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The Pacific Northwest is an important pulse production region in the United States.
Currently, pulse crop (chickpea, lentil, and dry pea) breeders rely on traditional
phenotyping approaches to collect performance and agronomic data to support
decision making. Traditional phenotyping poses constraints on data availability (e.g.,
number of locations and frequency of data acquisition) and throughput. In this study,
phenomics technologies were applied to evaluate the performance and agronomic
traits in two pulse (chickpea and dry pea) breeding programs using data acquired
over multiple seasons and locations. An unmanned aerial vehicle-based multispectral
imaging system was employed to acquire image data of chickpea and dry pea advanced
yield trials from three locations during 2017–2019. The images were analyzed semi-
automatically with custom image processing algorithm and features were extracted,
such as canopy area and summary statistics associated with vegetation indices. The
study demonstrated significant correlations (P < 0.05) between image-based features
(e.g., canopy area and sum normalized difference vegetation index) with yield (r up to
0.93 and 0.85 for chickpea and dry pea, respectively), days to 50% flowering (r up
to 0.76 and 0.85, respectively), and days to physiological maturity (r up to 0.58 and
0.84, respectively). Using image-based features as predictors, seed yield was estimated
using least absolute shrinkage and selection operator regression models, during which,
coefficients of determination as high as 0.91 and 0.80 during model testing for chickpea
and dry pea, respectively, were achieved. The study demonstrated the feasibility to
monitor agronomic traits and predict seed yield in chickpea and dry pea breeding trials
across multiple locations and seasons using phenomics tools. Phenomics technologies
can assist plant breeders to evaluate the performance of breeding materials more
efficiently and accelerate breeding programs.

Keywords: image processing, multispectral imagery, unmanned aircraft vehicle, vegetation indices, yield
prediction

Frontiers in Plant Science | www.frontiersin.org 1 February 2021 | Volume 12 | Article 640259

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.640259
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.640259
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.640259&domain=pdf&date_stamp=2021-02-25
https://www.frontiersin.org/articles/10.3389/fpls.2021.640259/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640259 February 20, 2021 Time: 20:4 # 2

Zhang et al. Crop Performance-Pulse Crops-Phenomics

INTRODUCTION

Crop cultivars are consistently selected based on their
productivity (quantity and/or quality), tolerance to biotic
and abiotic stressors, and adaptation to local production systems
and environments (Acquaah, 2009; Hatfield and Walthall, 2015).
Pulse crops, including pea (Pisum sativum L.) and chickpea
(Cicer arietinum L.), have been bred for their adaptation to the
Palouse region in the Pacific Northwest, United States, with the
overall goal of developing high-yielding and biotic and abiotic
stress-resistant cultivars. The Palouse region, which includes
parts of eastern Washington, northern Idaho, and northeastern
Oregon, is one of the largest producers of pulse crops in the
United States (USDA-NASS, 2020) and is home to several pulse
breeding programs. Pulse breeders have developed and released
multiple pea and chickpea cultivars with better seed yield,
quality, and improved disease resistance (McGee and McPhee,
2012; McGee et al., 2012, 2013; Vandemark et al., 2014, 2015;
USDA-ARS, 2018). However, plant breeders have primarily relied
on traditional methods to collect phenotypic data on breeding
lines. Some of the constraints of these traditional phenotyping
approaches are that they are labor-intensive, time-consuming,
and subjective with limited availability of data. Therefore,
sensing technologies, also referred to as phenomics technologies,
are needed to overcome these constraints to facilitate progress
of plant breeding and provide data for a more accurate and
comprehensive evaluation of breeding lines.

Plant traits evaluated by phenomics technologies in field
conditions include early vigor (Kipp et al., 2014; Sankaran et al.,
2015), canopy area and temperature (Patrignani and Ochsner,
2015; Bai et al., 2016), plant height (Madec et al., 2017; Wang
et al., 2018), heading and flower intensity (Sadeghi-Tehran et al.,
2017; Zhang et al., 2020), yield (Donohue et al., 2018; Lai et al.,
2018), and phenological stages (Yang et al., 2017). Research using
phenomics technologies to monitor or predict crop yield has been
conducted for a wide range of crops. Different image-based plant
traits, such as flowers, vegetation indices (VIs), plant height, and
canopy area (Bai et al., 2016; Tattaris et al., 2016; Thorp et al.,
2016; Sun et al., 2018), have been used to monitor and predict
crop yield. Thorp et al. (2016) used proximal digital imaging to
track Lesquerella flowering dynamics and reported that there was
a strong correlation between flower cover percentage and seed
yield (coefficient of determination or R2

