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Contamination of agricultural soil by arsenic (As) is a serious menace to environmental
safety and global food security. Symbiotic plant–microbe interaction, such as arbuscular
mycorrhiza (AM), is a promising approach to minimize hazards of As contamination
in agricultural soil. Even though the potential of AM fungi (AMF) in redeeming
As tolerance and improving growth is well recognized, the detailed metabolic and
physiological mechanisms behind such beneficial effects are far from being completely
unraveled. The present study investigated the ability of an AM fungus, Rhizophagus
intraradices, in mitigating As-mediated negative effects on photosynthesis and sugar
metabolism in wheat (Triticum aestivum) subjected to three levels of As, viz., 0, 25,
and 50 mg As kg−1 of soil, supplied as sodium arsenate. As exposure caused
significant decrease in photosynthetic pigments, Hill reaction activity, and gas exchange
parameters such as net photosynthetic rate, stomatal conductance, transpiration rate,
and intercellular CO2 concentration. In addition, As exposure also altered the activities
of starch-hydrolyzing, sucrose-synthesizing, and sucrose-degrading enzymes in leaves.
Colonization by R. intraradices not only promoted plant growth but also restored As-
mediated impairments in plant physiology. The symbiosis augmented the concentration
of photosynthetic pigments, enhanced Hill reaction activity, and improved leaf gas
exchange parameters and water use efficiency of T. aestivum even at high dose of
50 mg As kg−1 of soil. Furthermore, inoculation with R. intraradices also restored
As-mediated alteration in sugar metabolism by modulating the activities of starch
phosphorylase, α-amylase, β-amylase, acid invertase, sucrose synthase, and sucrose-
phosphate synthase in leaves. This ensured improved sugar and starch levels in
mycorrhizal plants. Overall, the study advocates the potential of R. intraradices in
bio-amelioration of As-induced physiological disturbances in wheat plant.

Keywords: arbuscular mycorrhizal fungi, arsenic stress, wheat, photosynthesis, sucrose, starch

INTRODUCTION

Environmental arsenic (As) contamination is a global agricultural, environmental, and health
issue owing to its highly carcinogenic and toxic nature. As is ingressed into the environment,
through natural processes, viz., weathering of As-rich rocks, volcanic activity, or anthropogenic
activities, namely mining, unwarranted use of As-based pesticides, and irrigation with groundwater
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contaminated with As in agriculture (Khalid et al., 2017; Abbas
et al., 2018). It is a non-essential metalloid and hence not
required in any specific metabolic reactions in plants. Both
organic and inorganic species of As are present in nature, with
the latter being more mobile and toxic than the organic As
species. While arsenate [As(V)] exists in oxidized environment,
arsenite [As(III)] dominates in reduced environment (Khalid
et al., 2017). Being an analog of inorganic phosphate (Pi), As(V)
is transported across plasma membrane through the phosphate
transport systems. Thus, it competes and interferes with Pi uptake
and metabolism (Stoeva and Bineva, 2003) in plants. Once taken
up by the plants, various Pi transporters enable easy movement
of As(V) from one cellular compartment to another (Finnegan
and Chen, 2012). In doing so, all parts of cellular metabolism
get exposed to the toxicant. For instance, it replaces phosphate
in ATP and forms an unstable ADP–As complex, thereby leading
to interference of energy flow in cells (Meharg, 1994).

As can affect the growth and productivity of plants due
to a surfeit of morphological, physiological, and biochemical
alterations (Chandrakar et al., 2016; Srivastava et al., 2017).
Production of reactive oxygen species (ROS) is one of the
most perilous biochemical effects of As at the subcellular level,
causing non-repairable damage to various macromolecules, such
as lipids, proteins, carbohydrate, and DNA (Talukdar, 2013;
Chandrakar et al., 2016).

As is reported to disrupt net photosynthetic rate (Pn)
in plants (Gusman et al., 2013), due to disturbances either
in the photochemical or biochemical steps or both. Light-
harvesting apparatus of plants gets affected by As via reduction
of chlorophyll (Chl) concentrations and photosynthetic activity
(Anjum et al., 2011; Emamverdian et al., 2015). Rate of CO2
fixation and activity of photosystem (PS) II also get reduced
considerably under As exposure (Stoeva and Bineva, 2003).
As also negatively influences photochemical efficiency and heat
dissipation capacity, thereby upholding changes in gas exchange
rate and fluorescence emission (Chandrakar et al., 2016; Debona
et al., 2017). These toxic effects of As on photosynthetic
parameters of plants are manifested in the forms of diminution
in growth, wilting, and violet color development of leaves
(Musil et al., 2014).

In addition to disturbing Pn in plants, As has also been
demonstrated to influence carbon partitioning and sugar
metabolism in plants (Jha and Dubey, 2004; Choudhury et al.,
2010; Sil et al., 2019; Majumder et al., 2020). Metabolism of basic
carbohydrates such as sugars and starch in plants is deleteriously

Abbreviations: AI, acid invertase; AMF, arbuscular mycorrhizal fungi; ANOVA,
analysis of variance; As(III), arsenite; As(V), arsenate; As, arsenic; CaCl2, calcium
chloride; Chl, chlorophyll; Ci, intercellular CO2 concentration; DCPIP, 2,6-
dichlorophenolindophenol; DNSA, 3,5-dinitrosalicylic acid; DTT, dithiothreitol;
E, transpiration rate; EDTA, ethylenediaminetetraacetic acid; Fo, minimal
fluorescence; Fv/Fo, potential of PSII; Gs, stomatal conductance; HSD, honestly
significant difference; INVAM, International Culture Collection of (Vesicular)
Arbuscular Mycorrhizal Fungi; M, mycorrhizal; MgCl2, magnesium chloride;
MTI, metal tolerance index; NM, non-mycorrhizal; NRS, non-reducing sugar; Pi,
inorganic phosphate; PMSF, phenylmethylsulfonyl fluoride; Pn, net photosynthetic
rate; PS, photosystem; qP, quenching coefficient; ROS, reactive oxygen species;
RS, reducing sugar; SP, starch phosphorylase; SPS, sucrose-phosphate synthase;
SPSS, Statistical Package for the Social Sciences; SS, sucrose synthase; TCA,
trichloroacetic acid; T-Chl, total chlorophyll; TSS, total soluble sugar.

affected under As stress (Chandrakar et al., 2016). Sucrose and
starch, the resultant products of photosynthesis, act as regulators
of stress responses and play a principal role in gene expression
under abiotic stresses (Rosa et al., 2009). Accumulation of soluble
sugars can take place in response to the stress (Gramss, 2012)
as a means to cope up with As-mediated oxidative stress with a
discrepancy in the contents of reducing sugars (RSs) and non-RSs
(NRSs) (Jha and Dubey, 2004). Conversion of NRSs, primarily
sucrose, into RSs (hexoses) is generally observed under As stress,
indicating the suppression of sucrose synthesis (Jha and Dubey,
2004). Inhibition of starch-degrading enzymes’ activities as a
consequence of As-mediated plant toxicity has also been reported
(Jha and Dubey, 2004). Considering the aspect that plant directly
exposed to As require more energy and carbon molecules to cope
with the stress, studies focusing on photosynthesis and sugar
metabolism under As stress could help in developing relevant
strategies to confer plant tolerance toward As-instigated toxicity.

