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Hyperspectral imaging is a promising tool for non-destructive phenotyping of plant
physiological traits, which has been transferred from remote to proximal sensing
applications, and from manual laboratory setups to automated plant phenotyping
platforms. Due to the higher resolution in proximal sensing, illumination variation
and plant geometry result in increased non-biological variation in plant spectra
that may mask subtle biological differences. Here, a better understanding of
spectral measurements for proximal sensing and their application to study drought,
developmental and diurnal responses was acquired in a drought case study of maize
grown in a greenhouse phenotyping platform with a hyperspectral imaging setup.
The use of brightness classification to reduce the illumination-induced non-biological
variation is demonstrated, and allowed the detection of diurnal, developmental and
early drought-induced changes in maize reflectance and physiology. Diurnal changes
in transpiration rate and vapor pressure deficit were significantly correlated with red
and red-edge reflectance. Drought-induced changes in effective quantum yield and
water potential were accurately predicted using partial least squares regression and
the newly developed Water Potential Index 2, respectively. The prediction accuracy
of hyperspectral indices and partial least squares regression were similar, as long
as a strong relationship between the physiological trait and reflectance was present.
This demonstrates that current hyperspectral processing approaches can be used
in automated plant phenotyping platforms to monitor physiological traits with a high
temporal resolution.

Keywords: automated phenotyping platform, hyperspectral, phenotyping, drought, physiology, maize, proximal
sensing

Abbreviations: 3D, 3-dimensional; A, photosynthetic rate; E, transpiration rate; EXP, exploratory experiment; Fv
′/Fm

′,
energy harvesting efficiency by oxidized PS2; gs, stomatal conductance of H2O; NDVI, normalized difference vegetation
index; NIR, near-infrared; PAR, photosynthetically active radiation; PLSR, partial least square regression; PRI, photochemical
reflectance index; R2, R-squared; RGRI, red green ratio index; RMSE, root-mean-square error; SNV, standard normal variate
transformation; SWIR, shortwave-infrared; VAL, validation experiment; VIP, variable importance in the projection; VNIR,
visible and near-infrared; VPD, vapor pressure deficit; WC, water content; WD, water deficit; WW, well-watered; 8CO2,
quantum yield based on CO2; 8PS2, effective quantum yield; 9 , water potential.
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INTRODUCTION

One of the major challenges in plant biology and crop
research is elucidating the link between genome, physiological
processes, plant trait performance, and yield across genotypes
and environments. This requires combining vast amounts of
genotypic data with corresponding phenotypic measurements
(Yang et al., 2014; Clauw et al., 2016). To facilitate the collection
of phenotypic measurements, high-throughput phenotyping
platforms have been developed to automate data collection on
a large number of plants (Granier et al., 2006; Busemeyer et al.,
2013; Virlet et al., 2017). These platforms are often equipped with
imaging systems that capture data non-destructively and monitor
plant features over time (Humplík et al., 2015).

One imaging technology that has gained popularity in
recent years is hyperspectral imaging, which can record high
spectral resolution data of the visible and near-infrared (VNIR)
and shortwave-infrared (SWIR) regions of the electromagnetic
spectrum. Depending on the spectral range of these sensors,
a wide variety of physiological traits can be studied, such as
photosynthetic efficiency and pigment content (Inoue et al.,
2008; Yendrek et al., 2017), leaf thickness (Neilson et al., 2015),
water (Kim et al., 2015), nitrogen (Serrano et al., 2002; Yendrek
et al., 2017), and lignin (Serrano et al., 2002) content. This
wide range of physiological relationships has resulted in the
use of hyperspectral sensors for research areas including disease
detection (Huang et al., 2007), drought stress (Römer et al.,
2012), pigment content (Yendrek et al., 2017), photosynthetic
activity (Yendrek et al., 2017; Fu et al., 2019), and yield (Zhang
and He, 2013). Hyperspectral studies have been performed on
both landscape level (remote sensing), and plant or organ level
(proximal sensing). Proximal sensing has been applied on both
field and in-door phenotyping studies by mainly using non-
imaging spectrographs (Odilbekov et al., 2018; Ge et al., 2019;
Osco et al., 2020). More recent studies on the other hand have
utilized hyperspectral imaging for close-range phenotyping on
in-door automated platforms, allowing the monitoring of spatial
and temporal variations in traits that were previously inaccessible
(Ge et al., 2016; Moghimi et al., 2018; Thomas et al., 2018).

In-door automated phenotyping platforms provide a
more controlled phenotyping environment and higher
spatial resolution compared to remote sensing and close-
range field setups. This difference in experimental setup may
influence the effectiveness of common hyperspectral processing
approaches, such as indices and machine learning algorithms.
Indices are commonly used in remote sensing to reduce the
voluminous multidimensional data, which can be challenging to
analyze. Some hyperspectral indices have been used in in-door
phenotyping studies to detect the effects of extreme temperature
and salinity stress (Simko et al., 2016; Feng et al., 2018). Many
hyperspectral indices have been developed though on data
collected during severe biotic or abiotic stresses to increase the
measurement range that can be linked to reflectance (Gamon
et al., 1992; Peñuelas et al., 1993; Gitelson and Merzlyak, 1997;
Gitelson et al., 2002). Consequently, these indices perform well in
severe stress studies, while it is uncertain how sensitive they are to
more subtle physiological differences, which can be more easily

investigated under controlled conditions. More recent studies
have demonstrated the use of machine learning algorithms to
analyze hyperspectral data collected in in-door phenotyping
platforms. These algorithms can learn the relationship between
the plant spectrum and a trait in an automated manner. Several
algorithms, such as support vector machines, simplex volume
maximization (Thomas et al., 2018), artificial neural networks
(Kong et al., 2014) and partial least square regression (PLSR;
Pandey et al., 2017), have been used successfully to predict
phenotypic traits or classify different degrees of stress.

The aforementioned methods are also affected by the
higher resolution in proximal in-door phenotyping setups, as
the effect of plant geometry on illumination and reflectance
variation is more pronounced. This additional non-biological
reflectance variation can mask biological effects and complicate
hyperspectral data interpretation. Several methods, such as
3-dimensional (3D) modeling and standard normal variate
normalization, have been proposed to reduce this variation
(Vigneau et al., 2011; Behmann et al., 2016; Roscher et al.,
2016; Asaari et al., 2018). These approaches require, however,
additional 3D information or perform transformations, which
may complicate data interpretation by limiting the use of indices
(Asaari et al., 2018). An alternative and more intuitive method to
reduce illumination effects is to subdivide plant pixels into sun-
lit and shaded classes. The effectiveness of this approach has been
demonstrated in remote sensing (Clark et al., 2005), whereas its
usefulness in in-door automated phenotyping platforms is not
yet established. In this study, the performance of this alternative
approach to reduce the more pronounced illumination effects
in proximal sensing was examined by performing a light
classification on the plant pixels.

Besides examining the non-biological reflectance variation
associated with a proximal imaging setup, the use of spectral
measurements for proximal sensing and its application with
regard to diurnal, developmental and drought-induced responses
were investigated in an automated high-throughput phenotyping
system. The prediction accuracies of vegetation indices and
PLSR models were compared in order to determine whether
common hyperspectral data analysis approaches could provide
accurate proxies for physiological plant traits. The case study
chosen for this analysis was the effect of drought stress, i.e.,
soil water deficit and high vapor pressure demand, on the
reflectance and physiology of maize. The experiments focused on
moderate drought stress that allowed maize plants to continue
their growth and development at a reduced rate without
experiencing senescence.

