaction, and εijk is a random residual assumed to be

independently, identically, and normally distributed (IID) with
mean zero and variance σ 2

e .
Additionally, we fitted another mixed model to include the

TPEs as a fixed effect with:

y = µ+TPEk+Gi+G∗TPEik+G∗Eis (TPEk)+Es (TPEk)+

Rj (Es)+SBl
(
E∗Rsj

)
+εijkls (4)

where TPEk is the fixed effect of the TPEs (k = 1, 2, 3), and
SBl represents the random effects of sub-blocks in the alpha-
lattice design (l = 1, . . ., 5), and the remaining terms are as
in Equation (3).

The broad-sense heritability (H2) of the trials across
environments in each TPE–year combination and across
environments, and TPE was calculated with Equations (5) and
(6), respectively:

H2
=

Vg

Vg +
Vge
ne +

Vr
nr × ne

(5)

H2
=

Vg + Vg∗tpe

Vg + Vg∗tpe +
Vge(tpe)
ne

Vr
nr × ne

(6)

where Vg represents the genotypic variance, Vge represents the
GE variance, Vr is the residual variance, and ne and nr are the
number of environments and replicates, respectively. In Equation
(6), Vtpe∗g represents genotype × TPE variance, Vge(tpe) is the
variance of the GE within TPEs.

Trial Analyses in Selection Environments
of Mexico
The trials conducted in the SEs were analyzed individually with
the following model:

y = µ+Rj+SBk(Rj)+Gi+εijk (7)

where µ is the general mean, Gi is the random effects of the
genotypes (i = 1, . . ., 50), Rj is the random effects of the replicates
(j = 1, 2), SBk denotes the random effects of the sub-blocks (k = 1,
. . .,5) assumed to be independently, identically, and normally
distributed (IID) with mean zero and variance σ2

sb(r), and εijk
is a random residual assumed to be IID with mean zero and
variance σ2

e . The results from this model were used to conduct
pedigree-based predictions.

The mixed model fit for the across-SE analysis was:

y = µ+SEs+Rj+R∗SBjk (SEs)+Gi+G∗SEis+εijks (8)

where SEj represents the SEs (s = 1, . . ., 5), and the remaining
terms are as in Equation (7).

The heritability of trials in SE in Equation (8) was estimated
with Equation (5), but replacing Vge with the genotype × SE
interaction and ne with the number of SE.
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TABLE 1 | Locations in India considered for the definition of Target Population of Environments (TPE) with Elite Spring Wheat Yield Trials (ESWYT) germplasm.

Description Institute name Latitude Longitude TPE

Chandpa_GKSPL Ganga Kaveri Seeds Pvt Ltd. 27.58 78.05 1

DWR_dplantbreedingg DWR 32.1 76.05 1

DWR_Karnal1 SKUAST-J 29.67 77.03 1

DWR_Karnal2 DWR 29.67 76.97 1

Hissar CCS Haryana Agricultural Univ. 29.17 75.77 1

Jalander_SB Bioseed Research India Ltd. 30.90 75.8 1

Ludh_BISA BISA 30.95 75.88 1

Mahyco MAHYCO 29.95 76.88 1

Naruana_MHS MAHYCO 30.2 74.93 1

Newdelhi_IARI IARI-Div. Of Genetics 28.58 77.2 1

NSL_Guargaon Nuziveedu Seeds Ltd. 28.62 77.07 1

Pantnagar G.B. Pant Univ. Of Agr. 29 79.5 1

PAU_Gurdaspur Punjab Agricultural University 32.03 75.4 1

PAU_Ludh Bioseed Research India Ltd. 30.93 75.87 1

Syngenta_Karnal Syngenta India Limited 29.63 75.1 1

Azadu_ATK C.S.S. Research Institute 26.47 80.4 2

BAU_Ranchi DWR 23.35 85.32 2

Bhagalpur Bihar Agricultural University 25.23 87.07 2

BHU Banaras Hindu University 25.3 83.05 2

Ghajipur S.D. Agricultural University 26.78 82.2 2

IARI_PUSA Univ. Of Ag. & Tech. 25.87 85.8 2

IRRS_Bilaspur Birsa Agricultural University 22.15 82.2 2

Pusa_BISA BISA 25.88 85.82 2

AFH_Pune Agharkar Res. Institute 18.07 74.35 3

Ankurrfk_Nagpur Ankur Seeds Pvt. Ltd. 21.15 79.15 3

ARI_Jaipur Agharkar Res. Institute 26.97 75.8 3

Dbotany Deemed University 27.98 78.97 3

GAU_Junagadh Junagarh Agricultural Univ. 21.5 70.48 3

GAU_Vijapur S.D. Agricultural University 23.58 72.75 3

Gokulwadi_Jalna Krishidhan Seeds Private Ltd. 19.85 75.88 3

Gwalior DWR 26.22 78.23 3

Hoshangabad Junagarh Agricultural Univ. 22.73 77.7 3

Indore IARI 22.62 75.83 3

ITC_Vidisha ITC Life Scs & Technology Ctr 23.52 77.82 3

Jab_BISA BISA 23.17 79.98 3

Jabalpur_LFJ JNKVV 23.15 79.97 3

KSPL_Ganhinagar Krishidhan Seeds Pvt. Ltd. 23.25 72.75 3

MPKV_Niphad Mahatma Phule Krishi Vidyapeet 20.1 74.1 3

RDW_ugarsugar Univ. Of Agr. Scs. 15.73 75.18 3

UAS_Dharwad Univ. Of Agric. Sciences 15.7 76.12 3

UGAR_SUGAR_FRF Univ. Of Agric. Sciences 15.43 75.12 3

Correlation Between Target Population
of Environments and Selection
Environment
Once we determined variance components by year, across sites
in TPEs, and across SE and averaged them across years, the same
models were fitted using the genotypes and the GE for TPEs as
fixed effects to make best linear unbiased estimations (BLUEs)
and subsequently calculate Pearson’s correlation coefficient
between each TPE–year combination and across SE–year
combinations. The respective estimation of genetic correlations

was then computed according to Cooper and DeLacy (1994):

rij =
pij√

h2
i × h2

j

(9)

where rij is the genetic correlation, pij represents the phenotypic
correlation between environments or groups of environments i
and j, and h2

i and h2
j are the heritability of environments or groups

of environments i and j, respectively.
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TABLE 2 | Meteorological variables (MVs) and soil-related variables (SVs) considered for Target Population of Environments (TPE) definition in India.