Among the cereals, wheat (Triticum aestivum L.) is the
second most important crop consumed mainly as a source of
carbohydrate as well as dietary protein and minerals. It ranks
first in terms of global consumption (Food and Agriculture
Organization (FAO), 2020). The major concern arising in wheat
cultivation is the concurrence of As-contamination area with its
cultivated area. For instance, in India, wheat is cultivated under
six diverse agro-climatic zones, wherein Indo-Gangetic Plains
comprising the two zones form major wheat-cultivating plain
(Rasheed et al., 2018). Wheat grains harvested from this region
also report high As accumulation resulting from unparalleled
As biomagnification. The risks posed by the contaminant from
wheat grains, however, do not outweigh the global demand
of wheat and its products. Thus, with the increasing global
population, production of wheat needs to meet the global
demand as well as reduce the toxic content in its nutritional
composition. In this context, use of arbuscular mycorrhizal fungi
(AMF) in agriculture has been reported to sustainably improve
plant’s tolerance to various heavy metal stresses (Sharma et al.,
2017; Zhan et al., 2018; Alam et al., 2019; Wu et al., 2020).

Arbuscular mycorrhizal fungi, belonging to the subphylum
Glomeromycotina, are the most widespread root symbiotic
fungi, reportedly developing mutualistic associations with
approximately 80% of terrestrial plants (Smith and Read, 2008).
It was reported that colonization by AMF not only improves
growth and biomass of wheat plants but also aids the host to
surmount As-induced P deficiency and also maintains higher
P/As ratio when compared with non-colonized plants (Sharma
et al., 2017). In previous study, it was found that AMF
colonization can reduce uptake of As and its translocation
to wheat grains. Altered mineral status and photosynthetic
parameters mediated by AMF in stressed plants as mitigation
strategy is also accountable to affect carbohydrate metabolism
in plants. In addition, carbon handling is a fundamental
aspect of plant–AMF interaction, as a significant fraction of
the plant’s photosynthates (sugars) is directed toward AMF
(Bago et al., 2000) and thus can alter carbohydrate metabolism.
In line with this, studies on the effect of As contamination
and AMF inoculation on physiological processes such as
photosynthesis and carbohydrate metabolism are restricted to
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assessment at seedling stage (Jha and Dubey, 2004; Choudhury
et al., 2010; Sil et al., 2019). Keeping this in mind, the present
study was performed to assess the ability of Rhizophagus
intraradices to (i) promote photosynthesis-related activities
(pigment concentration, Hill reaction activity, gas exchange
parameters, and Chl a fluorescence) and (ii) stimulate the
activities of enzymes involved in sucrose and starch metabolism,
in wheat plants exposed to three levels of As.

MATERIALS AND METHODS

Plant Material and Fungal Inoculum
Seeds of wheat variety HD-2967 were procured from Agricultural
Technology Information Centre, Indian Agricultural Research
Institute (IARI), New Delhi, India. R. intraradices (accession
number CMCCWep319) inoculum was provided by Center
for Mycorrhizal Culture Collection, The Energy and Resources
Institute, New Delhi, India. Proliferation of fungal spores was
carried out in sterile soil using Sorghum bicolor L. as trap
plant (Kapoor et al., 2002). After confirmation of colonization
by mycorrhizal fungi (Phillips and Hayman, 1970), the plants
were let to dry progressively to stimulate spore formation under
shade (INVAM, 2014). The inoculum prepared consisted of finely
chopped R. intraradices colonized roots and dried soil containing
approximately 120–150 spores 10 g−1 of soil.

Experimental Layout
A pot-based (3 kg soil per pot) experiment was set up in
the Botanical Garden, Department of Botany, University of
Delhi. Three As levels (0, 25, and 50 mg As kg−1 of soil)
and two mycorrhizal treatments [inoculated with R. intraradices
(M) and non-mycorrhizal (NM) ones] were the factors under
consideration. In total, there were six treatments structured in
complete randomized block design.

Soil Treatment and Plant Growth
Conditions
Soil was collected from the Botanical Garden (0–15 cm in depth)
of the Department of Botany, University of Delhi, and air-dried
for use for the experiment. The soil was sieved through 2-mm
sieve and was maintained in a 3:1 (v:v) ratio by mixing thoroughly
with sand (henceforth termed as soil). Analysis of available
nutrients in soil was done prior to As addition at the Division
of Soil Science and Agricultural Chemistry, IARI, New Delhi,
India. The soil contained adequate levels of N (2,144.82 mg kg−1

of soil), P (1,868.74 mg kg−1 of soil), K (5,703.82 mg kg−1 of
soil), Ca (268.27 mg kg−1 of soil), and Mg (103.56 mg kg−1 of
soil). The soil was autoclaved at 121◦C and 15 psi for 1 h, twice,
to eradicate any existing microbes, followed by treatment with
three As concentrations, namely, 0, 25, and 50 mg As kg−1 of soil,
prepared using sodium arsenate (Na2HAsO4.7H2O). Selection of
these As concentrations was based on a previous study done in
wheat (Sharma et al., 2017) and concentrations of As reported
in agricultural soils of Southeast Asia (Alam and Sattar, 2000;
Rahman et al., 2013; Tong et al., 2014; Shrivastava et al., 2017).
These soil treatments are hereafter referred to as 0, 25, and 50As.

The required quantity of Na2HAsO4.7H2O for the three different
As levels was dissolved in distilled water (50 ml) and then mixed
with soil thoroughly in plastic trays to ensure homogenous As
distribution. The soil was left in trays to equilibrate with recurrent
cycles of saturation and air-drying for a period of 1 month and
dispensed in pots (Cox and Kovar, 2001). Air-dried soil (100 mg)
of each treatment was microwave digested using HNO3 and
H2O2. Volume of the digest was made up to 40 ml with Milli-
Q water and later filtered using 0.2-µm membrane filter and
analyzed for total As, using inductively coupled plasma mass
spectrometer (ICP-MS 7900, Agilent Technologies, Japan). The
total As in soil of 0, 25, and 50As was 15.2 µg kg−1, 23.6 mg kg−1,
and 48.9 mg kg−1, respectively.

Ten surface-sterilized (using 1% sodium hypochlorite
solution) wheat seeds were sown per pot. Mycorrhizal plants
were provided with 20 g of R. intraradices inoculum dispensed
at a depth of 2 cm in each pot. NM plants were supplied with
20 ml of soil washing of an equal amount of soil filtered through
Whatman No. 1. This guaranteed introduction of microbial
populations other than any other propagules, along with an equal
amount of autoclaved soil mix to exclude any other variables.
Pots were placed outside in open ground at the Botanical
Garden, Department of Botany, University of Delhi, under
natural conditions (rabi season; 9–16◦C), humidity (56–90%),
and natural light. Plants were watered to 60% field capacity of
soil to avoid drainage of As.

Plant Sampling
Just before the initiation of florets (i.e., 42 days after sowing), six
plants from each treatment were harvested along with roots. The
plants were washed with water to remove adhering soil particles.
Three plants from each treatment were oven dried at 60◦C till
a constant weight was recorded. The remaining three were used
for determining AMF colonization in roots and biochemical
estimation in leaves.

Mycorrhizal Colonization and Metal
Tolerance Index
Colonization of root cortex by R. intraradices was confirmed
after clearing and staining roots with 5% KOH and 0.05% trypan
blue in lactoglycerol following the modified protocol of Phillips
and Hayman (1970). Percent root colonization was calculated
following the gridline intersect method (Giovannetti and Mosse,
1980). For this, one hundred 1 cm root segments were placed in
petri dish with gridlines having 1 cm2 boxes. Roots were observed
under stereoscope, and horizontal and vertical intersects having
mycorrhizal structures were counted. Root colonization was
calculated as per the following formula:

Mycorrhizal colonization(%) =
No. of roots colonized

Total no. of roots
× 100

Metal tolerance index (MTI) of wheat to As in soil was
determined according to Rabie (2005) using the following
formula:

MTI (%) =
Plant DW(at particular level of As)

Plant DW(in control soil)
× 100
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where plant DW indicates dry weight of plant (roots and shoots)
determined after 42 days of sowing.

