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Descriptive analysis via trained sensory panels has great power to facilitate flavor
improvement in fresh fruits and vegetables. When paired with an understanding of fruit
volatile organic compounds, descriptive analysis can help uncover the chemical drivers
of sensory attributes. In the present study, 213 strawberry samples representing 56
cultivars and advanced selections were sampled over seven seasons and subjected
to both sensory descriptive and chemical analyses. Principal component analysis and
K-cluster analyses of sensory data highlighted three groups of strawberry samples, with
one classified as superior with high sweetness and strawberry flavor and low sourness
and green flavor. Partial least square models revealed 20 sweetness-enhancing volatile
organic compounds and two sweetness-reducing volatiles, many of which overlap
with previous consumer sensory studies. Volatiles modulating green, sour, astringent,
overripe, woody, and strawberry flavors were also identified. The relationship between
soluble solids content (SSC) and sweetness was modeled with Bayesian regression,
generating probabilities for sweetness levels from varying levels of soluble solids.
A hierarchical Bayesian model with month effects indicated that SSC is most correlated
to sweetness toward the end of the fruiting season, making this the best period to make
phenotypic selections for soluble solids. Comparing effects from genotypes, harvest
months, and their interactions on sensory attributes revealed that sweetness, sourness,
and firmness were largely controlled by genetics. These findings help formulate a
paradigm for improvement of eating quality in which sensory analyses drive the
targeting of chemicals important to consumer-desired attributes, which further drive the
development of genetic tools for improvement of flavor.

Keywords: descriptive analysis, flavor, fruit chemical analysis, sensory, sugars, volatile organic compounds

INTRODUCTION

The garden strawberry (Fragaria × ananassa) is popular for its pleasant aroma and sweet taste.
High levels of sweetness and intense flavor are the leading factors driving frequent strawberry
purchases (Colquhoun et al., 2012). This is consistent with consumer sensory studies that identify
sweetness intensity and flavor intensity as the top sensory attributes associated with consumer liking
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(Jouquand et al., 2008; Schwieterman et al., 2014). Therefore,
sweetness and flavor must be essential criteria during all stages
of strawberry breeding in order to develop cultivars that are
successful in the marketplace.

While a consumer panel is useful for revealing relationships
between some sensory attributes and hedonics (Oliver et al.,
2018a), it requires a large number of panelists due to variation
from diverse demographic backgrounds (Knee, 2002). In
contrast, a descriptive analysis (DA) only requires eight to 12
trained panelists. A DA begins with creation of descriptors
for the product and a process to calibrate the descriptors
with reference standards until precise and specific descriptors
are achieved (Lawless and Heymann, 2010). While a DA
does not directly quantify hedonic responses, it can be used
to interpret consumer liking when the same samples are
tested by consumer panels (Lawless and Heymann, 2010).
Trained DA panels have been widely implemented for sensory
evaluations of fruits and vegetables under different storage
conditions, maturity stages, spans of postharvest storage, or
cultural practices (Cliff et al., 1998; Varela et al., 2005;
Kårlund et al., 2015).

To identify the chemical drivers of sensory attributes, DA can
be combined with chemical analysis. Combined analyses have
led to discoveries of the relationships among sensory intensities
and flavor-active compounds. In tomato, sweetness, sourness,
bitterness, astringency, and saltiness intensities were found to be
correlated to sugars, acids, and volatiles (Baldwin et al., 1998).
In peach, sweetness and aroma are influenced by organic acids,
sugars, and acids (Colaric et al., 2005). In jujube and many other
fruits, multiple volatiles contribute to fruity flavor (Stavang et al.,
2015; Plotto et al., 2017).

Flavor is a complex of inputs from multiple senses. The
range of chemicals contributing to the flavor of fruits includes
those interacting with taste buds like sugar and acids and
those interacting with olfactory receptors like volatile organic
compounds (Lim and Johnson, 2012; Klee and Tieman, 2018).
Among all sensory attributes, sweetness is the predominant
driver for consumer preference in strawberry (Schwieterman
et al., 2014). However, the majority of strawberry consumer
samples fail to meet consumers’ expectations of sweetness
according to our recent consumer sensory study (Fan et al.,
2020). It is well established that congruent odors increase
taste sensations (Frank and Byram, 1988; Lim and Johnson,
2012), and specific volatiles can enhance sweetness perception
(Baldwin et al., 2004, 2008; Tieman et al., 2012). Therefore,
increasing sweetness-enhancing volatile content in fruit through
horticultural practices or genetic manipulations is an attractive
alternative to increasing sugar, as it should not have a detrimental
effect on agronomic traits like yield (Whitaker et al., 2012).
In the same consumer study (Fan et al., 2020), we found
20 volatiles enhancing sweetness perception independently of
sugars. Adding volatiles to the predictive model explained 28%
more variability in sweetness than a model with sugars and acids
alone (Fan et al., 2020). Additional sensory-chemical studies are
needed to validate the effects of sweetness-modulating volatiles
and evaluate volatiles’ effects on additional sensory attributes
(Whitaker et al., 2020).

