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A major challenge for sustainable food, fuel, and fiber production is simultaneous genetic 
improvement of yield, biomass quality, and resilience to episodic environmental stress 
and climate change. For Populus and other forest trees, quality traits involve alterations 
in the secondary cell wall (SCW) of wood for traditional uses, as well as for a growing 
diversity of biofuels and bioproducts. Alterations in wood properties that are desirable for 
specific end uses can have negative effects on growth and stress tolerance. Understanding 
of the diverse roles of SCW genes is necessary for the genetic improvement of fast-
growing, short-rotation trees that face perennial challenges in their growth and development. 
Here, we review recent progress into the synergies and antagonisms of SCW development 
and abiotic stress responses, particularly, the roles of transcription factors, SCW biogenesis 
genes, and paralog evolution.
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INTRODUCTION

The plant secondary cell wall (SCW) plays important roles. In the stem, it participates in 
structure, form, and function, as a part of the water transport system. Throughout the plant, 
it is an important part of the defense system, as a barrier to attack, and in systematic response 
to biotic and abiotic stress. The cell wall acts as the first line of defense, and cell wall integrity 
sensing and maintenance are tightly integrated with biotic and abiotic stress signaling (Bacete 
et al., 2018). Cell wall plasticity is key to a plant’s capacity to adjust to environmental conditions, 
such as water and nutrient availability, and adapt to specific climates (Landi and Esposito, 
2017; Lee et  al., 2017). The stress response role of the cell wall has been previously reviewed, 
particularly with regards to cell wall integrity as a mechanism for sensing and responding to 
stress (Novakovic et al., 2018; Vaahtera et al., 2019; Anderson and Kieber, 2020). Here, we focus 
on trees, highlighting examples of regulatory and SCW metabolism genes that indicate both 
synergy and antagonism in achieving multiple goals of improved stress resilience, biomass 
yield, and biomass quality.

The SCW consists of a complex network of cellulose, hemicellulose, and lignin (reviewed by 
Kumar et  al., 2016; Meents et  al., 2018; Zhong et  al., 2019). Prior to maturity, production of 
this network is influenced by external factors. These interactions and their effect on biomass 
yield and quality traits are especially complex in trees where harvested wood is the result of a 
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multi-year history, from 2- to 3-year coppice cycles to decades 
of genotype × environment interactions. Optimum growth depends 
on developmental and physiological transitions being appropriately 
timed for the local climate (Cooke et  al., 2012; Brunner et  al., 
2017). In temperate and boreal zones, this requires preparation 
for the cold and dehydration stresses of winter and subsequent 
reversal to allow resumption of growth with transitions occurring 
at seasonal times that avoid frost injury and optimally capture 
resources to support growth. Although photoperiod, prolonged 
chilling temperatures and accumulated exposure to warm 
temperature are primary signals for key phenological changes, 
other environmental factors modulate the timing and rate of 
these transitions (Cooke et  al., 2012; Ding and Nilsson, 2016; 
Brunner et  al., 2017; Maurya and Bhalerao, 2017). In temperate 
regions, water stress generally increases in mid to late summer, 
a trend thought to drive the transition from large vessel earlywood 
to dense, small vessel latewood (Plomion et  al., 2001). In 
seasonally dry tropical climates, the intra-annual development 
of some tree taxa is characterized by distinct periods of rest 
and rapid shoot growth. Temperate taxa such as Populus, Betula, 
and many Salix species are free growing, a major factor for 
suitability as short rotation woody biomass crops. Their shoots 
have the capacity to continue to grow until a critical daylength 
threshold occurs; this capacity is limited by other factors, such 
as water and nutrient availability. Thus, achieving optimal woody 
biomass yield and quality requires increased understanding of 
the interplay among primary determinates of seasonal transitions 
and more episodic or site-specific stresses.

Not surprisingly, manipulation of SCW biosynthesis can 
result in widespread changes in both the metabolome and 
transcriptome that might lead to negative effects on growth 
and development (Xie et  al., 2018b; Vanholme et  al., 2019). 
Frequently, there are indications that altering SCW biosynthesis 
genes can have a direct or indirect impact on the plant’s 
response to abiotic stress. There is also evidence that 
sub-functionalization or neo-functionalization of cell wall 
biosynthesis gene duplicates can have an impact on the 
relationship between stress-resistance and cell wall structure. 
Here, we examine the interaction between the SCW and abiotic 
stress responses, highlighting examples of transcription factors 
(TFs) and SCW biogenesis genes that directly impact both 
biomass and stress response, as well as the sub-/
neo-functionalization of SCW biosynthesis gene paralogs in 
the plant response to abiotic stress.