MATERIALS AND METHODS

Experimental and Hyperspectral Imaging
Setup in the PHENOVISION Automated
Plant Phenotyping System
PHENOVISION is a phenotyping platform located in the
greenhouse infrastructure of the VIB-UGent Center for Plant
Systems Biology (Ghent, Belgium), which is primarily used for
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maize phenotyping. The platform allows the monitoring of
392 plants throughout their vegetative development by non-
destructive imaging.1 It consists of a conveyor belt system
that transports plants from the growth area to the automated
weighing-irrigation stations and imaging cabins. These imaging
cabins contain three camera systems: a red-green-blue camera
system in a multi-view setup for growth-related phenotyping, a
thermal infrared camera for estimating plant water use behavior,
and a proximal top-view hyperspectral imaging system for
physiological phenotyping. The hyperspectral imaging system
consists of two pushbroom line scanner spectrographs (VNIR
and SWIR) mounted on a motorized linear stage (1.5 m in length)
in a dedicated cabin that is equipped with a white reference
surface, halogen lighting frames that move alongside the cameras,
and a lift with rotating platform, which positions the plant at the
optimal distance from the top-view cameras and at the level of
the white reference surface. The spectrographs possess a spectral
range of 400–1,000 nm (ImSpector V10E, SPECIM, Finland)
and 970–2,500 nm (ImSpector N25E, SPECIM, Finland). The
spectral resolution of the VNIR V10E is 0.72 nm. A spectral
binning of four was applied, reducing the resolution to 3 nm
(194 bands). The V10E contains 1312 pixels per line, which
were binned by four to match the SWIR spectrograph producing
328 pixels. The SWIR N25E has a spectral resolution of 6.3 nm
(256 bands) and contains 320 pixels per line. In total, 511 lines
were scanned to create an image of 511 × 328 or 320 pixels.
The focal lengths of the V10E and N25E are 18.5 and 15 mm,
respectively. Both spectrographs have a field of view of 0.75 m
and a spatial resolution of 2.35 mm at 1.2 m, which is the optimal
distance from the scanners regarding focal depth. The spectral
data acquired by the line scanners consists of the aerial portion of
a single plant, the white reference surface, and a black reference
(camera shutter closed).

Hyperspectral imaging in PHENOVISION has been
optimized for high-throughput phenotyping with data
acquisition occurring at a rate of one minute per plant (time
between the entrance and exit of each plant in the imaging cabin).

For this study, two drought stress experiments were
performed: an exploratory experiment (EXP) that investigated
the effect of drought on reflectance, and a validation experiment
(VAL) in which the drought-induced changes in reflectance
were linked to physiological traits. Maize plants were grown
in a semi-controlled environment in which air temperature
was set to 22–23◦C and vapor pressure deficit (VPD) to 1–1.2
kPa by means of air relative humidity modifications until the
V5 stage of maize vegetative development, i.e., during seeding
establishment. After the V5 stage, the environment system was
adjusted to provide a diurnal gradient, with the temperature
gradually changing from 22◦C at night to 28◦C in the
afternoon. This diurnal temperature pattern resulted in diurnal
variations in VPD of 0.95–2 kPa (night/afternoon), attempting
to mimic diurnal variations in temperature and VPD under
field conditions. A 16/8-h day/night light cycle was implemented
in the greenhouse using high-pressure sodium vapor lamps, to
achieve an average light intensity of 280 µmol m−2 s−1. The

1https://www.psb.ugent.be/phenotyping/phenovision

greenhouse photosynthetically active radiation (PAR), relative
humidity, VPD and temperature were continuously monitored
by four environmental monitoring stations containing an SKH
2053 humidity and temperature sensor, and a PAR SKL 2625
sensor (Skye Instruments, United Kingdom). Maize (Zea mays
L.) inbred B104 (Liu et al., 2003) plants were sown in 7-l pots
filled with 850 g of peat-based soil with osmocote fertilizer
(N.V. Van Israel, Belgium) and were randomly placed on the
PHENOVISION platform. The plants were fertilized weekly with
40 ml of 200 ppm N Peters Excel CalMag Grower (Everris,
Netherlands) solution once the V5 stage was reached.

During the two experiments, maize plants were monitored
from emergence until the V7 stage (Ritchie et al., 1996). Plants
were randomly subdivided in three groups: well-watered (WW),
water deficit (WD) and border plants. EXP included 77 WW,
76 WD, and 80 border plants, while VAL had 82 WW, 77 WD,
and 68 border plants. In both experiments, the plants were
irrigated to a WW soil water content (WC) of 2.4 g H2O g−1

dry soil (soil water potential of –10 kPa) until plants reached
the V5 stage, after which the drought treatment was initiated.
Water was withheld from WD plants for 6–7 days (acute drought
period) until a soil WC of 1.4 g H2O g−1 dry soil (soil water
potential of –100 kPa) was attained, after which plants were
irrigated to sustain the WD soil WC. The end of the acute
drought period was reached at the V6–V7 stage (six to seven fully
developed leaves). Throughout both experiments, hyperspectral
images were collected, while physiological measurements using
standard measurement equipment were only obtained during the
drought period of VAL.

Physiological Measurements
Non-destructive physiological measurements were collected on
day 0, 5, 7, and 9 of the drought treatment period, while
one additional day (day 3) was added for the destructive
measurements. Five WW and five WD plants were selected for
non-destructive measurements and monitored at four different
time points (8:00, 11:00, 14:00, and 17:00) on days 0 and 5, and
at five time points (8:00, 11:00, 13:00, 15:00, and 17:00) on days 7
and 9. The destructive measurements were collected three times a
day (9:00, 12:30, and 16:30) on three to five WW and WD plants.

The non-destructive measurements consisted of
photosynthetic rate (A), transpiration rate (E), stomatal
conductance to H2O (gs), and quantum yield based on
CO2 (8CO2), effective quantum yield (8PS2) and energy
harvesting efficiency by oxidized PS2 (Fv

′/Fm
′) and were

collected with a portable LICOR 6400-XT Infrared Gas
Analyzer (LI-COR Biosciences, United States). Within the
leaf chamber, a steady-state CO2 level of 400 µmol−1 was
maintained, while temperature and PAR were adjusted to
the greenhouse temperature (25–31◦C) and PAR (230–
360 µmol photons m−2 s−1) at every measurement time point.
The fluorescence parameters were determined using the LI-6400
manual guidelines for light-adapted leaves.

Destructive sampling was performed on top leaves (leaves
5–9), which were visible in the hyperspectral image. The tip
of the leaf was used for water potential (9) measurements
collected with a pressure chamber (PMS Instrument Company,
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United States), whereas 5 cm from the middle of the leaf was
weighed and dried to estimate WC per g dry weight. Leaf
disks were sampled to measure anthocyanin, carotenoid and
chlorophyll content (Supplementary Materials and Methods 1).

Hyperspectral Data Collection and
Pre-processing
Hyperspectral imaging was performed once per day between 8
AM and 3 PM in the EXP, whereas during the VAL, plants were
imaged four to five times on sampling days and three times
on regular days (8 AM–7 PM). The number of plants imaged
per hour was ±16 for EXP and ±50 for VAL. All of the image
processing was performed using the computing environment
R version 3.2.2 (R Core Team, 2015) and was limited to the
first 10 days after the initiation of the drought treatment (the
acute drought period). The reflectance (ρ) of each image was
calculated based on a white and a dark reference image which
were acquired just before the scanning of the plant. The aim was
to compensate for pixel-to-pixel sensor response differences and
spatial non-uniformities in illumination.

reflectance =
image− dark
white− dark

Visible and near-infrared pixels of the plants were extracted
from the images using the red-edge normalized vegetation index,
which has a range from 0.2 to 0.9 for green vegetation. Pixels with
an index value higher than 0.35 were classified as plant pixels. The
segmentation of the plant in the SWIR images was performed
using a random forest model that was trained on images from
juvenile (V2) to mature (VT) maize plants. The random forest
model was created with the “randomForest” package for R (Liaw
and Wiener, 2002) and had a confusion matrix accuracy of 99.8%
on an independent test dataset. The amount of segmented plant
pixels that actually contained plant was 99.6%.