Sugars, acids, and minerals are the major soluble components
in strawberry fruit. Sucrose, glucose, and fructose together
account for 99% of total sugars (Montero et al., 1996).
Soluble solids content (SSC) has long been considered a good
approximation of total sugars in strawberry fruit (Pelayo-
Zaldívar et al., 2005; Whitaker et al., 2011). The high-throughput
capability of refractometers allows SSC to be routinely used for
quality assessment in breeding programs and other industry
applications. However, the link between SSC and perceived
sweetness may be complex. Discrepancies in the degree of
sweetness perception as explained by SSC have been observed
across studies (Jouquand et al., 2008; Whitaker et al., 2011;
Perez et al., 2016). In addition to genetics, sugar concentration is
influenced by harvest dates, locations, maturity, and even fruit-
to-fruit variability (Shaw, 1990; Gunness et al., 2009; Hasing
et al., 2013). Thus, using ambiguous or arbitrary SSC thresholds
may lead to inaccurate conclusions about fruit quality. An ideal
predictive framework would take into account uncertainty due to
the dynamics of the biological system to construct confidence-
based SSC scales. Probabilistic models should facilitate better
understanding of biological pathways and mechanisms behind
human perception and cognition (Heath et al., 2008; Ma, 2012).
In particular, Bayesian models have the advantages of providing
hierarchical structures of uncertainty and posterior probability
distributions for sample prediction instead of point estimates
of means. Advanced computational algorithms that make the
implementation of Bayesian models feasible, like Markov chain
Monte Carlo simulations, are now available (Van Boekel, 2004;
Wilkinson, 2007).

The main objectives of the present study were to (1)
combine descriptive sensory analysis and chemical analysis to
explore the volatile drivers of sweetness and sourness as well as
astringency, green, strawberry, overripe, and woody flavors in
fresh strawberries, (2) construct Bayesian models to better define
the relationship between sweetness and SSC, and (3) utilize a
complex set of strawberry genotypes and environments to better
understand the genetic and environmental effects underlying
sensory attributes. Each of the three objectives aims to facilitate
future flavor breeding by better quantifying factors impacting
sensory qualities. Quantifying the effects of individual volatiles
will allow us to narrow down the volatile candidates for genetic
improvement. Probabilistic SSC evaluation criteria and a better
understanding of genotype and environment effects on sensory
attributes will inform breeding strategies for sweetness and other
sensory qualities.

MATERIALS AND METHODS

Fruit Sampling
In 2009–2010 and 2015–2019, strawberry (Fragaria × ananassa)
samples from 56 cultivars and advance selections (advance
selections were elite breeding lines selected by the breeder,
which have been evaluated for other agronomic and quality
traits for more than 2 years) (Supplementary Table 1) were
harvested two to four times a year, totaling 213 genotypes/harvest
date combinations. All samples were harvested from strawberry

Frontiers in Plant Science | www.frontiersin.org 2 March 2021 | Volume 12 | Article 640704

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640704 March 11, 2021 Time: 17:3 # 3

Fan et al. Volatiles Influencing Strawberry Sensory Attributes

breeding research plots established at the University of Florida
(UF) Gulf Coast Research and Education Center (Balm, FL)
or the Florida Strawberry Growers Association headquarters
in Dover, FL. All fruiting field trials were arranged in
randomized complete block designs and were managed based
on recommended commercial practices for Florida strawberry
annual plasticulture (Whitaker et al., 2019). At each harvest date,
one to five clamshells, depending on fruit availability, of fully ripe
fruit from five replicate plots for each genotype were collected
and transported to the US Department of Agriculture laboratory
in Winter Haven (2009–2010) or Fort Pierce (2015–2019), FL.
The fruits were stored at 5◦C upon arrival and evaluated 1 day
(2009–2010) or 3 days (2015–2019) after harvest. Fruits from
each replicate plot were kept separate for chemical analyses but
were combined for sensory evaluations.