TPE

Type Variable Units 1 2 3

MV Average temperature at two meters ◦C 15.82 18.7 21.43

MV Maximum temperature at two meters ◦C 24.26 27.27 30.69

MV Minimum temperature at two meters ◦C 9.5 11.69 13.72

MV Cooling degree days ◦C-d above 0 ◦C 16.88 19.48 22.2

MV Dew point ◦C 0.65 6.18 4.24

MV Precipitation mm 12.76 7.83 4.37

MV Relative humidity at two meters In % 38.29 46.87 35.77

MV Clear sky insolation incident on a horizontal surface kW-h/m2/day −18.47 −13.12 7.68

MV Wind speed at two meters m/s 1.59 1.68 1.86

SV Available soil water capacity Volumetric fraction in % 15.2 13.12 8.72

SV Available soil water capacity until wilting point Volumetric fraction in % 20.4 22.87 27.5

SV Cation exchange capacity of soil cmolc/kg 14.47 18.75 35.5

SV Coarse fragments volumetric In % 5.467 7.75 15.4

SV Soil organic carbon density kg/m3 94.27 118.37 124

SV Soil pH in H2O pH 7.53 6.91 7.43

SV Clay content (0–2 µm) Mass fraction in % 25.2 30 40.4

SV Sand content (50–2,000 µm) Mass fraction in % 37.4 32.2 32.3

SV Silt content (2–50 µm) Mass fraction in % 37.4 38 27.5

Estimation of the Correlated and Direct
Response to Selection
Once the genetic correlation by year was estimated, and assuming
the same selection intensity in TPE and SE, the correlated
response to selection (CR) was then calculated following Falconer
(1952) and Searle (1965):

CR = r ×

√
H2
SE

H2
TPE

(10)

where r is the average genetic correlation (Equation 9) of years
of testing between TPEs and across SEs, H2

SE is the broad-
sense heritability across the SE, and H2

TPE is the broad-sense
heritability across sites of the TPE. Both heritability terms
in Equation (7) were averaged over years of testing in TPEs
and SEs. The correlated response (CR) measures the relative
efficiency of selecting indirectly for the TPEs by using the
information across SE.

The expected direct response to selection (DR) across sites
without considering TPEs, across SEs, and across sites in each
TPE was estimated with Equation (11), dividing the genetic
variance by the square root of phenotypic variance, disregarding
selection intensity (i = 1).

DR = i
Vg√

Vg +
Vge
ne +

Vr
ne × nr

(11)

where the variance terms represent the same as those in Equation
(5). The DR measures the estimated response in the TPE or across
SEs by directly selecting in those same environments.

Pedigree-Based Predictions of India
Target Population of Environments Using
the Mexico Selection Environment
We estimated the pedigree-based prediction accuracy of the
Mexico SE for the 2016 cycle of the ESWYT in each TPE. The
training population consisted of the lines in Stage 1 that were
selected for Stages 2 and 3 plus their subsequent evaluations in
the last two stages of yield testing in the SE. We also incorporated
the ESWYT data from each SE and TPE over 2010–2015. The
preceding gave a total of 3,599 unique lines and 22,872 line–year–
environment combinations.

We used three models to predict the performance of the wheat
lines at Indian sites of the TPE using Mexico’s SE.

Model 1 (AE)
This model incorporates random effects of the pedigree
information along with environments:

yij = µ+Ei+aj++ εij (12)

where Ei is the random effect of environment (TPE/SE–year
combination), assumed to be IID with mean zero and variance
σ2
E; aj is the random effect of lines with the pedigree information

we assume a ∼ MN(0, σ2
aA), where σ2

a is the additive variance
parameter, A is the additive relationship matrix derived from
pedigree, and MN stands for multivariate normal. The additive
relationship matrix was calculated with the R package pedigree
(Coster, 2012).
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Model 2 (AE-AxE)
We added the random effect of the interaction between lines and
environments to Model 1:

yij = µ+ Ei + aj + aEij ++εij, (13)

where AEij is the random effect of the interaction between
lines and environments, assuming that the joint distribution of
interaction vector aE ∼ MN((0, ZpAZ

′

p)
◦(ZEZ

′

E)σ
2
aE), where Zp

is the matrix linking the phenotypic entries with the pedigree
information, ZE is the incidence matrix of environmental effects,
and ◦ represents the Hadamard product between matrices to
impose the reaction norm structure on GE (Jarquín et al., 2014;
Pérez-Rodríguez et al., 2015).