Reducing Non-biological Variation
Caused by Inhomogeneous Illumination
Plant reflectance varied strongly within the plant image. This
variation was typically non-biological as it resulted from
inhomogeneous illumination of the plant surface. To reduce this
variation, a light classification was performed that subdivided
plant parts into classes with similar illumination. For the VNIR
classification, brightness was used as a proxy for illumination
and was calculated from blue (492 nm), green (539 nm), and red
(651 nm) images using the “rgb2hsv” function of the “grDevices”
R package. The brightness calculated with this function turned
out to correspond with green reflection, which was the least
affected by the drought treatments. Light classes were created
by performing k-means clustering using the “stat” R package
on the brightness values of a training dataset that included
WW and WD plants from different developmental stages (V5–
VT). This resulted in three classes: low, intermediate, and high
light. Because the low and high-light class still showed a high
variability, they were further subdivided with k-means clustering
into extremely low, low, high, and extremely high light classes.
This additional k-means clustering step removed most of the

leaf edge and vein pixels from the low and high-light classes.
The classified training dataset was used to determine fixed
brightness thresholds, by looking at the distribution and overlap
in brightness values of the light classes that were later applied
on the whole dataset. The thresholds were used to create binary
images for all the light classes of each plant. To assure that
the classification of SWIR corresponded to that of VNIR, a co-
registration of the VNIR binary images to the SWIR scanner was
performed. The positions of VNIR pixels in the SWIR image were
calculated using sample and line transformation formulas, which
were developed by determining the linear relationship between
the coordinates of corresponding chessboard points. After the
classification, an average reflectance value was calculated for each
plant–light class combination. Only the data of the intermediate
light class were further analyzed in this case study. This light
class was selected based on both the percentage of pixels per
plant it contained and the ability to detect drought-related effects.
The intermediate light class also included the physiological
measurement locations within the plant.

Indices
The development of indices and models, as well as a part of
the statistics, were performed using the computing environment
R version 3.4.3 (R Core Team, 2017). Publicly available indices
were calculated from plant reflectance (Table 1) and their
performance to detect drought and to predict physiological traits
was evaluated. Additionally, new indices were created from the
validation experiment (Table 2) by means of two methods.
These methods used all available noise-free wavelengths (480–
2470 nm) present in the hyperspectral dataset. The first method
calculated all possible ratios and normalized difference ratios of
wavelengths and selected the one with the highest correlation
(“stats” and “rmcorr” R package) to the trait of interest (Bakdash
and Marusich, 2018). The second method computed correlations
for each wavelength and determined the wavelength with the
highest correlation. This wavelength was subsequently combined
with other wavelengths using basic mathematical operations,
until the correlation between the index and trait stabilized or until
the index contained four different wavelengths.

Model Development
Physiological trait predictions were accomplished with index-
based models and PLSR models. The aim of this modeling
approach was to develop prediction models that can predict
both developmental, diurnal and drought-induced changes in
physiological traits during the acute drought period. This
was achieved by training the models with physiological
measurements and images collected at different time points
during the day and on multiple days during the experiment.
An 80% portion of the dataset (142 images of gas exchange-
and fluorescence-measured plants and 88 images of 9- and
WC-measured plants) was used to train the models, while 20%
(36 and 23 images of gasexchange/fluorescence- and 9/WC-
measured plants, respectively) was set aside for validation. The
physiological traits that were selected for modeling consisted of
A, E, gs, 8CO2, 8PS2, Fv′/Fm′, 9 , and WC. The index-based
models had a physiological trait as dependent and an index as
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TABLE 1 | List of published indices that were evaluated.

Index Formula Wavelengths (nm) References

Modified Chlorophyll
Absorption Ratio Index
(MCARI)

MCARI =
[(ρ700 − ρ670)− 0.2 (ρ700 − ρ550)] ∗(

ρ700
ρ670

) ρ700 = 699
ρ670 = 670

ρ550 = 551

Daughtry et al., 2000

Carotenoid Reflectance
Index 1 (CRI1)

CRI1 = 1
ρ510
−

1
ρ550

ρ510 = 511
ρ550 = 551

Gitelson et al., 2002

Red Green Ratio Index
(RGRI)

RGRI = ρred
ρgreen

ρred = 600–700
ρgreen = 500–600

Gamon and Surfus,
1999

Normalized Difference
Vegetation Index (NDVI)

NDVI = ρNIR−ρred
ρNIR+ρred

ρNIR = 800–900
ρred = 600–700

Rouse et al., 1974

Moisture Stress Index
(MSI)

MSI = ρ1599
ρ819

ρ1599 = 1,550–1,650
ρ819 = 760–900

Hunt and Rock, 1989

Water Band Index (WBI) WBI = ρ970
ρ900

ρ970 = 969 ρ900 = 901 Peñuelas et al., 1993

Photochemical
Reflectance Index (PRI)

PRI = ρ531−ρ570
ρ531+ρ570

ρ531 = 532 ρ570 = 570 Peñuelas et al., 1995

Ratio Vegetation Index
870/610 (RVI870/610)

RVI870/610 =
ρ870
ρ610

ρ870 = 865–875
ρ610 = 605–615

Zhu et al., 2008

Ratio NIR/510
(R775/510)

R775/510 =
ρ775
ρ510

ρ775 = 750–800
ρ510 = 511

Gitelson et al., 2002

Relative Water Content
index (RWC)

RWC =
ρ1430
ρ1850

ρ1850 = 1,850
ρ1430 = 1,432

Yu et al., 2000

independent variable. They were created with the “lm” function
of the “stats” R package.

The PLSR models were developed with the PLSR function
(“pls” R package) using the classical orthogonal score algorithm
and Leave One Out Cross-Validation (Mevik et al., 2016). This
technique has been widely used to construct predictive models
of data that have more variables than observations and are

TABLE 2 | List of indices developed in this study.

Index Formula Wavelengths (nm)

Water Content Index
(WCI)

WCI = (ρ686−ρ955)
(ρ955−ρ548) ρ686 = 686

ρ955 = 955
ρ548 = 548

Water Potential Index 1
(WPI1)

WP1 = (ρ665−ρ715)
ρ715

ρ665 = 660–670
ρ715 = 710–720

Water Potential Index 2
(WPI2)

WP2 = (ρ665+ρ1457)
(ρ715+ρ1457) ρ665 = 660–670

ρ715 = 710–720
ρ1457 = 1,457

Adjusted Red Green
ratio Index (ARGI)

ARGI = (2∗ρ650)
(ρ551−ρ639) ρ650 = 600–700

ρ551 = 551
ρ639 = 639

Inverse Normalized
Ratio index (IND715/655)

IND715/655 =
(ρ715+ρ655)
(ρ715−ρ655) ρ715 = 710–720

ρ655 = 640–670

Ratio index 953/520
(R953/520)

R953/520 =
ρ953
ρ520

ρ953 = 953
ρ520 = 520

Ratio index 960/699
(R960/699)

R960/699 =
ρ960
ρ699

ρ960 = 960
ρ699 = 699

Ratio index 953/492
(R953/492)

R953/492 =
ρ953
ρ492

ρ953 = 953
ρ520 = 492

Normalized Difference
index 1407/1862
(NDI1407/1862)

NDI1407/1862 =
ρ1407−ρ1862
ρ1407+ρ1862

ρ1407 = 1,407
ρ1862 = 1,862

Ratio 1451/1263
(R1451/1263)

R1451/1263 =
ρ1451
ρ1263

ρ1451 = 1,451
ρ1263 = 1,263

highly collinear, such as hyperspectral data (Geladi and Kowalski,
1986; Pandey et al., 2017; Ge et al., 2019). The PLSR algorithm
will reduce the dimensionality of the data, by extracting latent
variables or components that account for most of the co-variance
between the dependent and predictor variables in the data, while
accurately modeling the trait of interest. The number of latent
variables the model used will strongly influence the accuracy
and overfitting of the model. To optimize the tradeoff between
accuracy and overfitting, the predicted sum of squares was used
to select the number of components (Chen et al., 2004). This
was accomplished by determining the number of components
at which the Root-Mean-Square Error (RMSE) of the predicted
sum of squares was minimal (Wold et al., 2001; Yendrek et al.,
2017). The contribution of each wavelength to the PLSR model
was determined using the variable importance in the projection
(VIP), which reflects the importance of each wavelength in the
model (Chong and Jun, 2005). The VIP was used to perform
feature selection using the procedure of Korn et al. (2010). The
accuracy of the index-based and PLSR models were evaluated by
calculating the RMSE and R-squared (R2) of the Leave One Out
Cross-Validation and test data predictions with the postResample
function of the “caret” R package (Kuhn et al., 2018).