Fruit Quality Analysis
Sensory descriptive analysis, SSC, and titratable acidity (TA)
methods were previously described (Plotto et al., 2013). In
brief, 10 to 12 panelists (three to four males and seven to
eight females, age ranging from 25 to 65 years old, with mean
range of 41–50 years old) trained to evaluate fresh fruits and
fruit products reconvened each year to review descriptors and
reference standards used for strawberry evaluation. The fruits
were rated on a structured line scale with intervals from 0 to
10, with definitions as follows: 1 to 2 = low, 5 = medium,
and 8 to 9 = high intensity of the rated attribute. Reference
standards were served at each panel and were for sweet (sucrose
1–5% + citric acid 0.025–0.05%), sour (sucrose 1% + citric
acid 0.05–0.15%), astringent (alum 0.125%), strawberry flavor
(frozen strawberry puree), green flavor [(Z)-3-hexenal in water,
0.5–3.0 ppm], musty/woody (methyl isoborneol, 50 ppb, a drop
on filter paper), and fermented/overripe (overripe strawberry
left at 25◦C overnight) (Plotto et al., 2013). Firmness was
not evaluated in 2009 but was added in 2010 and thereafter;
no reference was provided for firmness, but the scale was
anchored with the words “soft” for ratings 1 and 2 and “firm”
for ratings 8 and 9. The fruits were prepared by washing
the individual strawberries under running water, drying, and
serving as whole fruit (2009–2010) or cut into quarters (2015–
2019). Two to three whole fruits or four to eight strawberry
quarters were served in individual 4-oz cups with lids (Solo R©

cup Company, Urbana, IL, United States), making sure that each
piece was from a different fruit. The fruits were served at room
temperature, in isolated booths under red lighting. Four to six
fruit samples (genotypes) were served in one session, at two
sessions per day, with up to 12 genotypes randomly distributed
across both sessions. Compusense R© Five and Compusense Cloud
(Compusense Inc., Guelph, ON, Canada) were used to assign
a sample presentation following a William’s design pattern and
record panelist ratings.

The fruits from each replicate for chemical analyses were
different from those used in the sensory panels. Up to 10 fruits
(depending on availability) per field replication were cut, with
tissue taken for volatile analysis (see below), and the remaining
fruits were pureed and frozen at −20◦C for later SSC and TA
analysis, as described in Plotto et al. (2013).

Volatile Identification and Quantification
In 2009–2010, 30 g from about 10 fruits per genotype and
replication was homogenized for 20 s. Saturated CaCl2 was added
(w/w) to reduce enzymatic activity (Buttery et al., 1987) right after
or at the same time as when homogenizing. Internal standard 3-
hexanone (Sigma-Aldrich) was added to a final concentration of
1 ppm. Finally, 5 ml of the mixture was transferred to 20-ml glass
vials, crimped with magnetic caps, and stored at −20◦C. From
2015 to 2019, 6-g wedges from multiple fruits per genotype were
frozen in liquid nitrogen and immediately processed or stored
at −80◦C. Frozen tissue was grounded with pre-cooled mortar
and pestle. Three grams of frozen fruit powder was transferred
to 20-ml glass vials (Gerstel) with 3 ml saturated NaCl and 6
µl of internal standard, 3-hexanone at 1,000 ppm, to a final
concentration of 1 ppm. The vials were crimped with magnetic
caps and stored at −20◦C. CaCl2 was replaced by NaCl in 2015
after realizing that the calcium from CaCl2 might interfere with
pectin from the strawberry fruit.

Volatiles were sampled from headspace with a 2-cm tri-
phase solid-phase micro-extraction (SPME) fiber (50/30 µm
DVB/Carboxen/PDMS; Supelco, Bellefonte, PA, United States)
and injected into a gas chromatography–mass spectrometry
(GC/MS) system (a model 6890 GC coupled with a model 5973
N MS, Agilent Technologies, Palo Alto, CA, United States)
as described by Bai et al. (2014). Briefly, a homogenized
sample in the vial was incubated for 30 min at 40◦C; the
SPME fiber was then exposed to the headspace for 30 min
at 40◦C. After exposure, the SPME fiber was inserted into
the injector of GC to desorb for 15 min at 250◦C. A DB-
5 (60-m length, 0.25-mm i.d., 1.00-µm film thickness; J&W
Scientific, Folsom, CA, United States) column was used, with
the oven programmed to increase at 4◦C min−1, from the
initial 40◦C to 230◦C, and then ramped up at 100◦C min−1 to
260◦C and held for 11.70 min for a total run time of 60 min.
Helium was used as the carrier gas at a flow rate of 1.5 ml
min−1. The settings for MS were inlet, ionizing source, and
transfer line temperatures at 250, 230, and 280 ◦C, respectively.
The mass units were monitored from 40 to 250 m/z and
ionized at 70 eV.