≤ 0.84). Sun et al. (2018)
developed a terrestrial light detection and ranging (LiDAR)-
based high-throughput phenotyping system and applied it to
monitor cotton growth. Their results indicated that canopy
height, projected canopy area, and plant volume (R2

≤ 0.84,
0.88, and 0.85, respectively) at 67 and 109 days after planting
were positively correlated with yield. In addition to correlating
plant traits with yield, researchers have tested models to predict
seed yield and biomass of wheat, canola, and corn (Fieuzal et al.,
2017; Ballesteros et al., 2018; Donohue et al., 2018; Lai et al.,
2018; Anderson et al., 2019). Fieuzal et al. (2017) developed two
artificial neural network-based methods (a real-time approach
and a diagnostic approach) to estimate corn yield using multi-
temporal optical and radar satellite data. The diagnostic approach
using reflectance from the red spectral region predicted yield with

R2 = 0.77, while the real-time approach using reflectance from
the red spectral region and one feature from radar satellite data
resulted in a prediction accuracy of R2 = 0.69.

Other performance traits have also been evaluated using
sensing technologies, including estimation of phenological stages,
50% flowering, senescence, and maturity (Viña et al., 2004;
Yu et al., 2016; Zheng et al., 2016; Yang et al., 2017; Quirós
Vargas et al., 2019; Lindsey et al., 2020). Zheng et al. (2016)
monitored rice phenology in three growing seasons using a time
series of spectral indices obtained using portable spectrometers.
They reported that the red-edge chlorophyll index can accurately
detect the dates of jointing, middle booting, and soft dough,
while the normalized difference vegetation index (NDVI) can
detect dates of active tillering, middle heading, and maturity.
In our previous study (Quirós Vargas et al., 2019), we found
that VIs, including NDVI, green red vegetation index (GRVI),
and the normalized difference red-edge index (NDRE), were
correlated with days to 50% flowering and physiological maturity
in two winter pea experiments.

Although phenomics technologies have been tested on
many crops, the evaluation of such technologies across field
seasons, locations, and different crop types has been limited
for pulse crops. Such efforts are essential to assess the
stability and applicability of phenomics technologies to assist
breeding programs. Therefore, in this study, we applied sensing
technologies to evaluate dry pea and chickpea breeding lines for
three growing seasons (2017–2019) for phenotyping applications.
Specific objectives were to: 1) monitor yield and other agronomic
traits using quadcopter unmanned aircraft vehicle (UAV)
multispectral imaging data and 2) predict pulse crop yield with
a multivariate regression model.

MATERIALS AND METHODS

Experimental Locations and Plant
Materials
The pulse crop (chickpea and dry pea) breeding lines in this
study (2017–2019) were evaluated in multiple field locations, near
Pullman, WA (46◦41′39.0′′N, 117◦08′53.0′′W), Fairfield, WA
(47◦19′08.0′′N, 117◦10′05.0′′W), and Genesee, ID (46◦36′40.0′′N,
116◦57′39.0"W), United States (Table 1). The exact locations
of the experiment field sites within an area varied between
years due to crop rotation protocols. Advanced yield trials
of green pea (panel 01), yellow pea (panel 02), and chickpea
(panel 81) breeding lines and relevant commercial check
cultivars were planted using a randomized complete block design
with three replicates. A seed treatment was applied prior to
planting that contained the fungicides fludioxonil (0.56 g kg−1;
Syngenta, Greensboro, NC, United States), mefenoxam (0.38 g
kg−1; Syngenta), and thiabendazole (1.87 g kg−1; Syngenta),
thiamethoxam (0.66 ml kg−1; Syngenta) for insect control, and
molybdenum (0.35 g kg−1). Approximately 0.5 g Mesorhizobium
ciceri inoculant (1 × 108 CFU g−1; Novozyme, Cambridge,
MA, United States) was applied to each chickpea seed packet
1 day before planting. Chickpea plots were planted at 6.1 m
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TABLE 1 | Summary of the pulse crops’ breeding trials and data acquisition using sensing.