Statistics
The strong correlation between adjacent wavelengths produced
multicollinearity. Wavelengths were therefore subdivided into
groups based on a correlation threshold of 0.80. This resulted
in 11 groups for which representative wavelengths were selected,
namely 523; 551; 658; 708; 721; 976; 1,482; 1,694; 1,937; 2,110;
and 2,321 nm (Supplementary Table 1). These wavelengths were
used to evaluate the effect of drought treatments on the whole
plant and light class population averages for each time point
by performing a mixed model analysis. The same modeling

Frontiers in Plant Science | www.frontiersin.org 5 February 2021 | Volume 12 | Article 640914

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640914 February 16, 2021 Time: 19:7 # 6

Mertens et al. Proximal Hyperspectral Imaging in Maize

approach was used to test the effect of drought on the non-
destructive physiological traits, while a linear model was applied
for the destructive measurements. To find associations between
the physiological traits and reflectance a mixed and linear model
was used for the non-destructive and destructive measurements,
respectively. Time of imaging effects on the EXP reflectance
data was investigated with a linear model created for the sixth
day after the drought initiation. To incorporate the time of
day effect in the drought effect analysis of the intermediate
light class the data was reanalyzed with a factorial ANOVA
that tested treatment differences within each hour for each day.
This ANOVA analysis was also used to evaluate the effect of
drought on indices. A P-value correction was performed during
every statistical analysis. More details on the models and the
type of P-value corrections can be found in the Supplementary
Materials and Methods 2.

RESULTS

Spectral Data Acquired in a Proximal
Imaging Setup Are Strongly Influenced
by Variations in Illumination
The reflectance data collected in our proximal imaging setup
showed a high within-plant variability (Figure 1A), which was
attributed to the variation in illuminance (total light flux per
unit area) across the plant surface and the amount of reflected
light detected by the camera sensors. Two factors determine the
illuminance: the intensity of the light source and the plant surface
geometry (Sandmeier et al., 1998; Behmann et al., 2015). Due
to the high resolution of proximal hyperspectral imaging, the
influence of geometry was very prominent as can be seen in the
top-view brightness image of a maize plant (Figure 1B), where
the distichous leaf organization causes brightness variations
between and within leaves. These variations were attributed
to differences in the distance between the leaf and the light
source, shading, and the angle at which the light reached the
leaf surface (angle of incidence). This had severe consequences
for the interpretation of the hyperspectral data. The overall high
within-plant variability in RGRI values (Figure 1C), which is
a popular index to monitor the anthocyanin–chlorophyll ratio,
corresponded with the observed high variation in brightness
(Figure 1B), suggesting that variation resulted from differences
in light exposure, and showing that it can mask potential effects
of drought on reflectance.

Several methods have been proposed to remove the geometry-
induced reflectance variation (Mishra et al., 2020a), such as
hyperspectral 3D models (Liang et al., 2013; Behmann et al.,
2016), standard normal variate (SNV) transformation (Vigneau
et al., 2011; Asaari et al., 2018), variable sorting for normalization
(Mishra et al., 2020b), light classification or calculating plant
averages. 3D models and SNV transformation have been shown
to remove linear-illumination effects, while light classification
and plant averaging are also able to reduce variation caused
by non-linear shading effects in thermal images (Leinonen and
Jones, 2004; Jerbi et al., 2015).

In this study, two methods to reduce the within-plant
variability were compared: the averaging of plant spectra, and
classification based on brightness as a proxy for illumination.
Brightness was subdivided into five light classes by performing
an unsupervised k-means classification on a training dataset
containing the different treatments and plant developmental
stages. Thresholds for brightness were based on the classification
results and applied to the whole dataset. Pixels that fell beyond
the uppermost threshold were classified as specular reflection
and removed from the analysis. To reduce the dimensionality of
the data, an average plant spectrum was calculated for each of
the five light classes: extremely low, low, intermediate, high and
extremely high light. They showed up to 2.3 ± 0.4% difference
in relative green reflectance between subsequent classes, which
was related to their pixel composition. The extremely low and
low light classes contained mainly shaded leaf pixels, whereas
the higher light classes consisted of illuminated plant pixels
(Figure 1D). Edge pixels were observed in both extremely low
and extremely high light classes, while vein pixels were mainly
present in the extremely high light class. To investigate how the
pixel composition affected drought detectability, 11 wavelengths
were selected (523; 551; 658; 708; 721; 976; 1,482; 1,694; 1,937;
2,110; and 2,321 nm) and the effect of drought was evaluated for
each light class-wavelength combination. This analysis showed
that classes containing shaded leaf parts (extremely low and
low) received and reflected less light, resulting in less significant
differences in relative reflectance between treatments (1–4
wavelengths, P < 0.05) compared to the higher light classes (8–
11 wavelengths, P < 0.01, Figure 1E). The quantity of shaded
and illuminated plant parts changed during the V5–V7 drought
period (Figure 1F, day 0–5). The high and extremely high light
pixel number decreased, as the plants developed more leaves,
while the number of low and intermediate light pixels increased.
The intermediate light class had the highest relative pixel number
during the whole experiment and was consequently the most
representative class (Figure 1F). Also, shaded and vein pixels
were absent and therefore the intermediate light class was selected
for the comparison with the overall average plant spectrum as
an alternative data processing method. Light classification and
plant averaging were compared for their ability to detect drought
effects on the sixth day of the soil dehydration period, when these
were maximal. A more pronounced drought effect was obtained
in the intermediate light class than in the plant average spectra,
with 10 and 6 significantly affected wavelengths, respectively
(P < 0.05) (Figure 1E). Due to the clear difference in methods, it
was decided to use the intermediate light class for this case study.

Proximal Hyperspectral Imaging
Systems Can Detect Subtle Diurnal
Changes in Plant Physiology
The reduction of the illumination effects mainly improved the
ability to detect drought in the visible, red-edge and SWIR regions
of the electromagnetic spectrum, whereas the NIR region still
showed a high variability (Figure 1E). The time of imaging
of individual plants, which ranged from 8 AM to 3 PM on
day 6 in Figure 1E, affected NIR reflection, because significant
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FIGURE 1 | Confounding effects of within-plant illumination variation on the ability to detect drought in the VNIR and SWIR spectra. Data of the sixth day after the
onset of drought was used to visualize the illumination effects. (A) Within-plant variation in relative reflectance (in %) for one well-watered (WW, light blue) plant and
one plant grown under water deficit conditions (WD, red) with a pixel number of 9,144 and 5,743, respectively. The blue and red dashed lines represent the average
reflectance, while the blue and pink shaded areas show the relative reflectance range within the WW and WD plants. (B) Within-plant variation in brightness. The
brightness of each plant pixel was obtained based on relative reflectance in the red (664 nm), green (539 nm) and blue (429 nm) wavelength bands. (C) Within-plant
variation of the Red Green Ratio Index (RGRI). (D) Distribution of the light classes within one plant. Six light classes were created: extremely low (ex-low), low,
intermediate (int), high, extremely high (ex-high) light and specular reflection (spec). The latter was excluded from the analysis. (E) Average reflectance (in %) for WW
and WD plants for the whole plant (left) and the five light classes (left to right). The gray lines indicate at which representative wavelengths (523; 551; 658; 708; 721;
976; 1,482; 1,694; 1,937; 2,110; and 2,321 nm) drought had a significant effect on relative reflectance (P < 0.05). (F), Boxplots of the percentage of pixels in each
light class for five subsequent days of the drought period after its initiation on day 0. The horizontal line within the box represents the median of 121–146 plants,
while the lower and upper ends of the box indicate the first and third quartile. The lines below and above the box represent the minimum and maximum values and
the outliers are marked with a black dot.

decreases in NIR (976 nm), red-edge (708 and 721 nm) and SWIR
(1,482; 1,694; 1,937; 2,110; and 2,321 nm) relative reflectance
(P < 0.001) was observed over this timespan (Tables 3, 4 and
Figure 2). The time-of-day effect was also found in the visible

region (523, 551, and 658 nm), where an increase in relative
reflectance was observed as the day progressed (P < 0.001)
(Table 3, Figure 2 and Supplementary Figure 1). These time-of-
day effects were observed in both WW and WD treatments and
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TABLE 3 | Slopes of the time-of-day effects on VNIR relative reflectance for the sixth day after the onset of drought.