Volatile identification and quantification of peak areas were
conducted with MassHunter Workstation software (Version 10.0;
Agilent Technologies). Initial identification was done by mass
spectra searches with the NIST library (Version 14, match
score > 0.9). The identification was then confirmed by comparing
the retention indices generated by running standard C6-C17
alkane mixture under the same conditions as the samples with
online resources (NIST Chemistry WebBook and Flavornet.org).

Bayesian Models of Sweetness
Predicted by SSC
Here we described the structure of a robust linear mixed model
(Rosa et al., 2003; Svensén and Bishop, 2005):

p
(
β0, βssc, {τi} , ν, σ

2 ∣∣ {yi} , {xi}
)
∝

[∏
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)
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where β0 is the interception, βssc is the slope of SSC, yi is the
sweetness rating for each sample, xi is the sample SSC, and σ2 is
the variance of yi. Since the linear model is vulnerable to extreme
outliers, robust inference was modeled via hyper-parameter τi
for changing residual variance in order to reduce the outliers’
influence. All priors for parameters (β0, βssc, {τi} , ν, σ2) in the
second line were set to random priors.

The above model was extended to a mixed hierarchical model
incorporating varying slopes across harvest months.
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where βj is the slope of SSC at harvest month j, and yij and
xij are sweetness score and SSC level of the ith sample at
harvest month j, respectively.

∏
j N
(
βj
∣∣ µ, σ2

1
)

allows different
priors for βj. The detailed model setup in Just Another Gibbs
Sampler 4.3.0 and R software (R version 3.6.3) script to simulate
data, run models, and visualize results can be found in the
Supplementary Presentation 1.

Statistical Evaluation
Mean sample sensory attributes were averaged across 10 to 12
panelists (Supplementary Table 3). Chemical data were pooled
across field replicates for each sample (Supplementary Table 2).
Radar plots were drawn with the “fmsb” package in R software to
visualize sensory changes among genotypes and harvest months
in 2018 and 2019. Principal component analysis (PCA) and
K-clustering (k = 3) were conducted on sensory attributes using
the “prcomp” and the “kmeans” functions in R for the purpose
of visualizing sample and sensory attribute relationships and
PCA biplots constructed with the “factoextra” package. In order
to find important chemicals that influence sensory attributes,
partial least square (PLS) models were built for each year with all
chemical data and sensory firmness from the DA to account for
mouth feel since fruit firmness was not instrumentally measured,
and pH was excluded due to its high correlation with TA.
PLS (number of components = 5) was analyzed with the “plsr”
function and “PLSVarSel” package in R. A chemical was deemed

important if the variable importance for the projection (VIP)
(Chong and Jun, 2005) was larger than 1. The importance index
used to compare importance among chemicals was built such that
importance index = (number of years with VIP > 1 and positive
effect) – (number of years with VIP > 1 and negative effect).
The range of index was anchored at ±7, allowing chemicals to
have significant positive or negative effects for all 7 years of
data. To investigate genetic and environmental effects on sensory
and physicochemical attributes, individual multivariate models
with fixed effects, Y GMG Me, were built for each year and
attribute, where Y is a sensory attribute, G is the genotype effect,
M is the harvest month effect, and G × M represents their
interaction. The P-values for all effects were then extracted with
the ANOVA function in R. Negative log transformed p-values,
after Bonferroni correction, were plotted to show the significance
level for each effect.

RESULTS AND DISCUSSION

Descriptive Analysis of Fresh Strawberry
Fruits
In the 2009, 2010, 2015, 2016, 2017, 2018, and 2019 seasons, a
total of 213 genotype/harvest date combinations from 56 cultivars
and advanced selections were subjected to DA. The mean
sweetness of all samples was 4.2, with a range from 2.5 to 5.9, on a
0-to-10 scale (Supplementary Table 3). Among all descriptors,
the smallest range was observed for woody flavor, from 0.2
to 2.2 (Supplementary Table 3). Substantial eating quality
differences were observed among genotypes. In 2018 and 2019,
“Florida Beauty” had the highest sweetness (average 5.0), while
’Florida Brilliance’ had the highest sensory firmness (average
5.8) (Figure 1). Decreasing average sweetness was observed
from January to March in each year, in line with previous
findings (Jouquand et al., 2008; Fan et al., 2020). This decline in
sweetness was reflected by a similar decline in SSC due to rising
temperatures during the Florida fruiting season (MacKenzie
and Chandler, 2009; Hasing et al., 2013). Since changes in
temperature alter enzymatic activity during fruit development,
volatiles also exhibited great variability over the harvest months.
In extreme cases, presence-or-absence changes were observed for
some volatiles (Supplementary Table 2). Thus, a similar decline
was also observed for strawberry flavor (Figure 1). The large
variability of volatiles emphasizes the importance to evaluate
the sensory qualities of strawberry over multiple harvests and
seasons. PCA with two components using sensory descriptors,
SSC, TA, and pH explained 50% of the total variation (Figure 2).
Sweetness and strawberry flavor, which are desirable sensory
attributes, as well as SSC, were negatively correlated with PC1,
in contrast with sourness and green flavor. PC2 was positively
correlated with TA, overripe, and woody flavors, which were
undesirable traits and were negatively correlated with firmness.
Similar PCA patterns have been observed for multiple DA studies
using fresh strawberries (Plotto et al., 2013; Oliver et al., 2018a).
The samples could be grouped into three clusters using K-means
clustering (Figure 2 and Supplementary Table 1). The first
cluster was mostly confined to the 4th quadrant with high
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FIGURE 1 | Genotype means across harvest months and harvest month means across genotypes in 2018 and 2019 for eight descriptive sensory attributes. The top
two plots show harvest month means across genotypes. The differently colored lines represent months. The bottom two plots show genotype means across three
harvests. Colored lines represent genotypes. Scale from 0 to 10 was used for all attributes.