Model 3 (AE-AxE-W-AxW)
Model 3 is an extension of Model 2 that incorporates an
additional random effect of MVs and their interactions with the
lines of each TPE.

yij = µ+ Ei + aj + aEij + tij + atij + εij, (14)

where tij =
∑

qWijqγq with W being a matrix of environmental
covariates and γq representing the effect of the environmental
covariates, which we assume as independent and identically
distributed random variables with mean zero and variance σ2

γ,
and we further assume that at ∼ MN(0, (ZpAZ

′

p)◦(WW
′

)σ2
aw)

(Jarquín et al., 2014; Pérez-Rodríguez et al., 2015).
In our implementation, phenotypic data and MVs were

centered and scaled to unit variance. The models were run
in the BGLR (Pérez and de los Campos, 2014) package for R
(R Development Core Team, 2020). The Pearson’s correlation
coefficient between the predicted and observed values in the
TPE were used as an indicator of the predictive ability of the
SEs for each model.

Grain Yield Gain Estimations in Target
Population of Environments
We used the BLUEs from Equation (3) to fit the reaction norm
model from Equation (12) with the additive relationship matrix
and then regressed the best linear unbiased predictions (BLUPs)
from Equation (12) for each TPE in India on the years when
ESWYTs were grown. The slope of the regression was taken as
the gain in GY in TPEs.

RESULTS

Definition of Target Population of
Environments
From the analysis of MVs and SVs, we obtained three main
clusters (TPEs) of locations (Figure 1) that explained most of
the variations (>70%) in the data set (Table 1 and Figure 2).
These TPEs tended to be concentrated in three main geographical
zones of India: TPE 1, representing the Northwestern Plain Zone
(NWPZ); TPE 2, the North Eastern Plains Zone (NEPZ); and TPE
3, the Central-Peninsular Zone (CPZ) (Figure 2). The respective
proportion of sites in each TPE above was 36.6, 19.5, and 43.9%.

Average temperatures were lowest in TPE 1 (about 16◦C)
and highest in TPE 3 (about 21◦C), with TPE 2 in between the
two (about 19◦C) (Table 2). Cooling degree days and dew point
followed a similar pattern (TPE 1 < TPE 2 < TPE 3).

The average accumulated precipitation during the period was
roughly 12.8, 7.8, and 4.4 mm for TPEs 1, 2, and 3, respectively
(Table 2). Average relative humidity was highest in TPE 2 (47%)
and recorded at 38 and 36% in TPEs 1 and 3, respectively. Clear
sky insolation incidence (kW-h/m2/day) was −18.47, −13.12,
and 7.68, for TPEs 1, 2, and 3, respectively. Average wind speed at
2 m height did not exceed 2 m/s in the three TPEs.

Regarding soil conditions (Table 2), the average available
soil water capacity was highest in TPE 1 (15%) and lowest in
TPE 3 (9%), whereas available soil water capacity at wilting
point was highest in TPE 3 (28%) and lowest in TPE 1 (20%).
The average cation exchange capacity was at its highest in
TPE 3 (35.5 cmolc/kg)—roughly double the values in the other
TPEs—a similar pattern was observed for coarse fragments
(TPE 3: 15%); TPE 3 also had the greatest soil organic carbon
density (124%), although the values for TPEs 2 and 1 followed
closely. Soil water pH ranged from 7.75 (TPE 1) to 6.92
(TPE 2). Soil texture compositions (clay-sand-silt) were fairly
balanced and differed slightly for TPEs, with TPE 3 having
more clayey soils.

Variance Components, Genetic
Correlations, and Correlated and Direct
Response to Selection
Average GYs across years and sites ranged from 3.7 t/ha (TPE
2) to 5.1 t/ha (TPE 1). The average GY across sites for India
was 4.7 t/ha, whereas the average GYs across years and SE were
7.1, 4.8, 3.7, 6.7, and 2.5 t/ha for B5IR, B2IR, BLHT, F5IR, and
FDRT, respectively.

The average of the variance components indicates that the
size of the G∗TPE variance relative to that of the G∗E(TPE)
was 7.3%. The size of the variance of G∗E(TPE) relative
to the genotypes (G) was 518% (Table 3). The size of the
G∗TPE variance was 38% of the G variance. The H2 estimated
from the average of the variance components was 0.72, and
the average DR estimated from the variance components was
0.18 (Table 3).

On the other hand, the relative size of the variance of
G in each TPE to that of the across-site analysis was 1.8,
2.4, and 1.1 times higher in TPEs 1, 2, and 3, respectively
(Tables 3, 4). The size of the G∗E variance in each TPE
relative to that of G in its respective TPE was 290, 184,
and 421% times higher. The average phenotypic and genetic
correlation between TPEs was low and medium size, respectively,
ranging from 0.26 to 0.31 (phenotypic) and 0.56 to 0.63
(genetic) (Table 5).

Regarding variance components across SEs (Table 6), the
variance of G is 2.3 times higher than that of G∗SE (Table 6).
Also, G is 3.3 times greater than the one across sites of the TPEs,
and its size relative to each TPE was 1.8, 1.4, and 3.1 for TPEs 1,
2, and 3, respectively (Tables 4, 6). The H2 estimated from the
average variance components was 0.73, which is about the same
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FIGURE 1 | Hierarchical clustering of Elite Spring Wheat Yield Trials sites in India based on meteorological and soil variables.

as the one across all sites in the TPEs, and the magnitude of H2 in
the SEs relative to TPEs 1, 2, and 3 was, respectively 1.2, 2.1, and
2.1 times higher. The estimated DR across SE was 0.28, which is
1.6 times higher than that of the DR across TPEs, whereas it was
1.6, 1.7, and 2.5 times higher than that of the TPEs 1, 2, and 3,
respectively (Tables 6, 7).

We ran the model across all sites in India, i.e., disregarding
TPE subdivision, and found that the average H2 was 0.2 and
the DR was 0.16. The average H2 for TPEs 1, 2, and 3
was 0.54, 0.39, and 0.38, respectively, whereas the respective
DRs were 0.17, 0.16, and 0.11 (Table 7). The average relative
selection efficiencies (CR) across SEs in each TPE were 0.6, 0.9,
0.4, and 0.5 for TPEs 1, 2, 3, and across TPEs, respectively
(Tables 3, 7).