Year Location Sensing
altitudea

Crop Panelb Number of
lines/cultivars

Sowing date Data acquisition
dates

Growing degree
daysc

2017d Pullman 45 m Chickpea 1781 24 5/11 6/26, 7/07, 7/21,
7/28

536, 723, 959,
1087

Dry pea 1701, 1702 40, 21 5/11 6/26, 7/07, 7/21 536, 723, 959

Fairfield 45 m Dry pea 1701, 1702 40, 21 5/11 7/24e 1077

2018 Pullman 25 m Chickpea 1881 21 5/05 6/08, 6/22, 7/03,
7/19, 7/27

423, 582, 721,
991, 1124

Dry pea 1801, 1802 32, 23 5/05 6/08, 6/22, 7/03,
7/19, 7/27

423, 582, 721,
991, 1124

Genesee 25 m Chickpea 1881 21 5/08 6/08, 6/26, 7/09,
7/23, 8/06

372, 576, 752,
997, 1274

Dry pea 1801 32 5/08 6/08, 6/26, 7/09,
7/23, 8/06

372, 576, 752,
997, 1274

Fairfield 25 m Chickpea 1881 21 5/21 6/12, 6/29, 7/12,
7/25

282, 515, 716, 966

Dry pea 1801, 1802 32, 23 5/21 6/12, 6/29, 7/12,
7/25, 8/07

282, 515, 716,
966, 1274

2019 Pullman 30 m Chickpea 1981 24 5/04 6/05, 6/17, 7/05,
7/16

387, 549, 772, 939

Dry pea 1901, 1902 29, 23 5/04 6/05, 6/17, 7/05,
7/16

387, 549, 772, 939

Genesee 25 m Chickpea 1981 24 5/03 6/05, 6/18, 7/05,
7/16

384, 559, 756, 923

Dry pea 1901 29 5/03 6/05, 6/18, 7/05,
7/16

384, 559, 756, 923

Fairfield 30 m Chickpea 1981 24 5/06 6/10, 6/28, 7/12,
7/23

425, 679, 902,
1080

Dry pea 1901, 1902 29, 23 5/06 6/10, 6/28, 7/12 425, 679, 902

aSensing altitudes (25, 30, and 45 m) as above ground level used in this study resulting in 1.7, 2.0, and 3.1 cm per pixel of ground sampling distance.
bPanels ending in “01” are advanced green pea, “02” are advanced yellow pea, and “81” are advanced chickpea.
cGrowing degree days: accumulated degree days that are used to estimate temperature-based growing season; degree day = mean temperature - base temperature
(base temperature = 3◦C in this study) (Bourgeois et al., 2000; Miller et al., 2018).
dNo data were available due to failed trials in Genesee, ID.
eData from other time points were not useful (e.g., senesced plants).

long and 1.5 m wide with approximately 75 cm between plots.
After emergence, the plots were trimmed to approximately 4.9 m
long, thus leaving alleys of approximately 1.2 m between ranges.
Chickpeas were planted at a density of 43 seeds m−2 in a 1.5-
m × 6.1 m block (≈430,000 seeds ha−1). The chickpea entries
had either compound or simple leaf types. Typically, there were
four to seven entries each year with simple leaves. The dry pea
entries had either normal (cv. ‘Columbian’ only) leaves or were
semi-leafless. Data analysis was conducted without separating the
leaf types for each crop, and preliminary analysis indicated that
the ranges of the vegetation indices were similar.

Data Acquisition
A quadcopter UAV (AgBot, ATI Inc., Oregon City, OR,
United States) and a five-band multispectral camera (RedEdge,
MicaSense Inc., Seattle, WA, United States) were deployed
to acquire image data during the 3-year study (Figure 1a).
The multispectral camera mounted on the quadcopter acquired
images (12-bit image) with a resolution of 1.2 MP in the spectrum
of red (R, 668 ± 5 nm, central band and band width), green
(G, 560 ± 10 nm), blue (B, 475 ± 10 nm), near-infrared (NIR,
840 ± 20 nm), and red edge (RE, 717 ± 5 nm). Mission Planner,

an open-source ground control station software (ArduPilot
Development Team and Community), was used to plan and
monitor missions of aerial data acquisition (Figure 1b). The
UAV was programmed with Mission Planner to fly at a speed
of 2–3 m/s and at 25, 30, or 45 m above ground level (AGL),
resulting in a ground sampling distance (GSD) of 1.7, 2.0, or
3.1 cm per pixel, respectively, and to acquire images with 80%
horizontal and 70% vertical overlaps. A reflectance panel, either a
MicaSense reflectance panel (RedEdge, MicaSense Inc.) in 2017
or a Spectralon reflectance panel (99% reflectance; Spectralon,
SRS-99-120, Labsphere Inc., North Sutton, NH, United States) in
2018 and 2019, was placed in the field during image acquisition
and used for radiometric calibration during image processing.
Data were acquired between 10:00 a.m. and 3:00 p.m. local time,
and three to five time points of data acquisition were achieved for
each season (Table 1). The time points for data acquisition were
selected to acquire data representing key growth stages, such as
early growth, flowering, and seed/pod development stages, and
based on suitable weather conditions for UAV flights (e.g., clear
sky and low wind). Seed yield data from the dry pea and chickpea
trials were collected from each location, while other agronomic
and phenological traits were collected only at Pullman each year.
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FIGURE 1 | Unmanned aircraft vehicle (UAV)-based data acquisition and image processing. (a) UAV and camera. (b) Mission Planner showing data acquisition
underway. (c) Individual images. (d) Orthomosaic composite images consisting of red, green, and blue bands. (e) Heat map of the soil-adjusted vegetation index. (f)
Resulting image with the plot separated and the region of interest highlighted.