sourness and green flavor. The second cluster was along the
negative side of PC1, classified with high sweetness, strawberry
flavor, and firmness. This cluster appeared to comprise samples
with the most desirable attributes. Our recent releases, “Florida
Beauty” and Sweet Sensation R© “Florida127,” were consistently
clustered in group 2. Specifically, “Florida Beauty” was rated
group 2 in 10 out of 14 evaluations and Sweet Sensation R©

‘Florida127’ was rated group 2 in 13 out of 16 evaluations
(Supplementary Table 1). The last cluster was correlated with
higher levels of woody flavor, overripe flavor, and astringent
mouthfeel. While there is fluctuation over the years, sweetness
and strawberry flavor have always been strongly correlated. In
contrast, sourness has been correlated with astringent mouthfeel,
green, woody, or overripe flavors, depending on the season
(Supplementary Presentation 2 and Plotto et al., 2013).

During the breeding process, many criteria are weighted
to select the most well-rounded genotypes. Improvement of
eating quality is generally subject to the taste preferences
and limited sampling by the breeding team. DA provides a
quantitative tool to finely discriminate the eating quality of
different genotypes. Since consumer acceptance can be inferred
from desirable attributes like sweetness, strawberry flavor, and
firmness (Azodanlou et al., 2003), a DA-based quality index
has been developed and implemented for strawberry growers
and breeding programs (Ares et al., 2009). However, caution

must be taken when extrapolating the index across programs
because of differences in understanding of the scale and
consumer expectations. To maximize the impact of DA, the
process of identifying descriptors, developing quality indices, and
establishing benchmarks must be carefully undertaken.

Volatiles Modulating Sensory Attributes
The chemical analysis of 213 samples yielded 71 volatiles,
covering 17 of 22 aroma-active volatiles reported in Nuzzi
et al. (2008) and 21 of 29 aroma-active volatiles evaluated with
GC–olfactometry in ’Du et al. (2011). Volatiles with significant
influence on sensory attributes were identified with PLS models.
In order to minimize the effect of sample preparation and
environments, the PLS model was analyzed independently for
each year, and the summary statistic of importance index was
used to gauge the overall effect on sensory attributes across 7
years. Models using only 5 years of data from 2015 to 2019
identified a consistent but smaller set of important chemicals.
A significant effect of a volatile for a sensory quality had to be
consistent over at least 2 years to be considered as influential.

Twenty volatiles were shown to enhance sweetness
independent of SSC (Figure 3 and Supplementary Table 4).
While only 14 genotypes overlapped with our previous consumer
study (Supplementary Table 5 and Fan et al., 2020) and
the volatile sampling methods were different, our top three
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FIGURE 2 | Biplot with the first two components from a principal component analysis. Vectors represent sensory and physiochemical attributes. Points represent
individual samples. Three colored eclipses indicate three clusters from a K-cluster analysis.