TRANSCRIPTIONAL REGULATION OF 
SCW AND ABIOTIC STRESS

The intricate regulation of plant growth and stress response 
is directed in part by a large number of TFs, including MYB 
and NAC family members (Wilkins et  al., 2009; Hu et  al., 
2010; Ye and Zhong, 2015; Chen et  al., 2019). Dual roles of 
some TFs have been reported in both SCW formation and 
abiotic stress responses.

An ortholog of Arabidopsis MYB46 (Zhong et  al., 2007) 
from Betula platyphylla was overexpressed and silenced in birch 

(Guo et  al., 2017). Overexpression lines showed improved 
growth under both salt and osmotic stress, while silenced lines 
were reduced in growth including above and below ground 
biomass, as well as chlorophyll content. Overexpression lines 
had increased levels of proline and reactive oxygen species 
(ROS) scavenging, attributed to increased expression of 
Δ1-pyrroline-5-carboxylate synthetase (P5CS), superoxide 
dismutase (SOD), and peroxidase (POD) genes. The overexpressing 
lines had increased lignin and cellulose levels and thicker fiber 
cell walls, but decreased hemicellulose relative to WT; silenced 
lines showed the opposite pattern. This was attributed to 
alterations in expression of a suite of lignin biosynthesis genes 
as well as cellulose synthases (CesAs), with increased expression 
in the overexpression lines, but reduced expression in silenced 
lines. Hemicellulose-related genes displayed the opposite pattern. 
ChIP-PCR supported interactions between BpMYB46 and 
promoters of the above-mentioned genes involved in ROS, 
proline, and SCW biosynthesis.

AtMYB61 induces ectopic lignification and dark 
photomorphogenesis in Arabidopsis (Newman et  al., 2004). 
AtMYB61 is also expressed in guard cells and its mis-expression 
has a direct impact on stomatal apertures, smaller in 
overexpressors and larger in knockout mutants relative to WT 
(Liang et al., 2005). The Populus ortholog PtoMYB170 positively 
regulates lignin biosynthetic genes, as evidenced by enhanced 
lignin deposition in PtoMYB170-overexpressing plants and 
reduced lignification in CRISPR-knockout (KO) lines (Xu et al., 
2017). PtoMYB170 is specifically expressed in guard cells and 
confers enhanced drought tolerance when overexpressed in 
Arabidopsis (Xu et  al., 2017). This suggests that the dual 
functionality in SCW biogenesis and abiotic stress responses 
is evolutionarily conserved.

A dual role has also been reported for NAC secondary wall 
thickening promoting factor/secondary wall-associated NAC 
domain protein (NST/SND) orthologs in the regulation of SCW 
formation and abiotic stress resistance in both Arabidopsis and 
birch. Arabidopsis snd1 mutants with impaired fiber SCW biogenesis 
(Zhong et  al., 2006) were also shown to have reduced survival 
rate under salt stress (Jeong et al. 2018). Mutant lines had increased 
levels of ABA, which lends strength to the model that SND1 
positively regulates MYB46 and lignin biosynthesis, and negatively 
regulates ABA signaling and biosynthesis (Jeong et  al., 2018).

Hu et  al. (2019) characterized the AtSND1 ortholog 
BpNAC012  in birch. BpNAC012 was expressed predominantly 
in stems and its expression in leaves increased in plants exposed 
to salt, osmotic, and drought stress. Silencing of BpNAC012 
resulted in thinner fiber walls. While the cell wall thickness 
was unchanged in overexpression lines, these lines produced 
more biomass and were more tolerant to salt and osmotic 
stress, attributed to increased expression of P5CS1 and P5CS2 
and increased SOD and POD activities. Multiple assays 
demonstrated interactions between BpNAC012 and the promoters 
of abiotic stress-responsive (SOD and POD) genes, as well as 
known lignin, cellulose, and hemicellulose biosynthesis genes 
and additional SCW TFs. The authors hypothesize a model 
in which BpNAC012 binds to the core sequence CGT[G/A] 
in regulation of genes associated with abiotic stress and binds 
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to the SNBE site in regulation of genes involved in SCW 
biosynthesis (Hu et  al., 2019).

Additional examples of transcriptional co-regulation of growth, 
defense, and lignification in herbaceous species are discussed 
in a recent review (Xie et  al., 2018b). In trees, the dual role 
of TFs in regulation of SCW formation and abiotic stress 
resistance is likely to involve responses to seasonal signals and 
dormancy-growth transitions, as well as reactions to sporadic 
stress events.