These traits include days to 50% flowering, days to physiological
maturity, pod height, pod height at maturity, overall vine length,
canopy height at maturity, node of first flower, and number of
reproductive nodes.

Image Processing and Feature
Extraction
Images from the multispectral camera (Figure 1c) were first
processed in Pix4Dmapper (Pix4D Inc., San Francisco, CA,
United States) to generate orthomosaic images covering each
experimental site. The template used in Pix4Dmapper was
based on Ag Multispectral, where the calibration method of

“Alternative” was selected in the initial processing. In this type
of calibration, the images are optimized for aerial nadir images
with accurate geolocation information, low texture content,
and relatively flat terrain. Orthomosaic images were imported
into custom semi-automated image processing algorithms
developed in MATLAB (2018b; MathWorks Inc., Natick, MA,
United States) for further processing. The image processing
algorithms prompted the user to input a degree to rotate
the image, which is prepared for plot segmentation later, and
to identify the reflectance panel for radiometric calibration.
Following that, composite RGB image and several vegetation
index maps were generated using different combinations of
orthomosaic images (Figures 1d,e, 2). A composite RGB
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image was generated for quality inspection. The vegetation
indices calculated included normalized difference vegetation
index (NDVI), green NDVI (GNDVI), soil-adjusted vegetation
index (SAVI), normalized difference red-edge index (NDRE),
and triangular vegetation index (TVI) (Harris Geospatial
Solutions, 2020). For each dataset (each crop and each
data acquisition period), a master mask that separated the
canopy from the background, such as soil and flowers (for
dry pea only), was generated by setting a threshold on
the SAVI index map prior to feature extraction. Threshold
data varied between datasets based on canopy vigor and
illumination conditions at the time of data acquisition,
and the value was selected for each dataset based on
visual assessment.

In dry pea, flowers that are white have a different reflectance
than stipules and tendrils and were excluded from canopy feature
extraction. A similar procedure was not applied to chickpea as
chickpea flowers could not be detected in five-band multispectral
images at the given resolution due to the small flower size (Zhang
et al., 2020). The master mask was overlaid on the composite RGB
image for quality inspection and optimization of the threshold for
generating a canopy mask. The developed algorithm prompted
the user to identify the four corners of the field and automatically
separated individual plots with information of the identified
corners (Figure 1f). Masks for individual plots were then shrunk
at the four edges to prevent edge effects, forming regions of
interest for each plot that were highlighted with white, as shown
in Figure 1f. The top and bottom edges of the mask for an
individual plot were reduced by 11 (2017) or 20 (2018 and
2019) pixels, while the right and left edges were reduced by 28
(2017) or 50 (2018 and 2019) pixels. More details about the
algorithm can be found in Zhang et al. (2019). Image-based

features were extracted from regions of interest in each plot,
including canopy area (in pixels), and the mean and sum statistic
of NDVI, GNDVI, SAVI, NDRE, and TVI plot images. Here, the
mean of NDVI, for example, is the average of the NDVI values
of the canopy pixels identified by the mask for an individual
plot, while the sum of NDVI is the sum of the NDVI values of
canopy pixels. At the end of image processing, the algorithms
exported the features as Excel files for further analysis. The
procedures of image processing for dry pea and chickpea were
similar with minor modifications, such as the threshold used to
create the master mask.

Data Analysis
Image-based features from the UAV data were analyzed using
Pearson’s correlation in SAS, University Edition (SAS Institute,
Cary, NC, United States). The features were correlated with yield
for all locations and with other traits for the Pullman trial only
due to availability of data. Plot-by-plot and cultivar-by-cultivar
(by averaging the replicates at each field site) correlation analyses
were also conducted. Noisy data (e.g., cloud-covered plots) were
eliminated prior to analysis.