Concentration of As, Mg, P, and N
Oven-dried leaves were analyzed for their nutrient composition.
Leaves (100 mg) were finely ground and sieved through a
0.5-mm sieve. Sieved samples were then subjected to acid
digestion in a microwave reaction system (Anton Paar make,
model: Multiwave PRO) using concentrated nitric acid. The
internal temperature limit of the digester was maintained at
200◦C for 30 min. The volume of the digest was made to
40 ml with Milli-Q water and later filtered using 0.2-µm
membrane filter and analyzed for the estimation of As and
other nutrient concentrations. As and Mg concentrations were
quantified using ICP-MS (ICP-MS 7900, Agilent Technologies,
Japan). While a concentration of P was quantified following the
ammonium molybdate blue method described by Allen (1989),
N concentration was measured by CHNS analyzer (Elementar
Analysis System, Vario Micro Cube, Germany).

Concentration of Total Protein
The trichloroacetic acid (TCA)–acetone method described by
Jia et al. (2019) was used for extraction of total protein. The
leaves (100 mg) were ground in liquid nitrogen with pestle and
mortar. Five-time volume of TCA/acetone (1:9) was added to the
homogenized powder and mixed using a vortex. The mixture
was incubated at –20◦C for 4 h, followed by centrifugation at
6,000 g for 40 min at 4◦C. The supernatant was discarded, and the
resultant pellet was washed three times with chilled acetone. The
precipitate was air-dried and reconstituted in buffer (1:30, v/v)
containing sodium dodecyl sulfate (4%), dithiothreitol (DTT;
100 mM) and Tris–HCl (150 mM; pH 8). The mixture was
sonicated (80 W for 10 s, intermittent for 15 s) for 10 cycles
and boiled for 5 min. After that, the lysate was re-centrifuged
for 40 min at 14,000 g. The resulting supernatant was filtered
with 0.22-µm filter, and total protein was estimated following the
Bradford (1976) assay using bovine albumin serum as standard.

Photosynthesis
Photosynthetic Pigments
Intact leaf tissues (100 mg) were dipped in 7 ml of dimethyl
sulfoxide and heated at 65◦C for 30 min to extract photosynthetic
pigments (Hiscox and Israelstam, 1979). The extract was then
transferred to a graduated tube. With the use of dimethyl
sulfoxide, the final volume of the extract was made up to 10 ml.
Absorbance of the extract was read at 453, 645, and 663 nm.
Concentration of total Chl (T-Chl), Chl a, Chl b, and total
carotenoids was calculated using the formula of Arnon (1949).

Hill Reaction Activity
Hill reaction activity was assayed following the protocol of
Vishniac (1957). Leaf samples (1 g) were homogenized in 5 ml
of sucrose-phosphate buffer (0.5 M of sucrose in 0.05 M of
sodium phosphate buffer; pH 6.2). The homogenate was then
centrifuged at 1,000 g at 4◦C for 10 min. The supernatants
collected were re-centrifuged for 15 min at 5,000 g at 4◦C.
Suspensions of chloroplast were made by dissolving the pellets

after centrifugation in 5 ml of sucrose-phosphate buffer; 1 ml
of chloroplast suspension was then mixed with 4 ml of sucrose-
phosphate buffer and 0.5 ml 2,6-dichlorophenolindophenol
(DCPIP) (0.03%). Following this, the reaction sets were kept
under bright light (irradiance 800–1,000 µmol m−2 s−1)
for 30 min after taking initial absorbance at 610 nm. After
discoloration of the reaction mixture, absorbance was again
recorded. The differences in the absorbances were estimated, and
Hill reaction activity was calculated referring to a standard curve
prepared with DCPIP and was expressed as µg DCPIP reduced
mg−1 Chl min−1.

Gas Exchange Parameters
Leaf gas exchange parameters such as leaf Pn, transpiration
rate (E), stomatal conductance (Gs), and intercellular CO2
concentration (Ci) were analyzed on fully expanded young leaves
between 9:00 and 11:00 am on a clear sunny day using a portable
infrared gas analyzer (Gas Exchange Fluorescence System, GFS-
3000). The analyzer was adjusted for leaf surface area (3.00 cm2),
ambient CO2 concentration (ca) (398 ppm), photosynthetic
photon flux density (1,000 µmol m−2 s−1), impeller at 7, and
relative humidity inside the cuvette maintained at 35%. Water use
efficiency (WUE) was calculated by dividing the value of Pn by E.

Chlorophyll a Fluorescence
Chl a fluorescence was also monitored in terms of minimal
fluorescence (Fo), potential efficiency of PSII (Fv/Fo), maximum
efficiency of PSII (Fv/Fm), and photochemical quenching
coefficient (qP), where Fv is variable fluorescence (Fm – Fo),
Fo is minimal fluorescence, and Fm is maximal fluorescence on
the adaxial leaf surface, using a portable infrared gas analyzer
(Gas Exchange Fluorescence System, GFS-3000). For this, leaf
was dark adapted for 30 min and later irradiated by a saturating
pulse of 2,000 µmol m−2 s−1, sufficient for complete oxidation
of the reaction centers.

Sugar Metabolism
Total Soluble Sugar
Concentration of total soluble sugar (TSS) was quantified
following the phenol sulfuric acid reagent method (Dubois
et al., 1956). Samples were homogenized using 80% ethanol. The
extracts were then centrifuged for 20 min at 2,000 rpm. Reaction
mixture contained 1 ml of supernatant, 0.05 ml of phenol (5%),
and sulfuric acid (98%). The mixtures were then incubated in
water bath for 20 min at 30◦C. Absorbance was measured at
490 nm. With the use of standard curve of glucose, content of
TSS was quantified and expressed as mg g−1 fresh weight (FW).

Reducing Sugar, Non-reducing Sugar, and Reducing
Sugar/Non-reducing Sugar Ratio
Concentration of RS was measured following the protocol of
Miller (1972). Plant samples (1 g) were extracted in 5 ml of 80%
ethanol and later centrifuged at 2,000 g for 20 min. The collected
supernatants were then mixed with 1% 3,5-dinitrosalicylic acid
reagent (0.5 ml) followed by incubation for 5 min in boiling
water bath. Absorbance of the mixture was read at 515 nm.
Concentration of RS was estimated from a standard curve of
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glucose and expressed as mg g−1 FW. Quantification of NRS
was done by subtracting the values of RS from that of TSS and
expressed as mg g−1 FW.

Sucrose-Phosphate Synthase Activity
Sucrose-phosphate synthase (SPS) activity was assessed according
to Miron and Schaffer (1991). Plant enzyme extract was prepared
using the extraction buffer that contained HEPES–NaOH buffer
(50 mM; pH 7.5) containing MgCl2 (5 mM), EDTA (1 mM), DTT
(2.5 mM), and Triton X-100 (0.05%; v/v). The extracts were then
centrifuged at 4◦C at 10,000 rpm for 10 min. The reaction mixture
consisted of HEPES–NaOH buffer (50 mM; pH 7.5), MgCl2
(15 mM), fructose-6-phosphate (25 mM), glucose-6-phosphate
(25 mM), UDP-glucose (25 mM), and enzyme extract. The
mixtures were then incubated at 37◦C for 30 min. Termination
of the reaction was brought by addition of 30% KOH. Sucrose
formed during SPS catalyzed reaction was then estimated, and
its activity was expressed as nmol sucrose formed mg−1 protein
min−1.

Sucrose Synthase Activity
Activity of SS was estimated following the protocol of Miron
and Schaffer (1991). Plant enzyme extract was prepared using
HEPES–NaOH buffer (50 mM; pH 7.5) containing MgCl2
(5 mM), EDTA (1 mM), DTT (2.5 mM), and Triton X-100
(0.05%; v/v). The obtained extract was then centrifuged at 4◦C
at 10,000 rpm for 10 min. Reaction mixture included HEPES–
NaOH buffer (50 mM; pH 7.5), MgCl2 (15 mM), fructose
(25 mM), UDP-glucose (25 mM), and enzyme extract. The
mixture was then incubated at 37◦C for 30 min. The reaction
was terminated by adding 30% KOH. Sucrose hydrolyzed during
SS catalyzed reaction was estimated, and the enzyme activity was
expressed as µmol sucrose hydrolyzed mg−1 protein min−1.

