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Diatoms are photoautotrophic unicellular algae and are among the most abundant,

adaptable, and diverse marine phytoplankton. They are extremely interesting not only

for their ecological role but also as potential feedstocks for sustainable biofuels and

high-value commodities such as omega fatty acids, because of their capacity to

accumulate lipids. However, the cultivation of microalgae on an industrial scale requires

higher cell densities and lipid accumulation than those found in nature to make the

process economically viable. One of the known ways to induce lipid accumulation in

Phaeodactylum tricornutum is nitrogen deprivation, which comes at the expense of

growth inhibition and lower cell density. Thus, alternative ways need to be explored

to enhance the lipid production as well as biomass density to make them sustainable

at industrial scale. In this study, we have used experimental and metabolic modeling

approaches to optimize the media composition, in terms of elemental composition,

organic and inorganic carbon sources, and light intensity, that boost both biomass quality

and quantity of P. tricornutum. Eventually, the optimized conditions were scaled-up to 2 L

photobioreactors, where a better system control (temperature, pH, light, aeration/mixing)

allowed a further improvement of the biomass capacity of P. tricornutum to 12 g/L.

Keywords: genome-scale metabolic model, linear programming, metabolism, mixotrophic growth, diatom,

P. tricornutum, biomass productivity

1. INTRODUCTION

Diatoms are photosynthetic unicellular microalgae that dominate the oceans. Their ability to
synthesize lipid as a storage compound makes them a potential source of biofuel and high-value
commodities such as omega fatty acids (Hildebrand et al., 2012; d’Ippolito et al., 2015; Wang and
Seibert, 2017; Yi et al., 2017; Pudney et al., 2019). They have notably different evolutionary history
from that of other photosynthetic eukaryotes such as plants and green algae, and are thought to
have arisen from a complex endosymbiotic event, which is ascertained, though donor is not clearly
identified (Wilhelm et al., 2006; Armbrust, 2009;Moustafa et al., 2009). Consequently, diatoms have
a number of unique biochemical features distinguishing them other photosynthetic eukaryotes.
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TABLE 3 | Exponential growth rate, t-test analysis, and final biomass concentration in the different media.

Condition Exponential growth rate (d−1) T-test analysis Final biomass concentration (g/L)

Phototrophy vs. Mixotrophy Media vs. Improved media

E10 0.08 ± 0.02 E10 vs. E10+GLY (****) E10 vs. EE (****) 0.874 ± 0.075

E10+GLY 0.116 ± 0.04 E10+GLY vs. EE+GLY (****) 1.177 ± 0.059

EE 0.121 ± 0.008 EE vs. EE+GLY (****) EE vs. EE+BIC (*) 1.095 ± 0.027

EE+GLY 0.215 ± 0.05 EE+GLY vs. EE+BIC+GLY (ns) 1.857 ± 0.104

EE+BIC 0.147 ± 0.013 (n = 2) EE+BIC vs. EE+BIC+GLY (****) 1.306 ± 0.117

EE+BIC+GLY 0.2 ± 0.08 (n = 2) 2.017 ± 0.032

Growth rate are expressed as mean ± standard deviation with n = 4 unless otherwise stated. Data were considered significantly different for p-value<0.1 (*) and <0.0001(****), not
significant (ns): p-value >0.1.

FIGURE 3 | Biomass analysis and photosynthetic parameters analysis. (A) Fv/Fm and (B) NPQ measurement, (C) Lipids, and (D) pigments analysis in the initial

medium E10 and in the optimized medium EE and EE+BIC in both mixotrophy and phototrophy. In (C), right Y-axis (mg/L) is for lipid concentration while the left

Y-axis(%) is for FAMES and EPA. One-way analysis of variance (ANOVA) test was applied in order to compare the phototrophy and mixotrophy in different media. Data

were considered significant for p-values (****p < 0.0001) and (***p < 0.001). Each point expressed as mean ± stdev (n = 4). E10, ESAW 10XN,P; EE, ESAW

enriched; EE+BIC, ESAW enriched + bicarbonate; GLY, glycerol.

decreases the photosynthesis performance only in E10 (p-value
< 0.0001), most likely due to the rapid consumption of the N
(Figures 2D, 3A). No significant differences were detected in
photoprotection in the tested conditions (Figure 3B).