Wavelength Treat Slope Significance slope Significance treatment
difference

Significance wavelength differences

523 nm WW 0.0857 *** all wavelengths (***) except 658 nm

WD 0.0911 ***

551 nm WW 0.0303 ** all wavelengths (**)

WD 0.0035

658 nm WW 0.0828 *** all wavelengths (***) except 523 nm

WD 0.0916 ***

708 nm WW –0.0690 *** all wavelengths (*) except 1,482; 1,937; 2,110; and 2,321 nm

WD –0.0774 *** all wavelengths (**) except 1,937 nm

721 nm WW –0.2087 *** ** all wavelengths (**) except 976 and 1,694 nm

WD –0.3262 *** all wavelengths (*) except 1,694 nm

976 nm WW –0.2281 ** ** all wavelengths (*) except 721; 1,482; 1,694; 2,110; and
2,321 nm

WD –0.4790 *** all wavelengths (*) except 1,694 nm

Slopes are compared between treatments and between wavelengths or troughs. *P < 0.05. **P < 0.01. ***P < 0.001

TABLE 4 | lopes of the time-of-day effects on SWIR relative reflectance for the sixth day after the onset of drought.

Wavelength Treat Slope Significance slope Significance treatment difference Significance wavelength differences

1,482 nm WW –0.0972 *** All wavelengths (*) except 708; 976; 2,110; and 2,321 nm

WD –0.1600 *** All wavelengths (**) except 2,110 and 2,321 nm

1,694 nm WW –0.2546 *** * All wavelengths (***) except 721 and 976 nm

WD –0.4002 ***

1,937 nm WW –0.0363 ** All wavelengths (*) except 708 nm

WD –0.0425 ***

2,110 nm WW –0.0999 *** All wavelengths (**) except 708; 976; 1,482; and 2,321 nm

WD –0.1607 *** All wavelengths (***) except 1,482 and 2,321 nm

2,321 nm WW –0.1108 *** All wavelengths (*) except 708; 976; 1,482; and 2,110 nm

WD –0.1747 *** All wavelengths (**) except 1,482 and 2,110 nm

Slopes are compared between treatments and between wavelengths or troughs. *P < 0.05. **P < 0.01. ***P < 0.001.

differed significantly between treatments for red-edge (721 nm),
NIR (976 nm), and one SWIR wavelength (1,694 nm). The
WD treatment showed a stronger negative slope than the WW
treatment, which resulted in a more pronounced drought effect
in the afternoon (P < 0.05) (Tables 3, 4 and Figure 2). Diurnal
changes were not limited to specific wavelengths but could also
be observed in the depth of the troughs, which correspond to
regions where reflectance decreases abruptly. Of the five troughs
in the VNIR and SWIR regions with their dips at 979; 1,232;
1,445; 1,825; and 1,955 nm (Figure 1E), three (979; 1,445; and
1,955 nm) showed a significant negative diurnal trend for both
WW and WD plants (Figure 2 and Supplementary Figure 1).
A treatment difference was only observed in the 1,955 nm trough
(P < 0.01) (Table 5 and Figure 2).

The observed diurnal variation had major implications for
spectrum interpretation and coincided with physiological trait
changes and variations in environmental conditions (Figure 3).
8PS2 showed a minimum around noon corresponding to the PAR
maximum in the greenhouse (Figures 3C,G). Leaf 9 decreased
during the day with the lowest values in the afternoon/evening,
when E and VPD had passed their peak (Figures 3B,D,F).
Significant strong correlations with VPD were observed in plant

reflectance at 721 nm (correlation coefficient r, rWW = –0.80,
rWD = –0.79, P < 0.05), 658 nm (rWW = 0.74, rWD = 0.77,
P < 0.05), 523 nm (rWW = 0.74, rWD = 0.67, P < 0.05), and
the 979 nm trough (rWW = –0.80, rWD = –0.78, P < 0.05).
These wavelengths were in turn significantly correlated with E
and 9 . The reflectance at 658 nm showed a similar diurnal
pattern as E with a maximum in the afternoon (Figure 3A),
while 721 nm was negatively correlated with E. The correlation
between E and reflectance at 658 nm was significant in both
WW (rWW_658 = 0.65, P < 0.05) and WD (rWD_658 = 0.48,
P < 0.05) treatments on all sampling days of the experiment,
except for the WD treatment on day 7. This was the last day
of the acute drought period, when E was at its minimum and
658 nm reflectance at its maximum. On this day, a stronger
diurnal effect on reflectance than on E was observed, suggesting
an additional effect of drought on reflectance at 658 nm not
directly related to E. A positive relationship was found between
9 and the 979 nm trough, but was only significant for the WW
treatment (rWW = 0.56, P < 0.05). The correlation with 523 and
658 nm was significantly negative for both treatments (523 nm:
rWW = –0.51, rWD = –0.46, P < 0.05; 658 nm: rWW = –0.67,
rWD = –0.41, P < 0.05).
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FIGURE 2 | Diurnal changes in relative reflectance at 658; 976; and 1,694 nm
and the water absorption trough with the ridge at 1,825 nm and the valley at
1,955 nm on day 6 of the drought period. The well-watered (WW) and water
deficit (WD) treatments are indicated with a blue line or dot and a red dashed
line or circle, respectively. The lines show the average trend of the treatment,
whereas the dots and circles represent the relative reflectance of individual
plants at the respective wavelengths. The gray shading around the lines
indicate the standard error of relative reflectance. The water absorption trough
depth values were calculated as the difference in relative reflectance between
1,825 and 1,955 nm.

Drought-Induced Reflectance Changes
Are Correlated With Physiology
Withholding water from maize plants affected leaf reflectance
in both the VNIR and SWIR areas of the electromagnetic
spectrum. An increase in reflectance was observed in the blue-
green, red, and SWIR region (523; 658; 1,482; and 2,110 nm),

while a decrease was present in the green, red-edge and NIR
region (551, 708, 721, and 976 nm) (P < 0.01, Supplementary
Figures 3,4). Red reflection was the most sensitive to drought,
as significant treatment differences were observed already two
days after the onset of drought (P < 0.01, Supplementary
Figure 3). Reflection in the blue-green, red-edge and SWIR
(1,482 nm) region showed drought effects on the fourth day
(P < 0.01, Supplementary Figures 3,4). NIR reflectance was
the least sensitive to acute drought as it only showed significant
differences between treatments near the end of the drought
period (day 6, P < 0.01, Supplementary Figure 3). The ability
to detect these drought effects was influenced by the interaction
between time-of-day and treatment, as most treatment effects
were first detected in the early afternoon. This interaction was
especially pronounced for the red-edge (721 nm) and NIR
(976 nm) wavelengths, which have been positively correlated with
leaf thickness and negatively correlated with the WC (Slaton et al.,
2001; Neilson et al., 2015). During the morning, E increased
(Figure 3B), resulting in a decrease in WC, 9 (Figure 3D and
Supplementary Figure 2H) and leaf thickness (Syvertsen and
Levy, 1982; Mcburney, 1992; Jinwen et al., 2009). This decrease in
leaf thickness was probably more pronounced in WD than WW
plants, translating into a stronger drop in WD plants’ NIR and
red-edge reflection, and therefore a larger treatment difference
in the afternoon.

Drought had a negative effect on the measured physiological
traits, which was observed earlier for E, gs, Fv

′/Fm
′, WC, and

9 and later for A, 8PS2, and 8CO2 (P < 0.05, Figure 3
and Supplementary Figure 2). All wavelength groups, except
for the 2,321 nm group, correlated significantly with one or
more of these traits (Figure 4 and Supplementary Table 2).
The most promising reflectance–physiology relationships were
observed between red reflectance (658 nm) and 9 , 8PS2 or
Fv
′/Fm

′ with negative slopes (P < 0.0001, Figures 4A–C). The
relationships with red reflection were significantly different
between WW and WD treatments (two-tailed Student’s t-test,
P < 0.0001), except for the relation with 9 . This suggests that the
underlying relationship is the same for diurnal, developmental
and drought-induced changes. Other treatment-independent,

TABLE 5 | Slopes of the time-of-day effects on absorption troughs for the sixth day after the onset of drought.