Pedigree-Based Predictions
The proportion of additive variance relative to the total of
the prediction models for each SE ranged from 1.6 to 7.9%
(Table 8). The proportion of variance relative to the total (PVT)
for environments varied by SE, but it remained close to 90%
when the models did not include environmental covariable
data or their interaction with genotypes. Inclusion of MV data
reduced the PVT for the main effects of environments in all
cases, which was substantial for treatments B5IR (from 92.3 to
43.2%), F5IR (from 91.7 to 41.7%), and FDRT (from 89.7 to
59.9%). In all cases, the PVTs of GEs were lower than 10% and
ranged from 1.6 to 9.2% (Table 8). The PVTs of the MVs ranged
from 0.2% (BLHT) to 47.8% (F5IR). The reduction in residual
variance ranged from 34% (B2IR) to 56% (FDRT) in models that
included the GE.

The predictive correlations—that is, prediction accuracies—of
each SE for each TPE in the 2016 ESWYT cycle are shown in
Figure 3. SEs B5IR, B2IR, and FDRT were better predictors for

TPE 1. The predictive correlation of B5IR was higher for model
AE-AxE-W-AxW (0.28), whereas the predictive correlation of
B2IR was higher for model AE-AxE (0.36). No clear increase in
predictive correlation was observed for TPE 1 when MV data
were included in the model (Figure 3).

For TPE 2, in all SEs except for B5IR, the predictive correlation
increased when all available information was included in the
prediction model (Figure 3). The prediction accuracies between
B2IR, BLHT, F5IR, and FDRT and TPE 2 were 0.4, 0.24, 0.39,
and 0.36, respectively, for model AE-AxE, whereas for model
AE-AxE-W-AxW, respective prediction accuracies for TPE 2
were 0.45, 0.25, 0.46, and 0.4. For TPE 3, predictive correlations
with all SEs were positive (Figure 3). In all cases except B2IR,
the predictive correlation increased with the inclusion of GE
and/or MV data. The prediction accuracies for the AE-AxE
model between B5IR, B2IR, BLHT, F5IR, and FDRT and TPE
3 were 0.51, 0.36, 0.39, 0.29, and 0.19, respectively, whereas
for the AE-AxE-W-AxW, they were 0.51, 0.36, 0.39, 0.3, and
0.2, respectively.

Grain Yield Progress in Target Population
of Environments
The respective rates of GY gain for ESWYT germplasm in India
for TPEs 1, 2, and 3 were 118 kg/ha/year (Figures 4A,B),
46 kg/ha/year (Figures 4C,D), and 123 kg/ha/year
(Figures 4E,F). In all cases, the regression slope was significantly
different from zero (P < 0.0001; Figure 4). For TPE 2,
the R-squared of the regression was 0.07, providing a less
clear pattern (Figures 4C,D). The density distributions
(Figures 4B,D,F) depict the variation and progress of the average
GY for each TPE in India, which generally tended to be lower in
TPE 2 (Figure 4D) than in TPEs 1 and 3.
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FIGURE 2 | Location of Elite Spring Wheat Yield Trials sites within each Target Population of Environments (TPE) in India.

TABLE 3 | Variance components, phenotypic variance (VZ ), heritability (H2), genetic correlation (r), correlated response (CR), and direct response to selection (DR) of Elite
Spring Wheat Yield Trials (ESWYT) grown from 2001 to 2016 across sites and Target Population of Environments (TPEs).

Year ESWYT E(TPE) G G*TPE G*E(TPE) R(E) SB(E*R) Residual VZ H2 r CR DR

2001 22 4.0036 0.0783 0 0.1008 0.01097 0.0731 0.2612 0.10 0.77 0.25

2005 26 0.7807 0.0312 0.01168 0.1298 0.00358 0.05208 0.2705 0.07 0.62 0.42 0.41 0.16

2006 27 1.5786 0.0318 0 0.1981 0.0332 0.09257 0.201 0.05 0.60 0.55 0.49 0.14

2007 28 1.0941 0.0222 0.03947 0.1228 0.01797 0.03856 0.1703 0.08 0.79 0.47 0.50 0.22

2008 29 3.3262 0.0126 0 0.1749 0.02885 0.07857 0.09306 0.03 0.41 0.41 0.36 0.07

2009 30 0.5347 0.0169 0.00117 0.1189 0.00566 0.02894 0.108 0.03 0.59 0.54 0.49 0.10

2010 31 0.731 0.0303 0.01759 0.1847 0.00575 0.02445 0.2474 0.07 0.73 0.19

2011 32 2.4407 0.0443 0.00755 0.1826 0 0.07045 0.2638 0.06 0.80 0.70 0.57 0.20

2012 33 1.1673 0.0392 0.01684 0.2073 0.00638 0.03984 0.1878 0.07 0.80 0.51 0.47 0.21

2013 34 2.1213 0.0163 0.02693 0.28 0.05409 0.04214 0.2104 0.07 0.66 0.90 0.89 0.17

2014 35 0.6268 0.0344 0.0083 0.1122 0.00852 0.04085 0.1364 0.05 0.79 0.54 0.48 0.18

2015 36 0.632 0.0242 0.01403 0.1412 0.00112 0.03473 0.1841 0.06 0.68 0.28 0.24 0.16

2016 37 2.2357 0.022 0.00963 0.1416 0.02188 0.03929 0.2225 0.04 0.70 0.56 0.52 0.15

Average 1.6364 0.0311 0.0118 0.1611 0.0152 0.0504 0.1967 0.06 0.72 0.53 0.50 0.17

E, Variance of Environments (Sites); G, Genotypic variance; R, Reps; SB, Sub-blocks.
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TABLE 4 | Average variance components of Elite Spring Wheat Yield Trials (ESWYT) grown from 2001 to 2016 by Target Population of Environments (TPE).