Acid Invertase Activity
Activity of acid invertase (AI) was estimated following the
method of Borkowska and Szczerha (1991). Plant samples
were homogenized in sodium acetate buffer (10 mM; pH
4.6) containing MgCl2 (3.3 mM), EDTA (1 mM), and
phenylmethylsulfonyl fluoride (PMSF) (1 mM). Homogenates
were then centrifuged for 20 min at 10,000 rpm at 4◦C. Assay
mixture consisted of sodium acetate buffer (10 mM; pH 4.6),
sucrose (0.4 M), and the enzyme extract. The final volume of
1.0 ml was made up. After incubation for 30 min at 30◦C,
termination of the reaction was brought by addition of Na2HPO4
(0.5 M). Resulting RSs were then estimated by Nelson–Somogyi
method (Nelson, 1944), and activity was expressed as µmol
sucrose hydrolyzed mg−1 protein min−1.

Starch Metabolism
Starch Concentration
Starch concentration was estimated following the protocol
of McCready et al. (1950). Residual mass collected after
centrifugation (for TSS extraction) was dissolved in distilled
water. Later, perchloric acid was added and stirred, followed
by centrifugation of the mixture for 20 min at 2,000 rpm.
Supernatants were collected and then poured in conical flasks.

The total volume was later made up to 100 ml with the addition
of distilled water. Starch concentration was measured in 1 ml
of filtrate following the same procedure as that of TSS. Starch
quantity was then estimated in terms of glucose, and the factor
0.9 was used to convert the values of glucose to starch. Starch
concentration was expressed in mg g−1 FW.

α-Amylase and β-Amylase Activities
Following the method of Bush et al. (1989), the activity of
α-amylase was determined. Plant samples were homogenized
in sodium acetate buffer (0.1 M; pH 4.8) containing cysteine
(5 µM) and centrifuged for at 10,000 rpm 15 min at 4◦C. The
obtained supernatants were then heated at 70◦C for 5 min in
the presence of CaCl2 (3 mM). Reaction mixture consisted of
sodium acetate buffer (0.1 M; pH 4.8), soluble starch (1%) in
NaCl (0.15 M), and the enzyme extract. The final volume of the
reaction mixture was made up to 4 ml and left for incubation at
30◦C for 5 min. Termination of reaction was brought by addition
of HCl (6 M). Aliquots (1 ml) were then transferred to conical
flasks in which 0.5 ml of IKI solution (0.2% I2 in 2% KI) was later
added. The final volume was then made up to 25 ml with distilled
water. Absorbance was read at 660 nm. Activity of enzyme was
expressed as µg of starch hydrolyzed mg−1 protein min−1.

Activity of β-amylase was estimated following the protocol
of Bernfeld et al. (1965). The enzyme was extracted from plant
samples in phosphate buffer (pH 7.0) that contained NaCl
(0.5 M). Starch solution (1 ml) and properly diluted enzyme
(1 ml) were pipetted out and incubated at 25◦C for 15 min. The
reaction was later stopped by adding 2 ml of 3,5-dinitrosalicylic
acid reagent. The reaction mixture was then heated in a water
bath (60◦C) for 5 min. While the tubes were warm, 1 ml
of potassium sodium tartrate solution was added, followed by
cooling of the mixture under running tap water. The final volume
was made up to 10 ml using distilled water. The absorbance was
recorded at 570 nm. Activity of the enzyme was expressed as µg
of maltose hydrolyzed mg−1 protein min−1.

Starch Phosphorylase Activity
The activity of starch phosphorylase (SP) was determined
following the protocol of Dubey and Singh (1999). Plant samples
were homogenized in 50 mM of citrate buffer containing EDTA
(1 mM; pH 6.0), β-mercaptoethanol (5 mM), and PMSF (1 mM).
Homogenized samples were then centrifuged for 20 min at
10,000 rpm at 4◦C. Assay mixture was prepared containing citrate
buffer (50 mM), soluble starch (5%; w/v), glucose-1-phosphate
(0.1 mM), and enzyme extract; and the total volume was made up
to 4.0 ml. With the addition of 5% TCA, the reaction was stopped
after 10 min. Reaction mixture was then centrifuged, and the
phosphorus content in the supernatant was determined following
the method of Fiske and Subbarow (1925). Enzyme activity was
calculated as nmol of Pi liberated mg−1 protein min−1.

Statistical Analysis
Statistical Package for the Social Sciences Statistics software
version 21.0 (SPSS Inc., IBM Corporation, Armonk, NY,
United States) was used to analyze the results. Multivariate
analysis of variance (MANOVA) was used to evaluate statistical

Frontiers in Plant Science | www.frontiersin.org 5 March 2021 | Volume 12 | Article 640379

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640379 March 5, 2021 Time: 15:51 # 6

Gupta et al. AMF Alleviates Arsenic Stress in Wheat

differences among treatments. One-way analysis of variance
(ANOVA) was done for comparing the differences between
individual means using Tukey’s honestly significant difference
(HSD) post hoc test. All the values were represented as means of
three biological replicates± standard deviation (SD).

RESULTS

Root Colonization by Rhizophagus
intraradices
Histochemical staining of the roots showed successful
colonization of Triticum aestivum roots by R. intraradices. The
presence of As in soil increased per cent colonization. However,
the extent of increase varied in the two As concentrations. In
comparison with 0As, root colonization increased by 10.1 and
4.2% in 25 and 50As, respectively.

Metal Tolerance Index and
Concentrations of As, Mg, P, N, and Total
Protein
As level, mycorrhizal status, and their interaction significantly
affected MTI of wheat plants (Table 1). A significant (p ≤ 0.05)
reduction in MTI was observed in response to As amendments
in soil. In NM plants, an increase in As level from 25 to
50 mg resulted in a decline of MTI by 38.9%. However, plants
colonized by R. intraradices increased MTI by 91.7% at 25As and
131.5% at 50As when compared with their corresponding NM
plants (Table 1).

Two-way ANOVA showed that As additions in soil and
R. intraradices inoculation independently as well as interactively
affected concentration of As in wheat leaves (Table 1). With
increase in As level in soil, there was a concomitant increase
in leaf As concentration as substantiated by a 94.1% increase in
plants of 50As when compared with that of 25As. Nevertheless,
colonization by R. intraradices decreased leaf As concentrations
at all As levels with respect to their corresponding NM plants.

Concentration of P declined in wheat leaves in response to
presence of As in soil (Table 1). M plants possessed higher P
concentration in leaves over NM plants at all As levels. When
compared with NM plants, P concentrations increased by 78.1,
30.6, and 87.8% at 0, 25, and 50As, respectively, in M plants.
A similar effect was observed on concentrations of other nutrients
and total protein. Concentrations of Mg, N, and total protein
declined in wheat leaves in response to As stress (Table 1).
Colonization by AMF improved the antagonistic effect inflicted
by As and increased their concentration significantly when
compared with their NM counterparts at all As levels. At 50As,
their concentrations were adversely affected, and the ameliorative
effect of R. intraradices was evident with 37.5, 24.4, and 30.7%
increase in Mg, N, and total protein concentrations, respectively.