sweetness-enhancing volatiles [benzaldehyde, 2-pentanal, (E)
and nonanal] were identified with both consumer and DA
panels. 2,5-Dimethyl-4-methoxy-3(2H)-furanone (mesifurane),
butanoic acid/ethyl ester, and hexanoic acid/ethyl ester exhibited
a sweetness-enhancing ability in multiple years (Figure 3), in
line with findings based on odor threshold and odor active
values (Pyysalo et al., 1979; Larsen and Poll, 1990; Ulrich et al.,
1997). In agreement with the previous consumer study, two
medium-chain butanoic acid esters (butanoic acid, hexyl ester
and butanoic acid, and octyl ester) had increased sweetness,
as well as three medium-chain hexanoic acid esters (hexanoic
acid, hexyl ester; hexanoic acid, octyl ester; and hexanoic acid,
propyl ester). Butanoic acid, 3- methyl-, and two derived esters
(butanoic acid, 3- methyl-, ethyl ester, and butanoic acid,
3-methylbutyl ester) had positive effects on sweetness and have
been identified in multiple GC-O studies (Ulrich et al., 1997;
’Du et al., 2011; Cannon et al., 2015). Surprisingly, hexyl acetate,
one of the most potent esters (’Du et al., 2011) in strawberry,
had a negative effect on sweetness, possibly related to its green
apple aroma at higher concentrations (Young et al., 1996).
Volatiles influencing strawberry flavor mostly overlapped with
sweetness influencers (Figure 3). Furanones, esters, and lactones
generally not detected in white or half-red fruit undergo dramatic
increases in the late stages of ripening (Ménager et al., 2004),
shaping the strawberry flavor in ripe fruit. A major determinant
in peach aroma, γ-decalactone, contributed to strawberry flavor,

but not sweetness, in this study. The only volatile found to
decrease both sweetness and strawberry flavor was acetic acid,
1-methylethyl ester.

Soluble solids content unsurprisingly had the highest
correlations with both sweetness and strawberry flavor. Sugar
content is also the main determinant for consumer liking
(Schwieterman et al., 2014). Given the potential yield cost
imposed by breeding varieties with higher sugar level (Whitaker
et al., 2012), manipulating volatiles may provide a better
alternative for the enhancement of eating quality. In our
previous consumer sensory study, we found that most sweetness
enhancers overlapped strongly with liking enhancers (Fan et al.,
2020). In the present study, the prior list of sweetness-enhancing
volatiles based on consumer studies is expanded with new
compounds such as mesifurane; butanoic acid, ethyl ester and
hexanoic acid, ethyl ester; and butanoic acid, 3- methyl-, which
have been historically considered as important volatiles for
strawberry flavor, highlighting the diverse flavor profiles existing
in commercial germplasm.

In this study, alpha-terpineol; methanethiol; acetic acid, butyl
ester; linalool; butanoic acid, 3- methyl-, methyl ester; pentanal;
and propanoic acid, ethyl ester were identified as green flavor
contributors (Figure 4 and Supplementary Table 4). Aldehydes
like pentanal, hexanal, and 2-hexenal, (E)- have typically been
linked to green notes in immature fruit (Perez et al., 1992;
Ménager et al., 2004) but are much reduced and suppressed
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FIGURE 3 | Important physicochemical measures/volatiles for sweetness and strawberry flavor. The X axis shows importance index = [number of years with variable
importance in projection (VIP) > 1 and positive effect] – (number of years with VIP > 1 and negative effect). The bars are annotated with chemical names.

FIGURE 4 | Important physicochemical measures/volatiles for five sensory attributes. The X axis shows the importance index [number of years with variable
importance in projection (VIP) > 1 and positive effect] – (number of years with VIP > 1 and negative effect). The bars are annotated with chemical names.
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FIGURE 5 | Scatter plot of sweetness against soluble solids content. The blue
line represents least square linear regression, and the red line represents the
mean Bayesian robust regression. Gray lines represent 95% confidence
intervals for posterior distributions.

by other strawberry aromas upon ripening (Jetti et al., 2007).
Unsurprisingly, firmness was found to be related to green notes
(Figure 4). TA was the major contributor for sourness in all 7
years (Figure 4). Besides TA, (Z)-linalool oxide appeared to have
positive effects on sourness, as opposed to benzaldehyde and
nonanal. TA was also highly correlated with astringent mouthfeel,
but not as strongly as for the sourness–TA relationship (Figure 4).
Perceived astringency of fruit is mainly associated with phenolic
compounds (Joslyn and Goldstein, 1964) and acids (Lawless
et al., 1996). Two lactones (γ-decalactone and γ-dodecalactone)
and butanethioic acid, S-methyl ester were associated with
overripe flavor (Figure 4). During post-harvest storage, volatile
compositions undergo large changes (Lu et al., 2018), such that
the higher relative abundances of γ-decalactone may be observed
in overripe strawberries. Since sulfur esters are usually described
as giving undesirable aromas (Du et al., 2011), it is not surprising
that butanethioic acid, S-methyl ester appears to be one of
the compounds contributing to overripe flavor, which was also
defined as “fermented.” Because our study includes fruit from the
narrow genetic pool of the UF strawberry breeding program, it
does not present an exhaustive list of volatiles influencing sensory
attributes from strawberry. Future identification of new sensory-
modulating volatiles should embrace a wider germplasm and the
wild relatives of cultivated strawberry.