TPE G E G*E R*SB(E) SB(R) Residual Average sites

1 0.056 1.342 0.164 1.405 0.232 6.8

2 0.075 1.074 0.138 1.611 0.094 0.167 2.5

3 0.033 1.855 0.139 1.954 0.202 5.1

G, Genotypic variance; E, Variance of Environments (Sites); R, Reps; SB, Sub-blocks.

TABLE 5 | Average phenotypic and genetic correlations between Target
Population of Environments (TPEs).

Phenotypic correlation

1 2 3

1 1 0.29 0.31

2 1 0.26

3 1

Genetic correlation

1 2 3

1 1 0.56 0.63

2 1 0.60

3 1

DISCUSSION

The characterization of targeted breeding regions by defining
TPEs is fundamental in designing strategies for any plant
breeding program (Atlin et al., 2000) and paramount for
CIMMYT, which seeks to develop wheat germplasm with
high and stable yields for smallholder farmers worldwide. In
South Asia—home to more than 300 million undernourished
people and whose inhabitants consume over 100 million tons
of wheat each year—92% of the varieties released contain
CIMMYT breeding contributions and half of the spring bread
wheat varieties are direct releases of CIMMYT breeding lines
(Lantican et al., 2016).

In the present research, we used available climate and soil data
to define three main TPEs in India, the largest wheat producer
in South Asia (USDA, 2020) and one of the main breeding
targets for CIMMYT. These TPEs coincided with the three main
geographical zones in India: TPE 1, representing the NWPZ;
TPE 2, the NEPZ; and TPE 3, the CPZ. This characterization
corresponds to data provided by the Government of India and
represents more than 28 million ha, which is equivalent to over
97% of India’s total wheat (Singh et al., 2019).

Based on the GY data (Figure 4) and the recorded minimum
temperature (Table 2), which is a critical parameter for wheat
production (Asseng et al., 2015), TPE 1 is associated with
optimum wheat-growing conditions, whereas wheat grown in
TPE 2 and TPE 3 is subject to stress caused by higher
temperatures or drought. Higher temperatures combined with
higher rates of relative humidity, as occurs in TPE 2, can cause
the development of leaf diseases other than rusts. Indeed, one

of the most important leaf diseases in NEPZ (TPE 2) is spot
blotch caused by the fungi Bipolaris sorokiniana, which can cause
significant GY losses (Devi et al., 2018). Similarly, given the lower
average temperatures in the NWPZ (TPE 1), yellow rust caused
by Puccinia striiformis f. sp. tritici is currently the most relevant
disease for that region, even though all three types of wheat rust
occur throughout India’s wheat-growing areas (Joshi et al., 2007).

Regarding soil characteristics, TPE 1 can be classified as a
loam type of soil, TPE 2 as clay loam, and TPE 3 as clay type
of soil (Soil Science Division Staff, 2017). In general, the soil
of the three TPEs can be considered of medium texture. The
cation exchange capacity of TPE 3 indicates a higher availability
of essential minerals for the plants than in TPEs 1 and 2 (Table 2).
The available soil water capacity was lower in TPE 3, which may
be due in part to the greater proportion of coarse fragments in
its soils (Table 2), meaning that wheat crops in this environment
may suffer drought stress more frequently. This can be aggravated
by the suboptimal irrigation common in TPE 3 and occasionally
in TPE 2 due to lack of water (Joshi et al., 2007).

CIMMYT target environment characterizations date back
to its precursor organization, the joint Mexico-Rockefeller
Foundation Office of Special Studies, which operated in the 1940s,
and were initially restricted to Mexico but became global with the
Center’s formal establishment in the 1960s. Target environment
definitions at that time were based on required traits, the
need for yield stability, and the diversification of production
systems. In the 1970s, 15 agroecological zones were defined. In
the 1980s, CIMMYT redefined those agroecological zones and
identified instead 12 wheat MEs, defined as broad, not necessarily
contiguous but frequently transcontinental, areas with similar
biotic and abiotic stresses, cropping system requirements, and
consumer preferences (Rajaram et al., 1994); six each for spring
and winter wheat growth habits. DeLacy et al. (1993) showed
that the major discrimination factors among MEs were latitude
and the presence/absence of stresses. Hodson and White (2007)
used geospatial criteria to refine ME definitions and found
that, in India, ME1 (high yield potential, irrigated) and ME5
(lower yield potential, irrigated, and temperature stressed) were
predominant. From our results, and given the geographical
projection reported by Hodson and White (2007), TPE 1 overlaps
with ME1 and TPE 2 with ME5, whereas TPE 3 relates to
ME4 (lower yield potential, drought stressed). The MEs can
be broad and transcontinental, making latitude a fundamental
factor, but we defined the TPEs in India at the regional level.
In fact, when ME1 was first defined in India, it encompassed
the NWPZ (TPE 1) and part of the NEPZ (TPE 2), whereas in
our analysis, these two regions appear to be different in terms of
climate and some soil characteristics (Table 2). Similarly, ME5
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TABLE 6 | Variance components, phenotypic variance (VZ ), heritability (H2) across selection environments (SEs), and direct response to selection (DR) of Elite Spring
Wheat Yield Trials (ESWYT) grown from 2001 to 2016 across SEs.