The lipid analysis was divided into eicosapentaenoic acid
(EPA), fatty acid, and total lipid concentration (Figure 3C). The

EPA concentration was similar in all the tested conditions with
the exception of EE+BIC+GLY where the concentration was
lower (p-value < 0.001). The glycerol enhanced the fatty acid
content compared to their phototrophic counterpart (p-value
< 0.0001) and its effect was higher in E10+GLY, possibly due
to N starvation that trigger lipid production. In EE, which had
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FIGURE 4 | (A) Direct assessment of oxygen consumption/production by a polarographic approach in E10, EE, and EE + BIC in both phototrophy and mixotrophy

(+GLY). Measurements were done in the light (i.e., photosynthesis, black) and in the dark (i.e., respiration, red). One-way analysis of variance (ANOVA) test was applied

in order to compare the phototrophy and mixotrophy in different media. Data were considered significant for p-values < 0.1 (****p < 0.0001, *p < 0.1).

(B) Relationship between oxygen uptake and net photosynthesis measured with a Clark electrode. Dotted lines represent a fitted regression. Each point expressed as

mean ± stdev (n = 4–12).

higher nitrogen concentration, the glycerol mostly increased
the total lipid concentration (Figure 3C, p-value < 0.0001). In
addition, the bicarbonate increased the total lipids concentration,
p-value < 0.0001, when compared to E10 and EE, under
phototrophic conditions.

EE also increased the concentration of pigments, especially
fucoxanthin, and chlorophyll A, as shown in Figure 3D,
compared to E10 in both phototrophy and mixotrophy
conditions with p-value < 0.01–0.0001. The mixotrophy,
however, decreased the concentration of pigments in all the
conditions as compared to their phototrophic counterparts with
p-value < 0.001–0.0001, but this is less evident in EE+GLY that
possess a higher concentration of nitrate and phosphate on the
day of the analysis (i.e., day 10; Figures 2C,D). No statistically
significant difference was observed in β-carotene under different
conditions. However, decrease of carotenoids and chlorophyll
in mixotrophy has been shown in P. tricornutum (Liu et al.,
2009b), but also the nutrients limitation has a key role in the
degradation of pigments (Alipanah et al., 2015, 2018). Data for
all flask experiments are available in Supplementary File 3.

Finally, respiration and photosynthesis rates were measured
as O2 exchange rates using a Clark-type oxygen electrode
with an in vivo experiment at 19◦C (Hansatech Instruments)
(as described in section 2.2.2). As shown in Figure 4A,
the glycerol enhanced the respiration rates in all the tested
conditions (p-value < 0.1–0.0001), confirming previous results
(Grama et al., 2015). The oxygen consumption was higher
in the optimized medium (i.e., both EE and EE+BIC), as
expected based on the finding that glycerol consumption and
growth performances are higher in these conditions (Figure 2).
Net photosynthesis (calculated as oxygen evolution corrected
by dark respiration) was also increased by glycerol, in a
way that was commensurate to the respiration enhancement
(Figure 4B). Indeed, we found a linear relationship between

the photosynthetic and respiratory performances. Overall these
results suggest thatmixotrophy enhances respiration (via glycerol
consumption) and photosynthesis, possibly through energetic
exchanges between the two energy making organelles in line with
earlier hypotheses (Bailleul et al., 2015).