Photosynthesis
Photosynthetic Pigments
Presence of As in soil, mycorrhizal status, and interaction
of both the factors had significant influence on T-Chl, Chl

a, Chl b, total carotenoids, and Chl a/b ratio (Table 2).
With an increase in As level in soil, leaves of wheat plants
showed decline in concentration of T-Chl, Chl a, Chl b, and
total carotenoids. When compared with 0As, plants of 25As
treatment showed decline of 34.1, 29.6, 50.0, and 27.4% in
concentrations of T-Chl, Chl a, Chl b, and total carotenoid,
respectively. A similar but more severe effect was observed on
photosynthetic pigments at high As level. Plants grown at 50As
showed 56.1, 49.0, 80.0, and 38.35% decline in concentrations
of T-Chl, Chl a, Chl b, and total carotenoid, respectively,
over plants grown at 0As. Colonization by R. intraradices
augmented the concentrations of these photosynthetic pigments
at all As levels (Table 2). Chl a/b ratio also increased with
increasing As concentration in soil in NM plants. In M
plants, the ratio was significantly (p ≤ 0.05) lower than that
of NM plants at 25 and 50As. In response to mycorrhizal
colonization, the concentration of T-Chl increased by 12.2,
40.7, and 83.3% at 0, 25, and 50As, respectively. Similarly,
total carotenoid concentration at the abovementioned As
levels increased by 12.3, 26.4, and 33.3%, respectively, in M
plants over NM plants.

Hill Reaction Activity
Hill reaction activity of plant significantly (p ≤ 0.05) decreased
with increased As concentration in soil (Figure 1). Colonization
by R. intraradices showed increase in the activity at all As levels
when compared with NM plants, with a maximum of 40%
increase reported at 50As.

Gaseous Exchange
All the gas exchange parameters, except WUE, showed decline
with corresponding increase in As concentration in soil
(Figure 2). Mycorrhizal colonization assisted wheat plants in
maintaining better gaseous exchange when compared with NM
plants. At 0As, M plants significantly increased Pn and Ci
by 6.0 and 15.9%, respectively, over their NM counterparts.
The influence of R. intraradices in improving gaseous exchange
was more evident when plants were exposed to low As
stress, wherein M plants maintained 55.1, 24.1, 5.7, 2.6,
and 46.9% higher Pn, Gs, E, Ci, and WUE, respectively,
when compared with NM plants. Likewise, at high As
level, the abovementioned parameters increased by 40.9, 45.7,
3.2, 13.3, and 36.5%, respectively, in M plants over their
NM counterparts.

Chlorophyll a Fluorescence
While As level, mycorrhizal status, and their interaction
showed a significant (p ≤ 0.001) effect on Fo, Fv/Fo, and
Fv/Fm, a non-significant effect was reported on qP (Table 3).
Exposure to As stress led to decrease of Fo, Fv/Fo, and
Fv/Fm in a dose-dependent manner (Figure 3). Colonization
by R. intraradices led to an overall increase in Fv/Fm and
Fv/Fm as compared with NM plants, although the extent of
increase varied with each As level. Contrary to this, R. intraradices
colonization decreased Fo at 0As by 7.7%; however, it increased
by 22.3 and 70.1% at 25 and 50As, respectively, when
compared with NM plants.
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TABLE 1 | Arbuscular mycorrhizal colonization; MTI; and concentrations of As, P, Mg, N, and total proteins in leaves of Triticum aestivum in response to Rhizophagus
intraradices inoculation (M, mycorrhizal; NM, non-mycorrhizal) and As addition to the soil.

As level (mg
As kg−1 soil)

AMF status Mycorrhizal
colonization

(%)

MTI (%) As (µg g−1

DW)
P (mg g−1

DW)
Mg (mg g−1

DW)
N (mg g−1

DW)
Total protein
(mg g−1 FW)

0 NM – 0.48 ± 0.01e 3.24 ± 0.08b 5.46 ± 0.002d 44.56 ± 0.98b 112.54 ± 1.45b

M 56.00 ± 1.00c – 0.04 ± 0.01f 5.77 ± 0.14a 6.95 ± 0.003a 52.63 ± 0.97a 119.99 ± 2.56a

25 NM – 59.82 ± 6.95c 12.54 ± 1.36c 2.15 ± 0.12d 5.05 ± 0.004e 38.46 ± 0.61d 80.72 ± 1.06e

M 61.66 ± 1.53a 114.67 ± 10.35a 7.12 ± 1.05d 2.81 ± 0.07c 6.70 ± 0.10b 41.30 ± 0.91c 92.78 ± 2.50c

50 NM – 36.50 ± 4.95d 24.35 ± 0.77a 1.48 ± 0.09e 4.37 ± 0.001f 27.76 ± 1.15f 67.72 ± 2.93f

M 58.33 ± 0.58b 84.49 ± 5.48b 14.07 ± 0.11b 2.78 ± 0.05c 6.01 ± 0.004c 34.53 ± 0.60e 88.50 ± 1.96d

Significance As *** * *** *** *** *** ***

AMF – *** *** *** *** *** ***

As × AMF – *** * *** *** *** ***

Values represent means of three biological replicates ± SD. Different letters within the column represent significant difference among the treatments at p ≤ 0.05,
derived from Tukey HSD.
* and *** represent significance at p ≤ 0.05 and p ≤ 0.001, respectively, derived from two-way ANOVA.
As, arsenic; AMF, arbuscular mycorrhizal fungi; Mg, magnesium; MTI, metal tolerance index; N, nitrogen; P, phosphorus; HSD, honestly significant difference.

TABLE 2 | Concentrations of total T-Chl, Chl a, Chl b, total carotenoids, and Chl a/b ratio in leaves of Triticum aestivum in response to Rhizophagus intraradices
inoculation (M, mycorrhizal; NM, non-mycorrhizal) and As addition to soil.

As level (mg As kg−1 soil) AMF status T-Chl (mg g−1 FW) Chl a (mg g−1 FW) Chl b (mg g−1 FW) Chl a/b ratio Total carotenoids (mg g−1 FW)

0 NM 2.05 ± 0.04b 1.55 ± 0.07a,b 0.50 ± 0.02a 3.09 ± 0.31c 0.73 ± 0.06a

M 2.30 ± 0.05a 1.72 ± 0.09a 0.58 ± 0.04a 2.98 ± 0.40c 0.82 ± 0.09a

25 NM 1.35 ± 0.06c 1.09 ± 0.06c 0.25 ± 0.01c 4.29 ± 0.34b 0.53 ± 0.03d

M 1.90 ± 0.17b 1.51 ± 0.02b 0.39 ± 0.006b 3.83 ± 0.12b,c 0.67 ± 0.07b

50 NM 0.90 ± 0.09d 0.79 ± 0.08d 0.10 ± 0.01d 7.32 ± 0.36a 0.45 ± 0.05e

M 1.65 ± 0.11c 1.26 ± 0.04c 0.38 ± 0.07b 3.31 ± 0.54b,c 0.60 ± 0.02c

Significance

As *** *** *** *** ***

AMF *** *** *** *** **

As × AMF *** ** *** *** ***

Values represent means of three biological replicates ± SD. Different letters within the column represent significant difference among the treatments at p ≤ 0.05,
derived from Tukey HSD.
** and *** represent significance at p ≤ 0.01 and p ≤ 0.001, respectively, derived from two-way ANOVA.
As, arsenic; AMF, arbuscular mycorrhizal fungus; T-Chl, total chlorophyll; Chl a, chlorophyll a; Chl b, chlorophyll b; HSD, honestly significant difference.

Sugar Metabolism
Total Soluble Sugar, Reducing Sugar, and
Non-reducing Sugar Concentrations
Two-way ANOVA revealed that As level, mycorrhizal status,
and interaction of both these factors significantly affected
concentrations of TSS and NRS in wheat leaves. Exposure of
plants to As increased concentrations of TSS and RS at both As
levels and decreased NRS concentration with increased As level in
soil. However, mycorrhizal colonization showed a varied effect on
sugar concentrations (Table 4). While mycorrhizal colonization
significantly (p ≤ 0.05) increased TSS and NRS concentration at
25 and 50As, RS concentration increased significantly (p ≤ 0.05)
at 50As only. In response to mycorrhizal colonization, wheat
plants showed increase in TSS concentration by 41.1 and 35.3%
at 25 and 50As, respectively, when compared with NM plants.
A similar trend was observed in case of NRS. When compared
with NM plants, the concentration of NRS increased in M plants
by 106.5 and 117.2% at 25 and 50As, respectively. However, a
positive effect of R. intraradices colonization on RS concentration

was evident only at 50As level, as RS concentration significantly
increased by 6.6% in M plants when compared with NM plants
exposed to a similar As level.