Year ESWYT G G*SE R*SB R*SB(SE) Residual VarZ H2 DR

2001 22 0.4496 0.15857 0.40665 0.65 0.56

2005 26 0.18293 0 0.09811 0.37411 0.28 0.66 0.35

2006 27 0.17917 0.06219 0.36282 0.2721 0.28 0.64 0.34

2007 28 0.05154 0.0706 0.14638 0.10379 0.08 0.63 0.18

2008 29 0.02129 0.05575 0.12668 0.07947 0.04 0.53 0.11

2009 30 0.03146 0 0.05682 0.10463 0.05 0.64 0.14

2010 31 0.1926 0.00927 0.18273 0.28 0.36

2011 32 0.03193 0.02453 0.06503 0.08938 0.06 0.58 0.14

2012 33 0.09795 0.06943 0.09896 0.04184 0.14 0.68 0.26

2013 34 0.02496 0.06268 0.08571 0.08912 0.05 0.48 0.11

2014 35 0.03325 0.02416 0.08932 0.07997 0.05 0.67 0.15

2015 36 0.02962 0.07571 0.08995 0.11402 0.06 0.53 0.12

2016 37 0.03387 0.04699 0.06042 0.05311 0.05 0.65 0.15

Mean 0.1046 0.0447 0.0839 0.1164 0.1531 0.14 0.73 0.28

G, Genotypic variance; E, Variance of Environments (Sites); R, Reps; SB, Sub-blocks.

TABLE 7 | Phenotypic variance (Vz ), heritability for the TPE (H2
tpe), genetic correlations (r), correlated response (CR), by selecting across selection environments and

direct response (DR) to selection in each Target Population of Environments (TPE).

TPE 1 TPE 2 TPE 3

Year ESWYT Vz H2
tpe r CR DR Vz H2

tpe r CR DR Vz H2
tpe r CR DR

2001 22 0.14 0.3 0.11 0.15 0.67 0.26 0.09 0.34 0.1

2005 26 0.11 0.54 0.65 0.72 0.18 0.06 0.64 0.57 0.58 0.16 0.10 0.2 −0.09 −0.16 0.06

2006 27 0.07 0.41 0.38 0.48 0.11 0.2 0.22 0.99 1.70 0.1 0.05 0 0.00

2007 28 0.06 0.57 0.39 0.41 0.14 0.72 0.44 0.84 1.01 0.37 0.10 0.58 −0.04 −0.04 0.18

2008 29 0.05 0.22 0.9 1.55 0.05 0.16 0.2 0.06 0.10 0.08 0.05 0 0.00

2009 30 0.04 0.46 0.42 0.50 0.1 0.16 0.2 0.99 1.79 0.08 0.06 0.33 0.14 0.20 0.08

2010 31 0.14 0.56 0.21 0.08 0.25 0.07 0.08 0.46 0.13

2011 32 0.12 0.69 0.99 0.83 0.24 0.08 0.14 0.45 0.92 0.04 0.09 0.63 0.63 0.61 0.19

2012 33 0.10 0.66 0.45 0.45 0.21 0.09 0.38 0.16 0.21 0.11 0.11 0.64 0.59 0.61 0.21

2013 34 0.14 0.64 0.82 0.71 0.24 0.12 0.06 0.99 2.86 0.02 0.08 0.18 0.7 1.13 0.05

2014 35 0.08 0.72 0.54 0.52 0.21 0.11 0.49 0.49 0.58 0.16 0.08 0.53 0.46 0.52 0.15

2015 36 0.09 0.66 0.32 0.29 0.2 0.2 0.65 0.03 0.03 0.29 0.10 0.17 0.13 0.23 0.05

2016 37 0.09 0.62 0.53 0.54 0.18 0.08 0.18 0.29 0.55 0.05 0.07 0.42 0.55 0.68 0.11

Mean 0.1 0.54 0.58 0.64 0.17 0.18 0.39 0.60 0.94 0.16 0.08 0.38 0.34 0.42 0.11

ESWYT, Elite Spring Wheat Yield Trials.

included also the CPZ, whereas in our analysis, this appeared to
be classified as TPE 3.

The average H2 in each TPE in all cases was lower than in
the SEs. Given that each ESWYT cycle varies from year to year,
estimations of GE variance that include not only the SE but also
the year effect are not possible due to the lack of connectivity
between cycles. Nonetheless, we have somewhat addressed this
constraint by analyzing various years of data consisting of “good”
and “bad” years in the SEs and TPEs; the year effect is also
implied in the pedigree-based prediction models. The average
H2 across sites in India considering TPE subdivision was similar
to that of the H2 across SEs owing to the fact that many more
environments are present across the TPEs than in the SE, and the
response of the genotype within the TPEs becomes G + G∗TPE,

thus passing this term to the numerator of the H2 formula and
so contributing to the response to selection by separating G∗TPE
from G∗E (Atlin et al., 2000).

The extent of the genotype-by-environment [G∗E(TPE)]
interaction variance was more than five times greater than that of
G across TPEs, whereas across SEs, the G∗SE variance was lower
than the G variance. Similarly, the average genotypic variance
was more than three times greater across SEs than across TPEs.
Furthermore, the size of G∗E in each TPE was substantially lower
when compared to the one across all sites in India [G∗E(TPE)],
which indicates that the subdivision in TPEs is meaningful by
reducing the extent of the genotype-by-environment.

Additionally, the fact that the variance of G increases
substantially within each TPE when compared with pooled
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TABLE 8 | Estimated variance components ( ± standard deviation of the estimator) from the pedigree-based prediction models for each selection environment (SE) in
CIMMYT-Obregón and their proportion of variance relative to the total (PTV) of the models.