Trough Treat Slope Significance slope Significance treatment difference Significance trough differences

979 WW –0.1961 *** 1,445 and 1,825 (***)

WD –0.2135 *** All troughs (*)

1,232 WW –0.0365 * All troughs(*)

WD –0.0290 979; 1,445; and 1,955 (***)

1,445 WW –0.2280 *** 1,232 and 1,955 (***)

WD –0.3425 *** 979; 1,232; and 1,955 (*)

1,825 WW 0.0021 All troughs (*)

WD –0.0013 979; 1,445; and 1,955 (***)

1,955 WW -0.2086 *** ** 1,232 and 1,825 (***)

WD –0.3442 *** 979; 1,232 and 1,825 (***)

The trough depths are estimated by taking the difference in relative reflectance between the highest (852; 1,100; 1,232; 1,650; and 1,825 nm) and the lowest (979;
1,232; 1,445; 1,825; and 1,955 nm) wavelengths of the troughs. Slopes are compared between treatments and between wavelengths or troughs. *P < 0.05. **P < 0.01.
***P < 0.001.
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FIGURE 3 | The responses of relative reflectance at 658 nm and physiological traits to diurnal variations in environmental conditions and drought. Relative
reflectance and physiological trait measurements of well-watered (WW) and water deficit (WD) treatment plants are compared during the drought period (day 0, 5, 7
and 9). The average trends of the WW and WD treatments are indicated by a blue line and red dashed line, respectively. The individual measurements of the
treatments are visualized with a blue dot (WW) or red circle (WD). (A) Relative reflectance at 658 nm. (B) Transpiration rate (E, mmol H2O m−2s−1). (C) Effective
quantum yield of photosystem 2 (8PS2). (D) Leaf water potential (9, MPa). (E) Average greenhouse air temperature (AT, ◦C). (F) Vapor pressure deficit (VPD, kPa).
(G) Photosynthetically active radiation (PAR, µmol photons m−2s−1). In panels (E–G), the black line represents the greenhouse environmental conditions, which is
supplemented in panel (G) with the PAR settings of the LI-COR LI-6400 (gray dashed line). The gray shading around the lines indicate the standard error of relative
reflectance, physiological traits and environmental conditions.

positive relationships were observed between 976 nm and
8CO2 or A (P < 0.001, Figures 4E,H). Significant treatment
effects were present in the relationships of 523 nm with gs,

976 nm with WC and were very pronounced for 976 nm and
E, as correlations were only present in the WW treatment
(Figures 4D–G, P < 0.001). The lack of correlation in the
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FIGURE 4 | Relationship between relative reflectance and physiological traits.
(A) red (658 nm) vs. leaf 9 (MPa). (B) red (658 nm) vs. 8PS2. (C) red (658 nm)
vs. Fv

′/Fm
′. (D) Blue-green (523 nm) vs. gs (mol H2O m−2s−1). (E) NIR

(976 nm) vs. 8CO2. (F) NIR (976 nm) vs. E (mmol H2O m−2s−1). (G) NIR
(976 nm) vs. leaf WC (g H2O/g dry weight). (H) NIR (976 nm) vs. A (µmol CO2

m−2 s−1). The black dot-dashed line indicates the relationship without
treatment effect, whereas the blue line and the red dashed line represent the
relationship for the well-watered (WW) and water deficit (WD) treatment,
respectively. Measurements on individual plants are indicated by blue dots
(WW) and red circles (WD).

WD treatment may be related to the limited range of E values
resulting from increased stomatal closure. The drought effects
on physiology were not limited to direct effects but were also
influenced by differences in development, which are discussed in
the Supplementary Results 1.

Both Index-Based and PLSR Models Can
Accurately Predict Physiological Traits
From Hyperspectral Data
The significant relationships between reflectance and physiology
can be used for automated plant phenotyping by calculating

vegetation indices for physiological traits or by creating PLSR-
based physiological trait prediction models. Here, 10 publicly
available and 10 new indices (Tables 1, 2) were evaluated for
their ability to detect drought and their prediction accuracy
of physiological traits by creating index-based linear models.
The accuracy of these models was subsequently compared
to PLSR models of the same traits, to evaluate which of
the two methods was more suitable to monitor drought
effects. The physiological traits that were selected for this
comparison were A, E, gs, 8PS2, Fv

′/Fm
′, 9 , and WC, as

these were significantly affected by the drought treatment.
The published indices under evaluation included WC indices
(Water Band Index, Moisture Stress Index and Relative
Water Content index), photosynthetic efficiency indices (PRI
and RGRI), pigment content indices (Modified Chlorophyll
Absorption Ratio Index and Carotenoid Reflectance Index 1)
and indices that used red or NIR reflection (NDVI, Ratio
Vegetation Index 870/610, Ratio NIR/510) (for references
see Table 1). Large differences in drought sensitivity were
observed in both the existing and new indices, ranging
from early drought responses to no consistent effects. The
indices were grouped accordingly: very sensitive, sensitive,
moderately sensitive and insensitive. The results are presented in
Supplementary Results 2.

Partial least square regression has been commonly used to
estimate physiological traits from hyperspectral data. It has
the advantage of using all the available wavelengths, but some
may turn out to add additional noise. Here, the use of PLSR
slightly improved the test RMSE of E, 8PS2, WC, and Fv

′/Fm
′

by 7, 13, 8, and 12%, respectively (Figure 5). However, 9 , gs,
8CO2, and A showed a lower PLSR accuracy than the index-
based models with a reduction in the RMSE of 10, 5, 17,
and 24%, respectively (Figure 5). Maize reflectance showed a
weaker relationship with A compared to the other physiological
traits, resulting in a low accuracy of both index-based and
PLSR models. The importance of each wavelength in the PLSR
models was determined by calculating the VIP (Chong and
Jun, 2005). The 30 wavelengths with the highest VIP scores
were compared to those used by the indices (Supplementary
Table 3), showing that most PLSR models contained wavelength
regions similar to those important in the index-based linear
models. The Fv

′/Fm
′, 8PS2, and 9 models consistently used

red and/or red-edge reflectance, while for the predictions of
8CO2 and gs, NIR reflectance was always important. The water
absorption regions were also conserved between the index-
based and PLSR models of E, A, and WC. The wavelengths
that were important in PLSR can be found in Supplementary
Table 3. One wavelength region around 2,500 nm was never
used in the index-based models, but had the highest VIP value
and was very important for the PLSR models, although it
was located at the edge of the SWIR spectrum and may have
been noisy. The comparison of PLSR and index-based models
showed that when a strong relationship between reflectance
and the physiological trait is present, both PLSR and index-
based models can accurately estimate physiological traits from
hyperspectral data.
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FIGURE 5 | Test prediction accuracy of partial least square regression (PLSR) and index-based models. (A) A heatmap of R2 values, with higher values plotted in a
gray color and lower values in white. The highest R2 value for each physiological trait is shown in the representative square. (B) A heatmap of scaled RMSE in which
lower values are indicated with a white color and higher values with brown. The lowest unscaled RMSE values are shown in the representative squares. The PLSR
models of Fv

′/Fm
′, 8PS2, gs, 8CO2, and A used seven components, models of WC and E used 10 components, and the model of 9 eight components.