Sucrose-Phosphate Synthase Activity
With increased concentration of As in soil, the activity of
SPS increased significantly (p ≤ 0.05), indicating sensitivity
of the enzyme toward As toxicity. When compared with
0As plants, SPS activity increased significantly by 124.7 and
298.9% at 25 and 50As, respectively (Figure 4). Colonization by
R. intraradices enhanced the enzyme activity by 16.5, 62.4, and
8.3% at 0, 25, and 50As, respectively, in M plants over their
corresponding NM plants.

Sucrose Synthase and Acid Invertase Activities
Both the activities of SS and AI increased in plants exposed
to As in a concentration-dependent manner. At 25As, SS and
AI activities of NM plants were enhanced by 35.7 and 25%,
respectively, over 0As plants (Figure 4). When compared with
0As level, an increment of 8.9 and 31.0% was observed in SS
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FIGURE 1 | Hill reaction activity in leaves of Triticum aestivum in response to
Rhizophagus intraradices inoculation (M, mycorrhizal; NM, non-mycorrhizal)
and As addition to the soil. Values represent means of three biological
replicates ± SD. Different letters represent significant difference at p ≤ 0.05,
derived from Tukey’s honestly significant difference (HSD). 0As, 0 mg As kg−1

soil treatment; 25As, 25 mg As kg−1 soil treatment; 50As, 50 mg As kg−1 soil
treatment.

and AI activities, respectively, in plants grown at 50As. At all As
levels, mycorrhizal colonization increased the activities of these
enzymes with respect to their NM counterparts. R. intraradices
colonization increased SS activity by 27.1 and 8.6% and AI activity
by 20.0 and 9.7% at 25 and 50As, respectively, over 0As plants.

Starch Metabolism
Starch Concentration
As stress resulted in decrease in starch concentration with
the lowest concentration reported at 50As. The same trend of
decline in the concentration was observed upon mycorrhizal
colonization at 25 and 50As. Nevertheless, in comparison with
their respective NM counterparts, M plants showed significant
(p ≤ 0.05) increase in starch concentration by 23.1% at 0As.
However, this AMF-mediated increase was non-significant at 25
and 50As (Figure 5).

α-Amylase and β-Amylase Activities
Activities of α- and β-amylase increased in a dose-dependent
manner when exposed to low and high concentrations of As.
When compared with 0As plants, an increase of 28.6 and
51.4% was observed on α-amylase activity in leaves of NM
plants exposed to 25 and 50As, respectively. No influence of
R. intraradices on α-amylase activity was reported, as indicated
by a non-significant effect of mycorrhizal status on its activity
at 0As. However, its activity decreased significantly at 25 and
50As by 26.1 and 35.2%, respectively, in comparison with NM
plants (Figure 5). Following a similar trend of α-amylase activity,
β-amylase showed increased activity with increased As level. In
NM plants, increments of 73.9 and 86.4% were observed over
control when plants were exposed to 25 and 50As, respectively.
However, the degree of increase in β-amylase activity was less in
M plants when compared with NM plant of the same As level.

Starch Phosphorylase Activity
Statistically significant (p ≤ 0.05) increments in SP activity was
observed when plants were exposed to As. SP activity increased by
41.5 and 89.9% at 25 and 50As, respectively, when compared with
0As plants. Inoculation with R. intraradices decreased its activity
at all As levels when compared with NM plants; nevertheless, with
increase in As concentration, its activity increased (Figure 5).

DISCUSSION

Presence of As in soil increased R. intraradices colonization in
wheat roots. Higher colonization of wheat roots by R. intraradices
in the presence of As suggests the tolerance of R. intraradices to
As. This observation is in congruence with higher spore density of
R. intraradices in As-contaminated sites over non-contaminated
soil reported by Schneider et al. (2013) and Krishnamoorthy et al.
(2015). Higher root colonization may be an adaptive strategy of
R. intraradices to As in soil.

The findings of the present study showed that colonization of
T. aestivum with R. intraradices alleviates the detrimental effects
of As stress on the photosynthetic parameters such as pigment
concentrations, Hill reaction activity, leaf gaseous exchange,
and Chl a fluorescence. The effect of As stress on the above
parameters has been studied in several plants, including wheat;
however, most of these studies are limited to seedling stage
(Chen et al., 2017; Sil et al., 2019; Majumder et al., 2020). While
seedlings depend on reserves stored in seed endosperm (Ferreira
et al., 2009), mature plants primarily meet their nutritional need
through photosynthesis and display a more complex source–sink
relationship (Yu et al., 2015). Further, it is known that formation
of AM in roots creates a strong carbon sink and thus influence
photosynthesis of plants (Gavito et al., 2019). Study on the long-
term effect of As on plants and the role of AMF in amelioration
of As stress requires assessment on mature plants. To the best
of our knowledge, this is the first study to provide evidence
for amelioration of As-induced perturbation in carbohydrate
metabolism by AMF inoculation.

The physiological and biochemical changes in plants due
to As contamination in soil can be attributed to As toxicity,
ionic imbalance, and replacement of essential elements with
As in various enzymatic reactions (Sharma et al., 2017; Alam
et al., 2019). The first and foremost reason for mitigation of As-
induced damage in photosynthetic machinery in M plants can be
attributed to reduced uptake and translocation of As in leaves
of T. aestivum observed in the study and improved antioxidant
potential (Sharma et al., 2017).

Roots get directly exposed to As present in the soil that
inhibits its growth and proliferation, resulting in compromised
nutrient uptake (Alam et al., 2019). Being a structural analog
of inorganic P, As(V) is transported across plasma membrane
through the phosphate transport systems, where it competes and
interferes with P uptake and metabolism (Stoeva and Bineva,
2003). This caused an increase in As and a decrease in P
concentrations in leaves of wheat grown in As-contaminated
soil in the present study. Further, wheat plants when exposed
to As in soil showed decline in concentrations of N and Mg in
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FIGURE 2 | Gas exchange parameters (A) net photosynthetic rate, Pn; (B) stomatal conductance, Gs; (C) intercellular CO2 concentration, Ci ; (D) transpiration rate,
E; and (E) water use efficiency, WUE, of Triticum aestivum in response to Rhizophagus intraradices inoculation (M, mycorrhizal; NM, non-mycorrhizal) and As addition
to the soil. Values represent means of three biological replicates ± SD. Different letters represent significant difference at p ≤ 0.05, derived from Tukey’s honestly
significant difference (HSD). 0As, 0 mg As kg−1 soil treatment; 25As, 25 mg As kg−1 soil treatment; 50As, 50 mg As kg−1 soil treatment.

leaves. The negative effects of As on the uptake of these nutrients
can be directly linked to reduced root growth due to alteration
in morphological and physiological characteristics of roots by

As (Khudsar et al., 2000). A lower N concentration under As
stress can also be due to the disturbances in activities as well as
affinities of key enzymes involved in N uptake and metabolism
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TABLE 3 | Two-way analysis of variance showing the effect of As level,
mycorrhizal status, and their interaction on various physiological attributes of
Triticum aestivum.