ROLES OF SCW BIOGENESIS GENES 
IN ABIOTIC STRESS RESPONSES

The effects of abiotic stresses on SCW biogenesis and wood 
formation have been covered in other reviews (Moura et  al., 
2010; Houston et  al., 2016; Camargo et  al., 2019; Eckert et  al., 
2019). Although few studies have investigated the role of SCW 
synthesis genes in stress responses in trees, many transcriptomic 
studies suggest roles for SCW biosynthesis in both seasonal 
adaptations and abiotic stress responses, with consequential 
effects on biomass utilization (Fox et  al., 2017; Ployet et  al., 
2017; Wildhagen et  al., 2017; Jokipii-Lukkari et  al., 2018). For 
instance, drought-acclimated Populus nigra showed the expected 
reduction of cambial growth, with an unexpected increase of 
saccharification potential (Wildhagen et al., 2017). The increased 
sugar release was unrelated to lignin content but instead, was 
strongly associated with cell wall matrix polysaccharide 
biosynthesis and modification, based on gene coexpression 
network analysis (Wildhagen et  al., 2017). Thus, besides well-
documented effects of environmental stresses on lignin traits 
(Moura et  al., 2010), the sensitivity of SCW polysaccharide 
biosynthesis to abiotic stresses also warrants attention.

A few studies show altered expression of stress-related genes 
in transgenics with modified wood characteristics. For instance, 
lignin-deficient poplars exhibited transcriptome reprogramming 
of genes associated with not only cell wall biogenesis and 
remodeling, but also ROS metabolism, detoxification, and 
response to various stimuli (Tsai et  al., 2020). In particular, 
genes involved in the glutathione-ascorbate cycle, sulfate 
assimilation, and cadmium response were upregulated in lignin-
reduced poplars. The patterns are in agreement with reported 
responses of cadmium-exposed plants, including poplars 
(Herbette et  al., 2006; Van De Mortel et  al., 2008; Elobeid 
et  al., 2011; Ding et  al., 2017), supporting a link between 
lignification and heavy metal-elicited oxidative stress responses.

Another study investigated tubulin genes encoding 
components of cortical microtubules that have long been thought 
to direct cellulose microfibril deposition during cell wall 
biogenesis (Baskin, 2001). Consistent with this role, several 
tubulin genes are among the most abundant transcripts in 
SCW-rich xylem (Hu et  al., 2016). However, manipulation of 
tubulin genes can be  lethal or result in abnormal development 
(Anthony et  al., 1999; Burk et  al., 2006; Ishida et  al., 2007). 
In poplar, constitutive expression of xylem-biased tubulins led 
to abnormal vascular development, and plant regeneration was 
achieved only with post-translational modification mimics of 

tubulins (Swamy et  al., 2015). Those plants showed tissue-
dependent tubulin transgene expression, much higher in leaves 
than xylem, opposite to the expression of endogenous tubulins. 
No differences in major SCW constituents were detected in 
transgenic wood; however, extractability of lignin-bound pectin 
and xylan polysaccharides was increased, as was expression 
of genes encoding cell wall-modifying enzymes (Swamy et  al., 
2015). The authors suggest an association between pectin, xylan, 
and lignin during early stage of SCW biogenesis that is sensitive 
to subtle tubulin perturbation. In transgenic leaves with elevated 
expression of tubulin transgenes, pectin levels increased, while 
expression and activity of pectin methylesterase were reduced 
(Harding et  al., 2018). Transgenic leaves also exhibited altered 
stomatal behavior, with delayed opening in response to light 
and delayed closure in response to drought (Swamy et  al., 
2015), consistent with microtubule involvement in guard cell 
dynamics. These studies add to the functional multiplicity of 
tubulins and microtubules in different phases of cell wall 
biogenesis, associated with both cellulosic and non-cellulosic 
polysaccharide assembly, and impacting both wood formation 
and stress responses.

Manipulation of SCW genes can cause tradeoffs between 
stress resistance and growth. Xyloglucan endotransglycosylase/
hydrolase (XTH) acts in the relaxation of the cell wall, which 
is key in cell expansion during normal growth, and in cell 
wall remodeling during stress. XTH has been shown to allow 
or restrict cell wall expansion (Takeda et  al., 2002), and to 
respond to drought stress (Iurlaro et  al., 2016). In poplar, 
PtoXTH27 and PtoXTH34 were indicated to play a role in 
osmotic stress responses (Jiang et  al., 2020).

Given the role of xylem in water transport (Rodriguez-
Zaccaro and Groover, 2019), it is not surprising that alterations 
in wood composition often result in reduced water transport 
(Kitin et  al., 2010). In Arabidopsis, this can be  mitigated by 
restoring expression of SCW-related genes in vessels (De Meester 
et al., 2018). Hence, it will be interesting to test whether similar 
strategies can be  an effective in improving wood quality and 
yield without negative effects on abiotic stress resilience.