DISCUSSION

Within-Plant Illumination Differences
Cause Large Non-biological Variation in
Reflection
In this study of proximal hyperspectral imaging in the context
of an automated phenotyping platform, large non-biological
variation in reflectance caused by illumination differences due
to plant geometry masked subtle biological differences in
reflectance, including diurnal patterns and drought responses.
To manage the illumination effects, the use of artificial diffuse
light has been proposed to reduce the effects of geometry
on hyperspectral data, but it does not remove differences
caused by the distance between the leaves and the light
source (Thomas et al., 2018). These effects can be reduced by
combining hyperspectral data with high-resolution 3D plant
models (Behmann et al., 2016), created by means of stereo

or rotating red-green-blue and hyperspectral camera systems
that image the plants from different angles (Liang et al.,
2013). Once 3D information of each hyperspectral pixel is
available, the angle and the distance between the pixel and
the light source can be calculated, and their effect can be
removed by a correction factor for each pixel determined
from the light field of illumination intensities (Behmann et al.,
2016). Distance and inclination effects can also be removed
by using the 3D information to estimate the parameters of a
linear reflectance model (Vigneau et al., 2011; Asaari et al.,
2018), by incorporating distance and angle information in trait
prediction models (Roscher et al., 2016) or by developing a
bidirectional reflectance distribution function (Behmann et al.,
2016). Combining 3D information with hyperspectral data is a
promising approach to reduce the illumination effects, however,
this information is not always available, and the sheer volume
of this extra data further challenges storage and processing
capacities. Consequently, several alternative methods have been
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proposed, the simplest of which is to reduce the within-plant
variation by calculating plant averages. This method removes
all spatial information and reduces spectral variation without
taking the source of the variation into account. By ignoring
the illumination effects (variation source) a positive relationship
between reflectance and the distance between the plant and the
light source is created (Asaari et al., 2018), which complicates
hyperspectral interpretation when plants differ in height. Vigneau
et al. (2011) and Asaari et al. (2018) have proposed to model
a correction using a linear reflection model, which assumes
a multiplicative effect of distance and inclination and an
additive effect of specular reflection. Alternative approaches to
remove linear effects are spectra normalization methods such
asthe SNV transformation and variable sorting normalization
(Vigneau et al., 2011; Asaari et al., 2018; Mishra et al., 2020b).
The SNV transformation can cause a wavelength shift in the
treatment differences (Fearn, 2009), which prevents the use of
existing indices and complicates the biological interpretation of
the spectra. More details on the available linear illumination
correction approaches have been described in the review
paper of Mishra et al. (2020a).

The methods discussed above have focused on linear effects
such as distance and inclination, whereas non-linear effects such
as shading also strongly influence plant reflectance. Illumination
classification, which subdivides plant parts based on the amount
of illumination, can reduce the reflectance variation caused
by linear and non-linear effects as both these factors affect
brightness. This method has been used to separate sunlit
and shaded leaf pixels in both hyperspectral remote sensing
and thermal images (Jerbi et al., 2015). Plant pixels can be
subdivided by splitting the leaves into segments from the base
to the tip (Tirado et al., 2020) or by performing a brightness-
based classification. In this study, the latter was evaluated by
subdividing plant pixels into five illumination classes. A k-
means clustering approach was used as a guide to determine the
brightness thresholds, which subdivided plants in the minimum
number of clusters required to reduce the illumination effects.
The clustering approach was applied in a less conventional
way without using the optimal number of clusters, as this
amount varied strongly between optimization methods resulting
in too little (1 cluster) or too many clusters (Charrad et al.,
2014). The brightness-based classification reduced the within-
plant variance in reflectance by 47 ± 24% and improved the
detectability of drought effects especially in the classes that
contained sunlit plant pixels (intermediate and high light).
However, by using only a subset of the plant pixels, the method
is less suitable for studies that focus on the spatial distribution
of traits within the plant. In these situations the use of the
above described linear correction methods is more appropriate.
The main advantages of the illumination classification compared
to the use of 3D information and normalization is that it
reduces both linear and non-linear illumination effects, it does
not require additional information on plant geometry and
it allows the use of published indices, as the data is not
transformed. The combination of these advantages makes this
method more intuitive and accessible for plant scientists. The
brightness-based clustering, including the appropriate number

of clusters, the brightness thresholds and the optimal cluster for
analysis, is setup-specific and requires a preliminary analysis as
described in this study.

Hyperspectral Data Allow the Detection
of Diurnal and Drought-Induced
Changes in Physiology
By reducing the illumination-induced variation, subtle diurnal
trends in plant reflectance were detected, which were correlated
with changes in plant physiology. Diurnal effects are unavoidable
in the PHENOVISION platform, because a 6-h imaging cycle is
required for almost 400 individual plants. On the other hand, the
results show that hyperspectral imaging delivers high-resolution
plant physiology-related data and that the current setup allows
the monitoring of diurnal changes in plant physiology, which
is important in the timely detection of and genotypic specific
sensitivity to stress, and because treatment effects can depend on
the time of sampling or imaging (Figure 2; Žibrat et al., 2019).
Consideration of the time-of-day has mainly been limited to the
PRI index created to detect diurnal changes in the epoxidation
state of the xanthophyll cycle pigments and in the photosynthetic
efficiency (Gamon et al., 1992). Other studies have shown a
significant correlation between PRI and Fv

′/Fm
′ on both diurnal

and seasonal scales (Garbulsky et al., 2011; Zhang et al., 2016).
Here, diurnal trends in reflectance were observed in a wide
spectral range, including blue-green (521 nm), red (658 nm),
red-edge (708 nm), NIR (721 nm), and SWIR (1,482; 1,694;
1,937; 2,110; and 2,321 nm) wavelengths. Diurnal trends in red
and NIR reflection have been observed before, but these effects
were attributed to the influence of soil reflection, differences in
solar angle and plant geometry (Asrar et al., 1985; Gamon et al.,
1992). In PHENOVISION, these factors do not play a major role.
Instead, the diurnal trends showed correlations with VPD, E,
and 9 . The strongest relationships were observed with reflection
of red, NIR and the water absorption trough at 979 nm. NIR
and water absorption trough reflectance have been related to
WC, leaf thickness and anatomy (Slaton et al., 2001; Neilson
et al., 2015), which can change during the day as the plant loses
water through E (Syvertsen and Levy, 1982; Mcburney, 1992;
Jinwen et al., 2009). These changes may thus explain the negative
correlation of NIR and the 979-nm trough with E and VPD.
A biological explanation for the strong relationship between red
reflectance and E, 9 , or VPD is less straightforward, as no clear
diurnal trends in pigment content were observed. Red absorption
and reflectance can be affected by the amount of light scattering
within the tissue by changing cell size and shape or by changing
the positioning of organelles, such as chloroplasts. Changes in
leaf thickness and water loss can affect mesophyll density and
cell size and shape (Chartzoulakis et al., 2002; Scippa et al., 2004;
Sancho-Knapik et al., 2011; Wuyts et al., 2012), however, the
few studies that investigated these effects focused on different
degrees of drought to reduce leaf WC instead of looking at
diurnal variations. Diurnal changes in chloroplast positioning
have been observed in C4 plants as a light avoidance response
with aggregative movements in the afternoon to increase mutual
shading of chloroplasts (Yamada et al., 2009). Maai et al. (2011)

Frontiers in Plant Science | www.frontiersin.org 13 February 2021 | Volume 12 | Article 640914

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640914 February 16, 2021 Time: 19:7 # 14

Mertens et al. Proximal Hyperspectral Imaging in Maize

showed that these light avoidance and aggregative movements
are triggered by high levels of blue light and abscisic acid (ABA).
A strong correlation was observed between red reflection and
VPD, which has been associated with ABA levels, an important
phytohormone involved in the regulation of gs (Merilo et al.,
2018). gs was monitored during the validation experiment but
only a drought-induced decrease could be observed, suggesting
that chloroplast movement mainly played an important role in
the drought-induced increases in red reflection.