Parameter As level AMF status As × AMF

Hill reaction activity *** *** ***

Pn *** *** ***

E *** * ns

Gs *** *** ***

Ci *** *** ***

WUE *** *** ***

Fo *** *** ***

Fv/Fo *** *** ***

Fv/Fm *** *** ***

qP ns ns ns

SPS *** *** ***

SS *** *** ***

AI *** *** ***

Starch *** *** *

SP *** *** *

α-Amylase *** *** **

β-Amylase *** * ns

*p ≤ 0.05; **p ≤ 0.01 ***p ≤ 0.001; ns, not significant.
As, arsenic; AMF, arbuscular mycorrhizal fungi; Pn, net photosynthetic rate; E,
transpiration rate; Gs, stomatal conductance; Ci, intercellular CO2 concentration;
WUE, water use efficiency; Fo, minimal fluorescence; Fv/Fo, potential efficiency of
PSII; Fv/Fm, maximum efficiency of PSII; qP, photochemical quenching coefficient;
SPS, sucrose-phosphate synthase; SS, sucrose synthase; AI, acid invertase; SP,
starch phosphorylase.

(Ghosh et al., 2013; Sil et al., 2019). Decreased concentration of
As in M plants over NM plants in the present study substantiates
the potential of R. intraradices in mitigating As accumulation in
wheat leaves. AMF compensates for the As-mediated root toxicity
in plant by providing another route for nutrient uptake by virtue
of its extraradical hyphae (Ezawa et al., 2002; Smith and Read,
2008). The extraradical hyphae of AMF ensure access to larger
soil volume for acquisition of nutrients (Smith and Read, 2008),
augment N assimilation by influencing enzymes of N metabolism
(Govindarajulu et al., 2005; Zhu et al., 2016), mobilize immobile
nutrients by lowering the pH of rhizosphere (Smith and Read,
2008), and also rapidly transfer Pi as polyphosphate (Ezawa
et al., 2002). However, there is no report on transport of As(V)
as polyarsenate by an AMF hypha. There are reports that
deprivation in concentrations of these nutrients causes closure
of reaction centers of PSII, disrupts electron transport chain, and
compromises synthesis of photosynthetic pigment that ultimately
limits photosynthesis (Singh et al., 2017). An augmentation
in concentrations of these nutrients by AMF in present study
supports its ameliorative role under As stress.

One of the most consequential responses of plants to As
stress is the decline in concentrations of photosynthetic pigments
(Gusman et al., 2013; Emamverdian et al., 2015). Concentrations
of Chl a, Chl b, and total carotenoids decreased in NM as
well as M plants when subjected to As stress. Concentrations
of all pigments were significantly higher in M plants than NM
plants at each level of As contamination in soil. Increase in
concentrations of Chl a and Chl b in M over NM plants has been

reported in citrus, cucumber, and chickpea (Li et al., 2013; Chen
et al., 2017; Garg and Cheema, 2020). Chl contains tetrapyrrole
with Mg in the center and proteins (Fiedor et al., 2008). The
decrease in Chl concentrations due to As stress may be due
to decrease in the protein, N, and Mg concentrations observed
in the present study. The concentration of total proteins was
higher in M plants compared with NM plants at all levels of As
including control (0As), and this may be attributed to improved
N uptake in M plants over NM plants. Kitajima and Hogan (2003)
proposed that adjustment of Chl a/b ratio is an integral feature of
acclimatization to low N availability. The Chl a/b ratio is expected
to increase with decline in N concentrations. Carotenoids are
accessory pigments that protect Chl a and Chl b from oxidative
damage (Hou et al., 2007). Several studies have related decline in
Chl pigments to reduced level of carotenoids (Zhou et al., 2018;
Sil et al., 2019; Majumder et al., 2020). Higher concentration of
total carotenoids in M than NM plants at all levels of As stress
suggests protection of Chl from As-induced oxidative damage.

Among all the photosynthetic pigments, Chl b concentration
was most affected under As stress, followed by Chl a and total
carotenoids. An enhancement in Chl a/b ratio in present study
indicates higher degradation of Chl b over Chl a in the presence
of As. There are reports by Sil et al. (2019) and Majumder
et al. (2020) stating higher sensitivity of Chl b over Chl a under
As stress. However, the exact mechanism for such differential
behavior under As stress needs further investigation. Higher Chl
a/b ratio indicates higher distress on thylakoids (Zhou et al.,
2018), which reflects a plant’s inadequacy to transfer electron
and excitation energy to the PSII core complex (Xu et al.,
1995). Dose-dependent increase in Chl a/b ratio in T. aestivum
in present study is in line with the reports on maize, wheat,
and rice (Dresler et al., 2014; Sil et al., 2019; Majumder et al.,
2020). The increase in Chl a/b ratio can be ascribed to As-
mediated decrease in photosynthetic pigments and Hill reaction
activity (Allakhverdiev et al., 2000; Sil et al., 2019). Low Hill
reaction activity in plants results in decline in NADP reduction,
phosphorylation inactivation, and CO2 assimilation (Yang et al.,
2009). The decline in CO2 assimilation is corroborated in terms
of decline in Pn and starch concentration in As-stressed plants
observed in this study.

The lower Chl a/b ratio in M plants over NM plants reflects
higher efficiency to transfer excitation energy to the PSII core
complex, consequently resulting in more CO2 assimilation,
higher Pn, and augmented starch concentration in M plants when
compared with NM plants. These results show that M plants
are superior to NM plants in counterbalancing As-mediated
limitation in photosynthetic pigment and Hill reaction activity.

It is well documented that heavy metals affect gas exchange
parameters in plants (Tian et al., 2014; Majumder et al., 2020).
Contamination of As in soil resulted in reduced Pn and Gs in
present study. Normally, RuBisCo (ribulose-1,5-bis-phosphate
carboxylase/oxygenase) activity positively affects assimilation
of CO2 in plants. The decline in Pn under As stress has
been ascribed to inactivation of RuBisCo involved in carbon
fixation (Finnegan and Chen, 2012). Additionally, As-mediated
P deficiency in present study is also a possible reason for lower
Pn under As stress. P is involved in synthesis of ATP and
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FIGURE 3 | Chl a fluorescence (A) minimal fluorescence, Fo; (B) potential efficiency of PSII, Fv/Fo; (C) maximum efficiency of PSII, Fv/Fm; and (D) photochemical
quenching coefficient, qP, in leaves of Triticum aestivum in response to Rhizophagus intraradices inoculation (M, mycorrhizal; NM, non-mycorrhizal) and As addition
to the soil. Values represent means of three biological replicates ± SD. Different letters represent significant difference at p ≤ 0.05, derived from Tukey’s honestly
significant difference (HSD). 0As, 0 mg As kg−1 soil treatment; 25As, 25 mg As kg−1 soil treatment; 50As, 50 mg As kg−1 soil treatment.

TABLE 4 | Concentrations of TSS, RS, NRS, and NRS/RS ratio in leaves of Triticum aestivum in response to Rhizophagus intraradices inoculation (M, mycorrhizal; NM,
non-mycorrhizal) and As addition to the soil.

As level (mg As kg−1 soil) AMF status TSS (mg g−1 FW) RS (mg g−1 FW) NRS (mg g−1 FW) NRS/RS ratio

0 NM 8.59 ± 0.17d 3.27 ± 0.33d 5.32 ± 0.49b 1.62

M 9.74 ± 0.77d 4.04 ± 0.55d 5.69 ± 0.41b 1.40

25 NM 13.20 ± 1.12c 8.72 ± 0.17c 4.47 ± 1.12b 0.51

M 18.62 ± 0.12b 9.39 ± 0.46c 9.23 ± 0.34a 0.98

50 NM 20.54 ± 0.47b 16.13 ± 0.37b 4.41 ± 0.68b 0.27

M 27.79 ± 2.70a 17.20 ± 0.23a 9.58 ± 1.24a 0.55

Significance As *** *** *

AMF *** *** ***

As × AMF *** ns ***

Values represent means of three biological replicates ± SD. Different letters within the columns represent significant difference among the treatments at p ≤ 0.05,
derived from Tukey HSD.
*** represent significance at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively, derived from two-way ANOVA.
ns, not significant.
As, arsenic; AMF, arbuscular mycorrhizal fungus; NRS, non-reducing sugars; RSS, reducing sugar; TSS, total soluble sugars; HSD, honestly significant difference.
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FIGURE 4 | Activity of sucrose metabolizing enzymes (A) sucrose phosphate
synthase, SPS; (B) sucrose synthase, SS; and (C) acid invertase, AI, in leaves
of Triticum aestivum in response to Rhizophagus intraradices inoculation (M,
mycorrhizal; NM, non-mycorrhizal) and As addition to the soil. Values
represent means of three biological replicates ± SD. Different letters represent
significant difference at p ≤ 0.05, derived from Tukey’s honestly significant
difference (HSD). 0As, 0 mg As kg−1 soil treatment; 25As, 25 mg As kg−1 soil
treatment; 50As, 50 mg As kg−1 soil treatment.