Model PTV by model (%)

SE Componenta AE AE-AxE AE-AxE-W-AxW AE AE-AxE AE-AxE-W-AxW

B5IR VA 0.06 ± 0.003 0.05 ± 0.003 0.05 ± 0.004 3.4 3.0 7.9

VE 1.49 ± 0.409 1.56 ± 0.489 0.29 ± 0.127 92.4 92.1 43.2

VAE 0.05 ± 0.003 0.04 ± 0.004 2.8 5.3

VW 0.24 ± 0.096 36.3

VAW 0.01 ± 0.002 1.9

Vr 0.07 ± 0.001 0.04 ± 0.002 0.04 ± 0.002 4.2 2.1 5.4

B2IR VA 0.06 ± 0.006 0.05 ± 0.005 0.04 ± 0.006 3.8 3.2 3.0

VE 1.37 ± 0.437 1.31 ± 0.371 1.07 ± 0.362 88.1 86.6 75.4

VAE 0.07 ± 0.007 0.04 ± 0.006 4.7 2.7

VW 0.15 ± 0.082 10.6

VAW 0.03 ± 0.005 2.4

Vr 0.12 ± 0.004 0.08 ± 0.004 0.08 ± 0.004 8.0 5.4 5.9

BLHT VA 0.07 ± 0.006 0.06 ± 0.006 0.04 ± 0.006 7.4 6.2 4.0

VE 0.81 ± 0.241 0.76 ± 0.23 0.65 ± 0.202 80.6 77.8 74.6

VAE 0.09 ± 0.009 0.08 ± 0.008 9.2 9.6

VW <0.00 ± 0.001 0.2

VAW 0.03 ± 0.007 4.0

Vr 0.12 ± 0.003 0.07 ± 0.005 0.07 ± 0.004 12.0 6.8 7.6

F5IR VA 0.05 ± 0.004 0.04 ± 0.004 0.03 ± 0.004 3.0 1.6 2.4

VE 1.41 ± 0.493 2.13 ± 0.795 0.54 ± 0.324 91.7 94.1 41.8

VAE 0.04 ± 0.004 0.02 ± 0.004 1.6 1.9

VW 0.62 ± 0.42 47.8

VAW 0.02 ± 0.002 1.3

Vr 0.08 ± 0.002 0.06 ± 0.003 0.06 ± 0.003 5.3 2.7 4.8

FDRT VA 0.04 ± 0.003 0.03 ± 0.003 0.03 ± 0.004 3.3 2.1 3.6

VE 1.07 ± 0.338 1.42 ± 0.46 0.53 ± 0.195 89.7 90.9 59.9

VAE 0.07 ± 0.005 0.06 ± 0.005 4.6 6.6

VW 0.22 ± 0.095 24.1

VAW 0.01 ± 0.002 1.6

Vr 0.08 ± 0.002 0.04 ± 0.002 0.04 ± 0.002 7.0 2.3 4.2

aComponent: VA, Additive variance; VE, Environmental variance; VAE, Additive-by-Environment variance; VW, Environmental covariables variance; VAW, Additive-by-
Environmental covariables variance; and Vr, Residual Variance.

variance across all sites in India indicates that there is a part of G
that can be further exploited in each TPE. Altogether, these results
suggest that greater gains can be achieved by targeting selection
in the TPE than without TPE subdivision because of a higher
precision given that H2 disregarding the TPEs is substantially
lower than the one including the TPEs in the mixed model.
Although the size of the G∗TPE variance is smaller than that of
the G∗E(TPE), the size of G∗E(TPE) relative to G is substantial
(Atlin et al., 2000).

The observed phenotypic and genetic correlations between
TPEs suggest that line performance information from one TPE
can be used to make inferences about performance in others.
This result is useful in the potential design of testing strategies
for TPEs, although our results from the variance components still
suggest that response to selection can be greater if TPE-targeted
decisions are made from the data derived across SEs.

Regarding the CR, the results indicated that with TPE
subdivision, the efficiency can be higher in TPE 1 and TPE 2

than across India. The CR for TPE 3 was comparable to that of
the analysis across sites, but not higher. Ideally, for the CR to
be at its maximum, the H2 in the SE needs to be higher than in
the TPEs, and the genetic correlation needs to be close to unity
as possible; however, these conditions are not necessarily met
(Searle, 1965). Genetic correlations are highly influential in the
CR because its changes are directly related to the opportunities of
achieving an indirect response by selecting in the SE for the TPEs
(Cooper and DeLacy, 1994). In our results, the H2 in the SE is
higher than in TPEs, and the genetic correlations are, in average,
of medium magnitude, which altogether has permitted to make
genetic progress in the TPEs. It is important to note that, when
calculating the correlated response to selection (indirect selection
efficiency), it is assumed that the selection intensity in the SE is
the same as in the TPEs (Falconer, 1952; Searle, 1965) for which
the observed values may vary, considering that there is higher
selection intensity in the SE, going from an initial 9,000 lines to
the 49 lines finally included in each ESWYT.
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FIGURE 3 | Pedigree-based predictive correlations between selection environments at the CIMMYT-Ciudad Obregón research station and a Target Population of
Environments (TPE) in India for the 2016 cycle of the International Elite Spring Wheat Trial.

The results derived from the DR indicate that, in terms of
selection intensity (i), to achieve a selection response across
TPEs and in each of the TPEs similar to the one in the
SEs, i would need to be proportionally higher in each TPE
in relation to the SE. This is largely due to the fact that H2

in individual TPEs is lower than H2across SEs, so gains in
TPEs can be raised by improving TPE testing conditions, thus
increasing H2. One of the aspects that contribute to maintain
high-medium H2 in the SE and that are standard practices are:
the mechanized operations (planting, crop management, and
harvest), adequate management of the irrigation water including
drip irrigation systems, and a crop rotation strategy to uniformize
soil moisture during May–September prior to the wheat-planting
season in November.