Yield prediction models were developed using image-based
features as predictors to estimate yields in the chickpea (panel
81) and green pea (panel 01) trials. Due to the availability of
data across the three locations, only green pea breeding lines
were utilized for yield prediction. Yields were predicted using
data from each year and each location (2017: Pullman; 2018
and 2019: Pullman, Genesee, and Fairfield) and the combined
data for each year (2018 and 2019). The identity of the breeding
lines varied from year to year as lines were discarded or
added to the panels, and therefore data were only combined
within a year. In 2017, no chickpea data were available from

FIGURE 2 | Composite RGB images from different growth stages (2018) and heat map of the soil-adjusted vegetation index from different locations. Images from
the (a) early, (b) flowering, and (c) pod/seed development stages. Heat map of the soil-adjusted vegetation index from (d) Genesee, (e) Pullman, and (f) Fairfield.
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Genesee and Fairfield, and only one set of pea data was
available from Fairfield.

Datasets acquired at flowering, and pod and seed development
stages were utilized for yield model development. The data (yield
and image features) were normalized using the following formula
prior to the model development (Figure 3).

xn =
(xr −m)

σ
(1)

where xn, xr , m, and σ stand for normalized data, raw
data, mean of a feature, and standard deviation of a feature,
respectively. Normalization was conducted for each year and
each location as well as for the combined data within each
year. Yield prediction was conducted using both plot-by-plot
data and cultivar-by-cultivar data (average of three replicate
data across each field site). Least absolute shrinkage and
selection operator (LASSO) regression programmed in MATLAB
was used in this study for yield prediction. The parameters
used in LASSO included: alpha (weight of lasso versus ridge
optimization) = 1, MCReps (repetitions of cross-validation) = 3,
cross-validation = five-fold, and predictor selection method (for
cross-validation) = IndexMinMSE. More details about LASSO in
MATLAB can be found at the MathWorks website1.

For the plot-by-plot analysis, the dataset was divided into
the training and the testing datasets with a ratio of 3:1. The
training data were further resampled five times (80% of training
data to calibrate and 20% of training data to validate) to
optimize the models. Finally, the model was evaluated using
the test dataset and the process was assessed four times
(four iterations) to eliminate effects of randomization. For
the cultivar-by-cultivar analysis, due to the limited sample
size, the leave-one-out approach for model development and
evaluation was utilized (Sammut and Webb, 2010). During
model development, a five-fold cross-validation was used,
followed by testing the model for as many times as the

1https://www.mathworks.com/help/stats/lasso.html

instances (29–40 lines/cultivars depending on the dataset).
The prediction performance was reported in terms of R2

during the train and test processes and selected image-
based features.

RESULTS

Relationship Between Image Features
and Yield
In general, there were significant and positive correlations
(P < 0.05, r up to 0.74) between image-based features (e.g.,
canopy area, SAVI, and sum NDVI) and yield with the plot-
by-plot chickpea data acquired at the early growth, flowering,
and pod/seed development stages across field seasons (2017–
2019) and locations (Figure 4A and Supplementary Figure 1).
Chickpea and dry pea flowered between 721 and 772 growing
degree days. Plants were considered in the early growth stages
before flowering and in the pod/seed development stage between
the flowering stage and physiological maturity. Only a few
common image features (e.g., NDVI and SAVI) extracted from
the data acquired at the early growth stages were significantly
correlated with yield across seasons and experimental locations,
while more common image features (e.g., canopy area, NDVI,
SAVI, sum of NDVI, GNDVI, and SAVI) extracted from the
data acquired at the flowering and pod/seed development
stages were correlated with yield. A similar trend was found
when analyzing the chickpea data using the cultivar-by-cultivar
method (r up to 0.93). During the cultivar-by-cultivar data
analysis, fewer features were significantly correlated with yield
(Figure 4B and Supplementary Figure 2), which could be due
to the smaller dataset compared to the plot-by-plot analysis
method. In most cases, the correlations between the image
features and yield were greater from data acquired at the
flowering and pod/seed development stages in comparison to the
early growth stages.

FIGURE 3 | Workflow of the data analysis during yield prediction using the least absolute shrinkage and selection operator (LASSO) model. CV and N refer to
cross-validation and number of lines/cultivars, respectively.
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FIGURE 4 | Correlation coefficients between the image-based features and yield for the chickpea yield trial in 2019: (A) plot-by-plot analysis and (B)
cultivar-by-cultivar analysis. NDVI, normalized difference vegetation index; GNDVI, green NDVI; SAVI, soil-adjusted vegetation index; NDRE, normalized difference
red-edge index; TVI, triangular vegetation index; NDVI, for example, is the average of the NDVI values of canopy pixels, while sum NDVI is the sum of the NDVI
values of canopy pixels; ns, nonsignificant at the 0.05 probability level. Significant probability levels: *0.05, **0.01, and ***0.001.