Modeling Sweetness Based on
Physiochemical Parameters
Soluble solids content is a robust analytical measurement that
strongly correlated with total sugars in strawberry (Jouquand
et al., 2008; Gunness et al., 2009). The initial implementation of
SSC in strawberry quality control and breeding can be traced
back to the late 1980s, and it is still routinely used in the
strawberry industry (Alavoine and Crochon, 1988; Ares et al.,
2009). In Alavoine’s report, SSC-based thresholds were proposed

FIGURE 6 | Probability of sweetness perception based on soluble solids
content. Yellow, gray, and blue lines represent accumulated probability
distributions of above average, top 20%, and top 10% sweetness,
respectively. The red line represents the inference from a least square linear
model.

to distinguish medium taste quality from high taste quality, with
an arbitrary cutoff for the highest taste quality placed at SSC of
8%. Thirty years have passed, and commercial strawberry quality
has seen an improvement. Some current cultivars like “Florida
Beauty” had an average SSC of 8.2% across all harvests in this
study. To guide future benchmarks, we utilized a Bayesian robust
model to fit SSC against sweetness perception due to its ability
to incorporate sample uncertainty and parameter uncertainty.
Our model successfully converged with average R̂ smaller than
1.1. The mean of the marginal posterior distribution slope βssc
was 0.45, with SD of 0.03 and 95% credibility from 0.40 to
0.50, indicating a strong positive correlation between SSC and
sweetness. The 95% credible marginal posterior distribution of y
(Figure 5) captured 196 of 207 samples (94.7%). Eleven outliers
were weighted less in the model with τi smaller than 1, ranging
from 0.91 to 0.96. The main goal of adopting a Bayesian model
was to give probabilistic-based predictions of sample sweetness
from SSC data for breeding and quality control purposes. Striking
differences for the probability of greater-than-average sweetness
was obtained after incorporating uncertainty into the model.
Predictions without uncertainty indicated that samples with SSC
higher than 7.5% would have greater-than-average sweetness
intensity (Figure 6). However, the Bayesian model indicated a
50% chance of greater-than-average sweetness at SSC of 7.5%.
To achieve 80% confidence, SSC must be higher than 8.6%.
A simplified probability chart with SSC ranging from 6 to 12 is
shown in Table 1.

During winter and spring production in a subtropical
climate, strawberry SSC exhibits large within-season variations
due to changes in plant physiological and environmental
conditions (MacKenzie and Chandler, 2009). Differences in
SSC stability over the fruiting season among genotypes add
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TABLE 1 | Sweetness probability chart for levels of soluble solids content (SSC).

SSC (%) Sensory sweetness probability

Above average Top 20% Top 10%

6.00 0.11a 0.01 0.01

6.50 0.22 0.04 0.01

7.00 0.35 0.04 0.02

7.50 0.50 0.08 0.06

8.00 0.64 0.20 0.08

8.50 0.77 0.30 0.17

9.00 0.86 0.48 0.29

9.50 0.94 0.58 0.42

10.00 0.97 0.74 0.58

10.50 0.99 0.83 0.72

11.00 1.00 0.92 0.83

11.50 1.00 0.96 0.89

12.00 1.00 0.98 0.96

aThe probability of above-average sweetness perception at a soluble solids
content of 6% is 11%.

additional complications to the selection criteria for sweetness
(Hasing et al., 2013). Furthermore, the relationship between
SSC and sweetness can be strongly influenced by environmental
conditions (Azodanlou et al., 2003). To examine the stability
of relationship between SSC and sweetness during the season,
we introduced varying slopes βj to the Bayesian model, which
allowed heterogeneity of the sweetness–SSC relationship. The
highest coefficient of the slope was found in March, with a mean
of 0.54 and 95% confidence interval of 0.47 to 0.61 (Figure 7).
Lower coefficients were found in January and February, around
0.49. Our results suggest that March was the best month to
make selections for SSC due to its higher correlation with
perceived sweetness. This is also consistent with the objective of
maintaining fruit quality at the conclusion of the season when
conditions are more unfavorable for eating quality (Hasing et al.,
2013). Breeders may therefore consider reducing the number of
SSC phenotyping events early in the season to save labor and
resources or more heavily weighting late-season observations.