Drought effects on plant physiology and reflectance have
been studied in both lab and field experiments. The relationship
between plant reflectance and physiology is complex, because
drought affects almost the whole measured plant spectrum, and
physiological traits can influence multiple wavelengths directly
or indirectly (Römer et al., 2012), which was confirmed here.
The earliest effects were observed in the visible region, where an
increase in red reflectance was present two days after the onset
of the drought treatment. Increases in red reflectance attributed
to changes in pigment content (Sims and Gamon, 2002; Sun
et al., 2018) were not visible here, instead red reflectance showed
a strong correlation with photosynthetic efficiency (8PS2 or
Fv
′/Fm

′) and 9 , suggesting that other factors, such as light
scattering within the leaf and chloroplast positioning, may have
impacted red reflectance during the drought treatment. The
negative relationship between red reflectance and 9 did not differ
between treatments, implying that the underlying link is the same
for developmental and drought-induced changes. Changes in
light scattering will also affect NIR reflectance. The wavelength
that represented NIR reflectance in this study (979 nm) is located
in the NIR water absorption trough, which has been correlated
with WC (Peñuelas et al., 1993; Corti et al., 2017). A correlation
between WC and 976 nm was only present in the WW treatment,
indicating that this wavelength could only detect diurnal and
developmental changes in WC when there were no drought
effects present (Figure 4), and that it is affected by multiple
drought-induced physiological changes, of which WC is only a
small part. Two additional water absorption troughs are present
in the SWIR region (1,482 and 1,937 nm), which showed weak
correlations with WC in both treatments. Correlations between
these wavelengths and WC measurements have been observed in
previous drought studies noting increases in SWIR reflectance as
the drought effect progressed (Susič et al., 2018; Krishna et al.,
2019). The strength of these relationships depended on the type
of WC measurement, as stronger correlations were observed for
the leaf WC per unit area than WC per leaf dry weight (Yu et al.,
2000; Ceccato et al., 2001; Yi et al., 2013). A correction of the dry
mass effect on SWIR reflectance is necessary to properly estimate
the WC. This may be accomplished by combining SWIR with the
NIR region that is only influenced by dry mass (740–900 nm) in
indices or models.

Predicting Physiological Traits Using
Hyperspectral Index-Based Linear and
PLSR Models
Hyperspectral imaging produces voluminous multidimensional
data. One way to extract biological information is to reduce

the dimensionality by calculating indices that only use a subset
of the reflectance spectrum. A vast number of indices created
for remote sensing applications are now used in proximal
phenotyping studies. NDVI is a very popular index applied
in several drought studies (Kim et al., 2011; Römer et al.,
2012; Behmann et al., 2014; Sun et al., 2018). Its performance
ranges from no drought-induced differences to a significant
reduction in NDVI values. Behmann et al. (2014) observed
that NDVI has a higher relevance in the senescence stages of
barley, suggesting that this index is less suitable for early drought
detection when drought does not affect pigment content and
leaf senescence. This was confirmed here, because the NDVI
only showed significant effects from day 4 of the drought
treatment onwards, while the RGRI detected effects by the
second day. In maize, drought treatments cause an increase
in RGRI values (Sun et al., 2018), which can be attributed to
changes in photosynthetic efficiency and/or pigment content.
Because a mild drought was applied during these experiments,
no clear differences in pigment content were observed, while
photosynthetic efficiency (Fv

′/Fm
′ and 8ps2) was significantly

reduced and strongly correlated with the RGRI (Figure 5). The
RGRI was also the only published index that correlated with
one of the traits it was originally developed for. In addition,
two WC indices (Relative Water Content index and R1451/1263)
showed a relationship with 9 and correlated with the plant
water status. All existing WC indices were outperformed by
the new water potential (WPI2) and water content (WCI)
indices (R2 of 0.92 and 0.73, respectively). These indices
combined water absorption wavelengths with red reflection,
which was the most drought-sensitive wavelength. The poor
performance of published WC indices has also been observed
by Yi et al. (2013) and may be attributed to the influence
of multiple structural and physiological traits that affect their
transferability to other species, genotypes, developmental stages
and experimental setups. In addition, many indices were created
for remote sensing applications, where reflectance is affected
by non-biological factors that do not influence reflectance in
proximal sensing.

Calculating indices is the simplest method to analyze
hyperspectral data, but it utilizes only a small subset of
the available wavelengths with a potential loss of biological
information. Multivariate techniques, such as PLSR, provide
an alternative where the whole-plant spectrum is used by
reducing the dimensionality using principal components. PLSR
models have been created in several drought studies to predict
water use traits, such as 9 , WC, and gs (Rapaport et al.,
2015; Ge et al., 2016; Corti et al., 2017; Pandey et al., 2017;
El-Hendawy et al., 2019). Three studies have compared the
accuracy of index-based and PLSR models, demonstrating that
these multivariate models performed equally or better than
published indices (Hansen and Schjoerring, 2003; Atzberger
et al., 2010; Heckmann et al., 2017; Yendrek et al., 2017; Ge
et al., 2019). In this study, both slight accuracy improvements
(7–13 %) and deteriorations (5–24 %) were observed when
index-based models were compared to PLSR models. The
similarity in the prediction accuracy of both methods can
be explained by the fact that they use similar wavelength
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regions. The index-based or PLSR models with the highest
prediction accuracy for the physiological traits 9 , Fv′ /Fm′ ,
8PS2 (R2

WPI2_index = 0.92, R2
PLSR = 0.88, R2

PLSR = 0.86,
respectively), incorporated red-edge and red reflection. These
two wavelength regions were complemented by reflectance of
the SWIR water absorption trough (1,457 nm) in the index-
based 9 model. The importance of the red-edge and the
SWIR water absorption trough for 9 predictions has been
confirmed by the grapevine case study of Rapaport et al.
(2015), which suggests that these wavelengths may be related
to 9 across different plant species. The importance of red-
edge wavelengths in the prediction of drought-induced changes
in physiology was not limited to 9 , Fv′ /Fm′ , and 8PS2, as
this region received high VIP values in many physiological
PLSR models, such as for gs, 8CO2, and WC. High red-
edge VIP values have also been observed in the WC PLSR
models of Corti et al. (2017). Only the E PLSR model did not
incorporate the red-edge in its top 30 wavelengths. To predict
E, NIR, and SWIR reflectance plays a more prominent role.
These wavelength regions have been related to WC and leaf
internal structure, illustrating their importance in monitoring
plant water use behavior. The usability of PLSR models for
reviewing physiological traits was demonstrated in several
studies, but the transferability of PLSR and index-based models
to other studies or datasets is uncertain. Vigneau et al. (2011)
observed that PLSR models were dataset-dependent and could
not be applied on plants grown in a different environment. Fu
et al. (2019) went further in showing that stacking regression
models improved predictions of hyperspectral reflectance with
photosynthetic capacities in field-grown tobacco over any
individual model, including those based on PLSR. Obviously
more robust models can be created in other ways such as using
multiple genotypes or species, growing conditions, sensors and
developmental stages.

CONCLUSION AND FUTURE
PERSPECTIVES

Hyperspectral imaging is now a demonstrated tool for plant
phenotyping in automated platforms. In this case study,
hyperspectral imaging was able to resolve diurnal changes in
physiological traits, such as E, and detected the interaction
between diurnal and drought-induced changes in plant
physiology, which may mask drought effects. The imaging
system was also able to satisfactorily monitor drought-induced
changes in 9 and photosynthetic efficiency with both index-
based and PLSR models. The PLSR models performed similar or
better than the index-based models for most of the physiological
traits, as long as a decent correlation between physiology
and reflectance was present. However, indices do not always
require the development of models as they can also be used to
investigate relative differences between treatments. The results
observed in this study were only obtainable after correcting the
additional illumination-induced reflectance variation, which
was accomplished by performing a light classification. This

pre-processing approach requires no additional information
making it a more easily accessible method to remove illumination
effects. Nevertheless, illumination is not the only factor; plant
development, growing conditions, genotype and species will
also influence reflectance by creating biological variation that
may not have been accounted for during the establishment of
the hyperspectral processing protocols. Development affected
both reflectance and physiology in this case study, resulting
in greater treatment effects across many wavelengths. These
development effects will become more pronounced when plants
are monitored during their whole development. To our current
knowledge, no information of the effects of plant development
on reflectance and its relation to physiology has been published.
A better understanding of the influence of these different
factors on reflectance and its relationship with physiology is
crucial for the development of robust indices and multivariate
models that can be used in plant phenotyping and screening
of drought-tolerant varieties. The plant reflectance spectrum
contains a vast amount of information about physiological
and structural plant traits, such as leaf internal structure, leaf
thickness, pigment and WC. Current knowledge about the
causal relationships between reflectance and plant traits is
limited and insufficient to explain the more complex interactions
between reflectance and physiology that were observed in this
case study. Several hypotheses were proposed to explain these
relationships, but more research is needed to validate or refine
these hypotheses.
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