Similar to chickpea, in the green pea breeding lines, significant
positive correlations (P < 0.05, r up to 0.83) between the image-
based features (e.g., canopy area and sum NDVI) extracted
from the plot-by-plot data acquired at the early growth,
flowering, and pod/seed development stages and yield were
observed across field seasons and experimental locations in
most cases (Figure 5A and Supplementary Figure 3). When
analyzing the cultivar-by-cultivar data, typically fewer image
features within a time point were significantly correlated with
yield, although the r values were up to 0.80 (Supplementary
Figure 4). It was interesting to note that four of eight trials
(field seasons × experimental locations) showed significant
negative correlations between yield and image features from
the data acquired at the early growth/pre-flowering stages using

both analysis methods (plot-by-plot or cultivar-by-cultivar). The
potential reason for the negative relationships between the image-
based features (e.g., NDVI data) at the early growth stages
and yield is unclear and requires further investigation. We
have observed that pea cultivars that flower early typically have
better early seedling vigor; however, they also have lower seed
yields, presumably because the plants do not have an extended
vegetative period during which they can produce as much
photosynthate (and hence seeds) as later flowering cultivars.
In peas, the timing of flowering is dictated by photoperiod
response rather than by biomass accumulation. In general,
phenotyping the pea trials was more challenging than for
chickpea, which may be due to the presence of tendrils in the
cultivars. The spectral reflectance of tendrils may be different
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FIGURE 5 | Correlation coefficients between the image-based features and yield for the (A) green pea and (B) yellow pea trials in 2019 (plot-by-plot analysis). NDVI,
normalized difference vegetation index; GNDVI, green NDVI; SAVI, soil-adjusted vegetation index; NDRE, normalized difference red-edge index; TVI, triangular
vegetation index; NDVI, for example, is the average of the NDVI values of canopy pixels, while sum NDVI is the sum of the NDVI values of canopy pixels; ns,
nonsignificant at the 0.05 probability level. Significant probability levels: *0.05, **0.01, and ***0.001.

from that of stipules. Similar patterns of significant correlations
(P < 0.05, r up to 0.85) with data acquired at the early
growth, flowering, and pod/seed development stages were found
in the yellow pea yield trials (Figure 5B and Supplementary
Figures 5,6). Significant negative correlations at the early stage
were rare in the yellow pea yield trials, unlike the green
pea yield trials.

Relationship Between Image Features
and Other Data Types
Correlations between the image-based features (e.g., NDVI,
SAVI, and sum SAVI) and other traits (e.g., days to 50% flowering,
days to physiological maturity, plant height, pod length, etc.)
acquired from the Pullman trials were analyzed across three
field seasons. For the chickpea yield trials, significant (P < 0.05)
and positive correlations between the image-based features and

days to 50% flowering or days to physiological maturity (r up
to 0.76 and 0.58, respectively) were found after the flowering
stage (Figure 6 and Supplementary Figures 7,8). Most of the
negative correlations observed between the image-based features
and days to 50% flowering or days to physiological maturity
at the early growth stages were not significant. On the other
hand, correlations between the image-based features and the
remaining traits were not consistent across the three field seasons
(data not presented).

With regard to the green pea yield trials, significant
and negative correlations (P < 0.05, r > −0.54) between
features (e.g., NDVI, SAVI, and sum SAVI) and days to 50%
flowering were observed at the early stages (Figure 6 and
Supplementary Figure 9) across 3 years for both analysis
methods in most cases. Negative correlations between features
and days to physiological maturity were also observed in
the early growth stages, although most correlations were not

Frontiers in Plant Science | www.frontiersin.org 8 February 2021 | Volume 12 | Article 640259

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640259 February 20, 2021 Time: 20:4 # 9

Zhang et al. Crop Performance-Pulse Crops-Phenomics

significant (Figure 6 and Supplementary Figure 10). Early
plant vigor (higher vegetation index data) may be associated
with early flowering and maturity (early flowering/maturity
dates), which would result in negative correlations. As with
chickpea, most image-based features acquired after flowering
were significantly and positively correlated with days to 50%
flowering or days to physiological maturity (r up to 0.75 and
0.72, respectively), especially when the images were acquired
close to physiological maturity. No consistent trends in the
correlations between the image-based features and the other
traits were found. In the yellow pea yield trials, negative
correlations between features and days to 50% flowering or days
to physiological maturity were also observed in the early growth
stages. However, significant positive correlations (r up to 0.85
and 0.84, respectively) between these two traits and most of
the image-based features were found in the datasets acquired
after flowering (Supplementary Figures 11,12). In the yellow
pea yield trials, there were some image features (e.g., NDVI,

SAVI, and sum SAVI) that were significantly correlated with
pod height index (negative) and pod height (positive) across the
three field seasons, especially in the pod/seed development stage
(data not presented).