In applying pedigree-based prediction models to assess the
predictive ability of SEs, a large portion of total variance was
accounted for by the main environmental effects (Table 5), which
in this case considers previous information of SEs and TPEs and
the TPE/SE–year combinations. In most cases, environmental
variance fell significantly with the inclusion of MVs, which
indicates this information contains, as expected, an explainable
proportion of the environmental variance and the year effect. The
SEs in which the MVs did not contribute to total phenotypic
variance were BLHT and B2IR, indicating that the major
source of variation within these SEs is given by the spatial
features of the environment rather than by year-to-year MV
variation. In agreement with previous findings, the inclusion
of the GE term in the prediction models and environmental
covariables generally tends to increase the prediction accuracy

of the models (Jarquín et al., 2014; Pérez-Rodríguez et al., 2015;
Cuevas et al., 2017).

Based on the pedigree-based predictions (Figure 3), TPE 1
is mainly associated with SEs B5IR and B2IR, and FDRT. The
SEs that displayed higher association with TPE 2 were B2IR,
F5IR, and FDRT, while B5IR, B2IR, and BLHT displayed higher
association with TPE 3. The patterns we found of correlated, and
direct, response to selection are being used to select germplasm
included each year in ESWYT, which is targeted to TPE 1 and
requires lines of normal maturity, rather than the early maturing
lines desirable for TPEs 2 and 3.

Previous findings have indicated that simulated SEs at
CIMMYT-Ciudad Obregón correlate with international sites and
that this has resulted in GY genetic gains in target regions
(Trethowan et al., 2002; Lillemo et al., 2004; Tadesse et al.,
2010; Manès et al., 2012; Crespo-Herrera et al., 2017). The
possibility of evaluating large numbers of lines for GY over
different SEs has created an opportunity to develop and adapt
germplasm for regions beyond the breeding site. This study
suggests expanding the scope of such opportunities. For instance,
thanks to CIMMYT’s collaboration with the Government of
India and financial support from the USAID Feed the Future
Innovation Lab on Applied Wheat Genomics at Kansas State
University, more than 500 wheat lines that undergo Stage 2
evaluation are now routinely tested at three sites, each in a
different India TPE, by the Borlaug Institute for South Asia (BISA
sites; Table 1).

Earlier testing of lines in TPEs, coupled with SE data, could
raise genetic gains in ESWYT germplasm (Sharma et al., 2012;
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FIGURE 4 | Grain yield (GY) progress and density distribution of Elite Spring Wheat Yield Trials (ESWYT) germplasm from 2001 to 2016 crop cycles in the Target
Population of Environments (TPE) in India. (A,B) GY progress and density distribution for TPE 1; (C,D) GY progress and density distribution for TPE 2; (E,F) GY
progress and density distribution for TPE 3.

Crespo-Herrera et al., 2017), since more information from the
TPEs could be available to make crossing and selection decision
of parental lines.

In general, the current breeding strategy justifies the indirect
selection in the SE for the TPEs, given the magnitude of H2, the
relative size of the G and G∗E variances, the magnitude of DR
and its implications on the selection intensity, and the fact that a
centralized breeding operation that has for a long term delivered
genetic gains to India is more resource efficient. Nonetheless,
current advances in statistical methods and selection tools may
permit a fine-tuning of the testing strategy, for instance, one

possible option is to evaluate Stage 1 lines in all the SEs to make
selections for Stage 2 evaluations, which also can be conducted in
both the SE and TPE. This change would require a modification
in trial designs and allocation of resources, as these are limited
in both the SE and TPE. Currently, the ESWYT germplasm is
tested in the TPEs after 2 or 3 years of testing at CIMMYT-Ciudad
Obregón. Hence, earlier information from the TPE can improve
the selection for the final ESWYT germplasm and consequently
the potential varieties that can be grown in the TPEs.

Based on our results, greater gains in GY were achieved in
TPE 1 (118 kg/ha/year) and TPE 3 (123 kg/ha/year) than in TPE
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2 (46 kg/ha/year) over the period we studied. ESWYT lines
are bred for optimal environments and show better adaptation
in TPE 1 and TPE 3. In TPE 2, yield gains are possibly
lower due to a shorter growing season with continuous and
terminal heat stress, where the germplasm requires some
degree of earliness to cope with heat stress (Mondal et al.,
2013). These germplasm requirements limit the adaptation of
ESWYT lines intended for optimal conditions where earliness
is not required due the crop cycle duration. Another annually
distributed CIMMYT trial, the International Heat Tolerant
Wheat Yield Trial (HTWYT), should feature lines better adapted
to TPE 2. The HTWYT lines are selected based on their
performance under heat stress with the additional restriction
that their performance is comparable to the main checks
for the optimal SE.

Wheat breeding must tackle the yield uncertainties that
farmers face due to environmental variations. Golling (2006)
estimated an annual benefit in excess of $140 million due
to more stable wheat yields—independent of gains in genetic
yield potential—as a result of breeding research. Yield stability
is paramount to smallholder farmers and becoming more
important as the earth warms and rainfall grows more
erratic. According to Cooper and DeLacy (1994), to develop
an understanding of the GE interactions in TPEs, it is
important to characterize such TPEs in terms of the key
environmental challenges that may lead to the definition of
strategies for exploiting the GE interactions. In this study,
we defined three TPEs in India based on meteorological and
soil characteristics that overlap with the three main wheat
production zones in India. Furthermore, the TPEs are associated
with a set of SEs at CIMMYT-Ciudad Obregón that have
allowed GY gains in the germplasm delivered to the TPEs
and across India. The results described herein contribute to an
integral strategy to the efficiency of CIMMYT’s wheat breeding

program and further ensure the delivery of genetic gains to
target environments.
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