Genetic and Environmental Factors
Influencing Sensory and
Physicochemical Attributes
The chemical compositions of strawberries are strongly affected
by both genotypes and growing conditions (Forney et al., 2000),
leading to eating quality differences (Jouquand et al., 2008).
However, the existing literature exploring the fluctuation of
sensory characteristics based on genotypes or environments only
encompasses a few genotypes grown in one or two seasons
(Jetti et al., 2007; Jouquand et al., 2008). In the present study,
effects from genotype, harvest month, and their interactions were
compared across 7 years (Figure 8). Sweetness was controlled by
both harvest month and genotype, with no significant interaction
between the two. Genotype was significant in 5 years, and harvest
month was significant in 4 years. This result is corroborated by
significant genotype and month effects for SSC in six of 7 years.

FIGURE 7 | Boxplots of the slope coefficients for soluble solids content by
month. Each box represents median and interquartile range from 15,000
iterations. Higher values imply higher correlations of soluble solids content
with sensory sweetness.

Fewer genotype and month effects were observed for strawberry
flavor. Sourness was mainly controlled by genotype, consistent
with greater significance for genotype than for month for TA
and pH (Figure 8). Sensory firmness also appears to be mainly
controlled by genotype. Overripe flavor showed significance for
genotype in 3 years and for harvest month in 2 years. Astringent,
green, and woody flavors had little influence from genotype or
month. There were no consistent G × E interactions for any
sensory attributes. Although no previous sensory studies have
included such large numbers of genotypes and environments
(Ulrich et al., 2018), metabolite surveys have shown moderate to
high heritability for SSC and volatile abundance (Whitaker et al.,
2012; Gezan et al., 2017; Urrutia et al., 2017). A large portion of
variability in most volatiles found in wild strawberry is explained
by one or two major QTLs (Urrutia et al., 2017). Consistent
with these studies, genetics was the primary force driving
variation in volatile abundances among our strawberry samples
(Supplementary Presentation 3). As expected, environmental
effect is also pervasive for most volatiles over the harvest months
(Supplementary Presentation 3). Our results indicate the strong
genetic control of firmness, sourness, sweetness, and strawberry
flavor, implying further potential for genetic improvement of
these sensory attributes in the germplasm tested.

A Paradigm for Sensory Quality
Improvement in Strawberry
Increasing consumer liking is one of the main goals of strawberry
breeding. Descriptive analysis provides an objective evaluation of
sensory characteristics that are strongly associated with consumer
preference. Sweetness and strawberry flavor contribute to liking,
while sour, astringent, overripe, and green flavors detract from
liking (Oliver et al., 2018b). At the intermediate stage of cultivar
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FIGURE 8 | Influence of genotype, harvest month, and month by genotype interaction effects on sensory and physiochemical attributes as indicated by –logP
values. Horizonal lines indicate –logP values of 2 (Bonferroni-corrected p-value = 0.01). Taller bars were observed for physicochemical attributes compared to
sensory attributes due to low variance among field replicates compared to panelist variance.

development, elite selections are grown in small, replicated trials
for quality evaluation. Fruit yield from those trials is too small
to supply large consumer panels (Fan et al., 2020), but small
trained panels are well suited for this purpose. Importantly,
these data also allow sensory evaluations to drive targeted
genetic solutions for improving eating quality, for example,
γ-decalactone was identified as a flavor target based on sensory
evidence (Schwieterman et al., 2014) and the identification of
a candidate gene (FaFAD1) responsible for the presence and
abundance of this volatile (Chambers et al., 2014; Sánchez-
Sevilla et al., 2014; Noh et al., 2017). An improved codominant
DNA maker for FaFAD1 was recently designed, validated, and
implemented in a marker-assisted selection (Oh et al., 2019).
Thus, a fruit quality improvement paradigm that begins with
consumer-desired sensory attributes and progresses to chemical
targets and finally to genetic tools is now feasible in strawberry.
This paradigm is applicable not only in strawberry but also to a
broad array of crops valued for their sensory qualities.

In conclusion, we identified additional volatiles that enhance
sweetness independently of sugars, such as benzaldehyde; 2-
pentenal, (E)-; nonanal; mesifurane; butanoic acid, 3- methyl-,
ethyl ester; butanoic acid, 3-methyl-; γ-dodecalactone; butanoic
acid, ethyl ester; and hexanoic acid, ethyl ester, many of which

have been historically identified as important to strawberry
flavor and in our consumer study (Fan et al., 2020). Thus, the
identification of these volatiles will allow us to narrow down to a
smaller number of flavor breeding targets. Sweetness prediction
based on SSC has been updated using a probabilistic approach,
better informing strategies for improving strawberry sweetness.
Lastly, our quantification of genotype and environment effects
and their interaction on various sensory attributes provides
a statistical basis for the strategic improvement of strawberry
sensory quality.
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