Yield Prediction Using LASSO
Regression
Chickpea yield can be predicted using multiple image-based
features, as summarized in Table 2. The prediction accuracy
varied across field seasons and locations, regardless of the
analysis method, with testing accuracy (for individual locations)
of up to 0.84. When the data within a year were combined,
the prediction accuracy increased in 2018 and 2019 (testing
accuracy of up to 0.91; Figure 7). Regardless of whether
the data were separated for individual locations or combined
within a year, the features selected by LASSO as predictors
varied from one to seven. Only features that were selected

FIGURE 6 | Correlations between the sum normalized difference vegetation index and days to 50% flowering (F50) or days to physiological maturity (PM) for (A)
chickpea and (B) green pea in the 2018 field season (plot-by-plot analysis). Sum NDVI is the sum of the NDVI values of canopy pixels. Correlations that are
significant at the 0.05 probability level are indicated by an asterisk.

TABLE 2 | Yield prediction results of the models for chickpea crop.

Year Location

Plot-by-plot method Cultivar-by-cultivar method

Train R2 Test R2 Number of
featuresa

Train R2 Test R2 Number of
featuresa

2017 Pullman 0.55 0.32 4 0.61 0.11 2

2018 Pullman 0.63 0.53 3 0.77 0.42 6

Genesee 0.45 0.33 3 0.52 0.31 3

Fairfield NA NA NA NA NA NA

Combined 0.90 0.89 5 0.93 0.91 4

2019 Pullman 0.74 0.57 3 0.86 0.84 1

Genesee 0.67 0.51 6 0.83 0.75 2

Fairfield 0.79 0.70 2 NA NA NA

Combined 0.84 0.82 7 0.86 0.76 5

aOnly features with ≥ 75% selection occurrence during multiple iterations/runs during model development were considered.
NA indicates failure to develop yield prediction model.
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FIGURE 7 | Yield prediction results from a sample iteration using the combined data for chickpea and pea (plot-by-plot analysis). (A,B) Chickpea datasets from 2018
and 2019. (C,D) Green pea datasets from 2018 and 2019, respectively.

at least 75% of the time during multiple runs of model
development were considered. Among these features, canopy
area and NDRE or sum of NDRE were usually selected as
predictors. Features derived from the data collected at the
flowering and pod/seed development stages were both selected
during model development, indicating similar importance of
these two stages.

Yield in the green pea yield trials can also be estimated
by multiple image-based features using data from individual
locations and combined within a year (Supplementary Table 1).
Prediction (testing) accuracy reached up to 0.72 and 0.80
for the data from individual locations and the combined
datasets within a year (e.g., Figure 7), respectively. Similar to
chickpea, the features derived from the images acquired at
flowering and at pod/seed development were both selected as
predictors. However, more features (3–20) were used in the
model development for this panel, and more models performed
poorly when analyzing the cultivar-by-cultivar data. These may
be related to the complicated pea canopy architecture that
comprised stipules and tendrils. Among these features, canopy
area, NDRE, and TVI were selected more often as predictors
than other features.

DISCUSSION

The study demonstrates that image-based features including
canopy area, NDVI, SAVI, and sum NDVI derived from UAV
data can be used to monitor performance traits such as yield,
days to 50% flowering, or days to physiological maturity across
experimental locations and field seasons in two pulse crops,
chickpea and pea. Phenomics technologies, especially UAV-based
multispectral imaging systems, can be used to acquire data in a
standard, rapid, and high-throughput manner, providing plant
breeders with information for more informative decision making.
Data on other agronomic and phenological traits, such as days to
50% flowering, days to physiological maturity, and plant height,
are limited to one location or acquired at a low data acquisition
frequency, often due to resource limitations, especially given the
number of and the distance to the trial sites. However, using UAV
integrated with multispectral camera, image data can be acquired
within 30 min per trial (including setting up the UAV system),
and multiple locations and crops can be imaged in a single day
(depending on the distance to the trial sites). The efficiency of
phenomics technologies can improve the availability of such data
across multiple locations, which allows plant breeders to study
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the interaction between genotypes and the environment on the
morphological or phenological traits.