other phosphorylated metabolites of photosynthesis. Deficiency
of P has been reported to cause closure of PSII reaction centers
and to inhibit transfer of electrons from PSII to PSI (Singh

et al., 2017). AMF colonization promotes photosynthesis by
increasing RuBisCo carboxylation and RuBP (ribulose-1,5-bis-
phosphate) regeneration (Chen et al., 2017), and augmenting P
uptake. Rai et al. (2014) showed that the presence of As reduces
CO2 assimilation and subsequently decreases CO2 demand that
accounts for decline in Gs observed in present study.

Arbuscular mycorrhizal fungi are obligate symbionts that
obtain all the carbon needed for their growth and activities from
the host plant. Approximately, one-fifth of the carbon fixed as
photosynthates is used in sustenance of AM symbiosis (Bago
et al., 2000). This increase in carbon demand in combination
with higher concentration of photosynthetic pigments, lower Chl
a/b ratio, and enhanced Hill reaction activity triggers Pn in M
plants, leading to higher stomatal conductance and consequently
increasing E and Ci.

Among the two energy harvesting centers in plants, PSII is
more sensitive to stress than PSI (Björkman and Demmig, 1987;
Stoeva and Bineva, 2003; Iriel et al., 2015). PSII photochemistry is
represented by Chl a fluorescence attributes, namely, Fo, Fv/Fo,
and Fv/Fm (Zhu et al., 2014). Decline in these features due
to As in T. aestivum indicates compromised functionality of
PSII, damage to photosynthetic apparatus, and photoinhibition
(Stoeva and Bineva, 2003; Wang et al., 2016). Depreciation in
PSII efficiency due to As stress has also been reported in Oryza
sativa and Glycine max (de Andrade et al., 2015; Piršelová
et al., 2016). Nevertheless, colonization of wheat plants by
R. intraradices protected PSII reaction center from As-mediated
damage. Under As stress, M plants showed lesser decrease in
Fv/Fm than did NM plants. It can be inferred that adverse
effects of As on photochemistry of PSII of wheat plants can
be alleviated by inoculation with R. intraradices, which aid in
improving As tolerance.

Sugars generated by photosynthesis, besides serving as
substrates in cellular respiration that fuel metabolism, also play a
pivotal role in the maintenance of growth, osmotic homeostasis,
and membrane stabilization of plant cells (Muller et al., 2011;
Bouthour et al., 2012; Sami et al., 2016). On the other hand,
starch is the main storage carbohydrate in plants. Under stressful
conditions, breakdown of starch results in accumulation of
soluble sugars to carry out basal metabolism to sustain plant’s
growth and development (Stitt and Zeeman, 2012; Begum et al.,
2019; Gupta and Thind, 2019). The increment in concentration of
TSS and decline in starch concentration with increase in As stress
in the present study is in agreement with the above statements.
This is further supported by increase in the activities of the
starch-degrading enzymes.

Enhanced concentration of TSS generates a feedback
inhibition of Pn (Goldschmidt and Huber, 1992). The limitation
in Pn activates remobilization of starch as observed in the present
study, as indicated by enhanced activities of starch-hydrolyzing
enzymes. Additionally, decline in starch concentration can
also be credited to As-mediated restrain on starch synthesizing
enzymes as reported by Yadav (2010). Findings of the study
indicate that when subjected to As-treated soil, plants sustain
basic metabolism by enhancing sugars accumulation, limiting
Pn, and augmenting starch degradation. Contrary to this,
inoculation of wheat plants with R. intraradices mitigated effects
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FIGURE 5 | Concentration of (A) starch and activities of starch metabolizing enzymes; (B) starch phosphorylase, SP; (C) α-amylase, and (D) β-amylase in leaves of
Triticum aestivum in response to Rhizophagus intraradices inoculation (M, mycorrhizal; NM, non-mycorrhizal) and As addition to the soil. Values represent means of
three biological replicates ± SD. Different letters represent significant difference at p ≤ 0.05, derived from Tukey’s honestly significant difference (HSD). 0As, 0 mg As
kg−1 soil treatment; 25As, 25 mg As kg−1 soil treatment; 50As, 50 mg As kg−1 soil treatment.

of As on starch-hydrolyzing enzymes, as indicated by enhanced
starch concentration as a consequence of decreased activities of
starch-degrading enzymes. This can be explained by (i) lower
requirement of sugar due to lower intensity of As stress (low As
concentration) in M plants and (ii) higher Pn that contributes
to sugar requirement under As stress and further reduces
starch degradation.

The increase in RS and NRS together contributed to increase
in concentrations of TSS in NM and M plants. The increase
in TSS and RS concentrations in response to As can be linked
to increment in activities of sucrose-metabolizing enzymes
and breakdown of starch as indicated by elevated activities
of starch-degrading enzymes in the present study. Sucrose-
synthesizing enzyme, SPS, is reported to be influenced by
abiotic as well as biotic stress conditions (Krause et al., 1998).
Increase in activity of SPS at 25 and 50As was also observed

in wheat plants under As stress. Soon after its synthesis,
sucrose is degraded by sucrose-metabolizing enzymes to produce
RS as observed in this study as well. The observed changes
are consistent with the report of Choudhury et al. (2010).
Increase in AI activity under heavy metal stress facilitates
production of hexoses that aid in quenching free radicals
and also ensure instigation of ROS metabolism via oxidative
pentose phosphate pathway (Peshev et al., 2013). Interestingly,
while in the absence of As, the ratio of NRS/RS was higher
in NM plants; under increasing As stress, NRS/RS ratio was
higher in M plants. This implies that under As stress, RS
was synthesized more than NRS in NM plants, and NRS
contributed more to the increase in concentration of TSS in M
plants. The variations in relative proportion of sugars between
NM and M plants can be explained on the basis that while
NM plants require RS to scavenge As-induced ROS, M plants
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are already endowed with high enzymatic and non-enzymatic
antioxidants (Sharma et al., 2017). On the other hand, M plants
require higher concentration of sucrose (NRS) for long-distance
transport to meet the high demand of sugars to maintain AM
symbiosis (Ward et al., 1997).

CONCLUSION

As-mediated perturbations in wheat plants resulted in a dose-
dependent decline in gas exchange parameters, namely, Pn, Gs,
Ci, and E. Apparent decrease in pigment concentration along
with Hill reaction activity was also reported under As stress.
Several factors contribute to ameliorative effects of AM on
photosynthesis such as higher concentration of photosynthetic
pigments, favorable Chl a/b ratio, higher Hill reaction activity,
and PSII efficiency that ultimately depend upon As concentration
in the leaf tissue and uptake of mineral nutrients such as P, N,
and Mg. Additionally, increased carbon demand as a result of
formation of AM prevents feedback inhibition of photosynthesis
due to As-induced reduction of CO2 assimilation. Higher Pn in
M plants reduced the need for starch degradation to form sugars.
Furthermore, proportion of NRS (sucrose) was higher in M
plants that endowed better ability to tolerate As stress. Therefore,
deployment of AMF as a biofertilizer in As-contaminated regions
to refurbish physiological as well as biochemical impediments in
wheat for improved growth is highly suggested.
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