SUB-FUNCTIONALIZATION OF 
DUPLICATED GENES

A largely unexplored area is the contribution of gene duplication 
and evolution to the integration or separation of genetic pathways 
involved in growth, stress resilience, and wood development. 
Members of the Salicaceae share a relatively recent WGD 
estimated to have occurred ~60 million years ago, and Populus 
retains ~8,000 Salicoid duplicate gene pairs (Tuskan et al., 2006; 
Rodgers-Melnick et  al., 2012; Dai et  al., 2014). Evidence of 
paralog regulatory divergence can be inferred from the growing 
wealth of RNA-seq datasets. Spatially-detailed expression profiling 
of the poplar secondary stem showed that Salicoid duplicates 
with peak expression during SCW deposition tended to exhibit 
highly-similar profiles, suggesting that many SCW-associated 
paralogs have functionally redundant roles (Sundell et al., 2017). 
However, increasing evidence supports a role for WGD in plant 
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environmental adaptation (Wu et al., 2020); thus, we compared 
published transcriptomic studies for evidence that paralogs 
showing highly-correlated expression in the Populus woody 
stem (Sundell et  al., 2017) exhibit regulatory divergence in 
response to different abiotic stresses (Luo et  al., 2015; Swamy 
et  al., 2015; Xue et  al., 2016; Lu et  al., 2019; Yao et  al., 2020), 
as well as to SCW modification (Tsai et  al., 2020). Strikingly, 
in all these stress-tissue combinations, only one member of 
these paralog pairs was differentially expressed in response to 
the stress more often than both paralogs (Figure  1). Examples 
of functional diversification of gene duplicates with regards to 
SCW synthesis are provided below. With increasing efforts in 
functional characterization of gene duplicates, the expectation 
is that neo-/sub-functionalization of wood-expressed paralogs 
will continue to be  identified as one of the mechanisms for 
tree adaptation to varying environment.

One example is the poplar 5-enolpyruvylshikimiate 3-phosphate 
synthase duplicate (Xie et  al., 2018a); one encoding a classic 
EPSP synthase (PtrEPSP-SY) of the shikimate pathway, and 
the other harboring an extended N terminus with a helix-
turn-helix DNA-binding motif (PtrEPSP-TF) with xylem-biased 
expression. Using linkage-disequilibrium based associate 
mapping, PtrEPSP-TF was found to exhibit associations with 
lignin content and syringyl-to-guaiacyl (S/G) ratio (Xie et  al., 
2018a). PtrEPSP-TF overexpression induces ectopic lignin and 
flavonoid biosynthesis through transcriptional repression of a 
hAT transposase PtrhAT. PtrhAT represses PtrMYB021, a MYB46 
ortholog that regulates biosynthesis of SCW components, 
including lignin, cellulose, and xylan (Xie et  al., 2018a). 
Neo-functionalization of a primary (shikimate) biosynthetic 
pathway gene with an additional role in transcriptional regulation 
of downstream secondary (phenylpropanoid) pathways represents 
an example of protein moonlighting conferring enhanced fitness 
of complex organisms (Copley, 2014).

A second example is the poplar paralogs of AtMYB61 
involved in regulation of lignin biosynthesis and stomatal 
aperture noted above. While PtoMYB170 exhibits conserved 
dual functionality, guard cell expression was not detected for 
its Salicoid duplicate PtoMYB216 (Xu et  al., 2017). In this 
case, sub-functionalization might have resulted in more specific 
involvement of the poplar MYB216  in SCW biogenesis 
(Tian et  al., 2013; Wei et  al., 2019).

Another example concerns the poplar 4-coumarate:CoA ligase 
(4CL) duplicates. In poplar, 4CL1 normally comprises ~90% of 
xylem 4CL transcripts and encodes the predominant isoform 
involved in lignin biosynthesis (Hu et  al., 1999; Voelker et  al., 
2010). 4CL1-knockout led to ~20% lignin reduction and uniform 
wood discoloration (Zhou et  al., 2015). Knockout of its Salicoid 
duplicate 4CL5, the only other xylem-expressed 4CL gene, has 
no effect on lignin accrual, suggesting a conditional role (Tsai 
et  al., 2020). Nonetheless, the 4cl1 mutants maintain ~80% WT 
lignin levels, which must be sustained by 4CL5. 4CL5 expression 
was not significantly changed in the 4cl1 mutants; however, 
caffeoylshikimate esterase1 (CSE1) involved in caffeate biosynthesis 
and caffeoyl-CoA O-methyltransferase1 (CCoAOMT1) that acts 
downstream of 4CL product caffeoyl-CoA were upregulated (Tsai 
et al., 2020). In contrast, the S lignin-specific ferulate/coniferaldehyde 
5-hydroxylases were downregulated. These, along with elevated 
levels of caffeic acid in the mutant xylem hint at a novel 
mechanism for in vivo enhancement of 4CL5 function to sustain 
G lignin biosynthesis at the expense of S lignin (Tsai et al., 2020).