Besides ensuring data availability, phenomics technologies can
monitor a wide range of traits in pulse and other crops, including
plant height and lodging (Watanabe et al., 2017; Quirós Vargas
et al., 2019), disease (Marzougui et al., 2019; Zhang et al., 2019),
flower intensity (Yahata et al., 2017; Zhang et al., 2020), and other
traits, as discussed in this study. In addition, new traits can be
derived from high temporal resolution data, such as crop growth
and development curves based on canopy area, vigor, and plant
height (Chang et al., 2017; Malambo et al., 2018), allowing plant
breeders to assess development of each cultivar quantitatively
and intensively. Current and previous studies demonstrated that
seed yield or biomass of pulse or other crops can be predicted
with image-based features (Fieuzal et al., 2017; Yue et al., 2017;
Anderson et al., 2019; Li et al., 2019; Sankaran et al., 2019;
Moghimi et al., 2020). Different machine learning models, such
as LASSO, SVM, and deep neural networks, have been tested for
yield prediction. For example, Moghimi et al. (2020) applied deep
neural networks along with aerial hyperspectral images to predict
wheat yield, which demonstrated coefficients of determination
of 0.79 and 0.41 at the subplot and plot scales, respectively.
Yue et al. (2017) selected the 10 most important variables
among 172 variables, which were derived from multispectral
and RGB images, with random forest and LASSO and used the
selected variables to predict wheat yield through support vector
machine (SVM) and ridge regression. Their study showed that
SVM with random forest-selected variables (r = 0.36–0.77) and
ridge regression with LASSO-selected variables (r = 0.40–0.73)
slightly outperformed those with all variables (r = 0.25–0.72
and 0.22–0.73, respectively). In this regard, we found similar or
better results in the current study, especially with the combined
datasets. Such performance monitoring technologies can be
applied in agricultural production as well as plant breeding to
plan agronomic operations and save labor costs and time.

Although promising results were found in this study, some
observations need further investigation. In some high-yielding
trials (e.g., 2018 Pullman trial), low correlation coefficients and
prediction accuracy with image-based features were observed
compared to other seasons and locations. Similar observations
were found in dry bean studies (Sankaran et al., 2018, 2019).
One possible explanation that Sankaran et al. (2019) proposed
may be that low canopy vigor resulted in great differences in
the vegetation index values, which led to stronger correlations
between ground truth and the vegetation index values.

Further research is also necessary to build more robust yield
prediction models and confirm the potential yield predictors.
Although it is possible to predict the seed yield of chickpea
and dry pea, the image-based features selected in the prediction
models varied across locations, years, and analysis methods.
Yield prediction should be more consistent across locations
and seasons with universal or common features. In general,
the performance of machine learning models improves with
increased data quantity and quality, which may be exploited
in future study. Additional features can also be considered
when building such robust prediction models, such as modified
chlorophyll absorption ratio index, photochemical reflectance

index, normalized difference infrared index (Harris Geospatial
Solutions, 2020), plant height (Bendig et al., 2015; Rueda-Ayala
et al., 2019), and canopy temperature (Sankaran et al., 2019;
Zhang et al., 2019).

One of the challenges of phenotyping dry pea crop is its
unique canopy architecture. The canopies of many crops, such
as wheat, rice, corn, and soybean, consist of only leaves for a
majority of the growing season with flowers among the canopy
for a short period of time. In contrast, the pea canopy is made
up of stipules and leaflets and/or tendrils for the majority of
the growing season, and the tendrils may have different spectral
reflectance characteristics from stipules or leaflets, which could
have contributed to the lower performance of dry pea than
chickpea in this study. Further study is required to identify the
spectral reflectance characteristics of tendrils and stipules in pea
and its relationship to crop performance.

CONCLUSION

This study was conducted to evaluate phenomics technologies
for monitoring performance traits (e.g., seed yield, days to 50%
flowering, and days to physiological maturity) and predict the
seed yield of chickpea and pea in three growing seasons and three
environments (or locations). Significant correlations (P < 0.05)
between the image features derived from multispectral UAV-
based imagery and the yields of chickpea (r < 0.93) and pea
(r < 0.85) were observed at the early growth, flowering, and
pod/seed development stages, with a few exceptions. During seed
yield prediction with the combined features dataset using LASSO
regression, R2 values up to 0.91 and 0.80 (model testing) were
achieved for chickpea and pea, respectively. The image-based
features were identified by the LASSO regression models as the
yield predictors for chickpea (one to seven features) and pea (3–
20 features). The results indicated that phenomics technologies
can be employed to collect data and evaluate pulse crop
performance in multiple field seasons and environments and save
labor and time for plant breeders. With further refinement (e.g.,
a software platform for data management and image analysis),
phenomics technologies can be used to assist plant breeders in
evaluating the performance of breeding materials and accelerate
the development of new cultivars of pulse and other crops.
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