The preferential reductions of S lignin in the 4cl1 poplars 
(Zhou et al., 2015) contrasts with maize, sorghum, Arabidopsis, 
and switchgrass mutants where 4CL-knockout led to strong 
G lignin reductions (Saballos et  al., 2008; Van Acker et  al., 
2013; Park et  al., 2017; Xiong et  al., 2019). The molecular 
responses also differ between poplar and Arabidopsis mutants, 
with the latter showing upregulation of early pathway genes 
phenylalanine ammonia-lyase2, cinnamate 4-hydroxylase, and 
4-coumaroylshikimate 3'-hydroxylase (Vanholme et  al., 2012). 
Gene coexpression network modeling revealed distinct 
associations between Salicoid paralogs of 4CL1/4CL5, CSE1/
CSE2, and CCoAOMT1/CCoAOMT2 duplicates, with 4CL5, 

FIGURE 1 | Gene expression divergence in response to abiotic stress 
among Populus wood-expressed paralogs. Salicoid duplicates (3,428 
genes or 1,714 paralogs pairs, orange circle) showing expression 
correlations of ≥0.75 across the secondary stem (Sundell et al., 2017) were 
interrogated for their responsiveness to different perturbations, including 
nitrogen (N) starvation in roots, leaves (Luo et al., 2015), and xylem (Lu 
et al., 2019), tension wood induction by bending (Swamy et al., 2015), 
drought-stressed xylem, bark, roots, and leaves (Xue et al., 2016), xylem of 
lignin-deficient trees (4CL1-KO; Tsai et al., 2020), and salt-stressed leaves, 
stem, and roots (Yao et al., 2020). Each oval represents one tissue (B, bark; 
L, leaf; R, root; S, stem; and X, xylem) from a given experiment, color-
coded by perturbation type. Gray values indicate the total number of 
differentially expressed genes for the specific tissue-stress combination as 
reported in the source paper. Boldfaced color values (inner orange circle) 
indicate wood-expressed paralogous gene pairs where both members of 
the pair were differentially expressed in response to the indicated stress, 
whereas black values (outer orange circle) denote the number of cases 
where only one paralog of a pair showed differential expression. For clarity 
of illustration, each stress dataset was compared with the wood paralogs 
individually without considering overlapping gene responses across tissues 
or stress conditions.
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CSE1 and CCoAOMT1 belonging to the same coexpression 
module in the 4cl1 mutant network (Tsai et  al., 2020). The 
data provide evidence for coordinated subfunctionalization of 
multiple gene duplicates in the lignin pathway with conditional 
roles that may be  key for lineage-specific adaptation.

CONCLUSION

To meet the grand challenge for sustainable food, fuel, and 
fiber under changing climate requires a holistic understanding 
of diverse roles of SCW genes during plant growth, development, 
and interactions with the environment. Expanding functional 
characterization efforts promise to provide additional insights 
into many of the hidden/conditional roles. This is especially 
important for woody perennials with a rich repertoire of gene 
duplicates, many of which likely have evolved via sub-/
neo-functionalization. The specificity of CRISPR genome editing 
allows the dissection of functional redundancy vs. specificity 
of gene duplicates, and the targeted selection of genes and 
gene duplicates to better understand connections between SCW 
formation and abiotic stress resistance.

The necessity of exploring the largely unexamined, but clear 
intersectional implications of SCW development and abiotic 
stress responses, particularly in the face of changing climate, 
is clear. Trees present the challenge of integrating multi-year 

growth accumulation with recurring seasonal phenology and 
episodic stress events. Reflecting this diversity of environmental 
interactions, poplar transgenics with altered expression of lignin 
biosynthesis genes have shown phenotypic differences between 
greenhouse and field studies (reviewed in Chanoca et al., 2019). 
Although transgenic tree responses to stress and seasonal cues 
in controlled conditions provides insight, more field studies 
are needed to delineate gene functions in trees, and to advance 
genetic engineering for simultaneous improvement of wood 
yield, quality, and resilience to environmental stress and 
climate change.
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