3.2.3. Scale-Up in 2-L Photobioreactor
The experiment was further upscaled to 2-L photobioreactors, as
specified in section 2.1.2, in E10, EE, and EE+bicarbonate under
both phototrophic and mixotrophic condition. Photobioreactors
with mixotrophic culture and EE + BIC condition were
supplemented with 4.6 and 1.26 g/L of glycerol and NaHCO3,
respectively, at a regular time interval. Since HNO3 was also
used to regulate the pH of the culture, as mentioned in section
2.1.2, the cultures were never deficient in terms of nitrogen while
NaH2PO4 was added to the culture as needed. However, in the
samples E10 and E10+GLY the pH was regulated by the addition
of 0.4 N of H2SO4 to maintain the original N concentration of
the medium.

As shown in Table 4 and Figure 5, exponential growth
rate was largely increased in optimized medium (i.e., EE and
EE+BIC) under mixotrophic condition when compared to
initial conditions (E10). The growth rates in flask experiments
(section 3.2.2 and Table 3 and bioreactor (Table 4) were highly
comparable for equivalent conditions, and showed the same
pattern of effects for medium supplementation and mixotrophy.
The biomass concentration and biomass, lipid (as fatty acids
and EPA), carbohydrates, and fucoxanthin productivities were
compared in the different conditions and are summarized in
Table 4. EE+BIC+GLY proves to be the best condition. The
biomass concentration is increased by a factor of about 9
comparing to the initial conditions E10. Pigment, fatty acid,
EPA, and carbohydrate also increases with p-value < 0.0001
(Supplementary File 4), when compared to initial conditions
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TABLE 4 | Growth rate, final biomass concentration, maximum FAMEs, EPA, fucoxanthin, and carbohydrate productivity in the different media, E10, EE, and EE+BIC

under phototrophic and mixotrophic conditions in 2-L photobioreactor.

E10 E10+GLY EE EE+GLY EE+BIC EE+BIC+GLY

Growth rate, (d−1) 0.078 ± 0.004 (n = 5) 0.098 ± 0.004 (n = 6) 0.06 ± 0.01 (n = 6) 0.19±0.02 0.16 ± 0.02 (n = 6) 0.18 ± 0.03 (n = 5)

Final biomass conc, (g/L) 1.32 ± 0.08 (n = 6) 1.46 ± 0.08 (n = 6) 1.6 ± 0.14 (n = 6) 5.03 ± 0.19 (n = 6) 2.58 ± 0.15 (n = 6) 11.55 ± 0.24

max FAMEs, (mg/L/d) 14.59 ± 1.12 32.45 ± 2.22 9.98 ± 1.78 23.80 ± 2.86 21.61 ± 3.39 51.96 ± 0.61

max EPA, (mg/L/d) 2.12 ± 0.08 2.87 ± 0.21 1.40 ± 0.14 3.98 ± 0.51 3.2 ± 1.7 9.51 ± 0.13

max Fucoxanthine, (mg/L/d) 0.36 ± 0.05 0.21 ± 0.11 – – 0.71 ± 0.06 1.97 ± 0.34

max Carbohydrate, (mg/L/d) 16.76 ± 1.35 31.03 ± 2.61 4.95 ± 0.54 25.50 ± 2.06 16.85 ± 13.18 54.91 ± 2.40

Results are expressed as mean ± stdev with n = 4 unless otherwise stated.

FIGURE 5 | Scale-up to photobioreactors. Log plot of growth curves in 2-L fermentor in E10 (circle), EE (square), and EE+ BIC (triangle) in both phototrophic (black)

and mixotrophic (red) modes. C is the biomass concentration expressed in g/L at any time, and C0 is the initial biomass concentration. Dotted lines represent the

regression curve during the exponential phase of growth (1–6 days). The slopes of the curve (growth rates) of each media under phototrophy and mixotrophy

conditions are shown in Table 4. Results are expressed as mean±stdev with n values as stated in Table 4.

(E10). Higher lipids, especially fatty acids, were shown in
E10±GLY compared to EE±GLY, most likely because of the N
limitation in E10 media that triggers lipid storage. Our result
demonstrates that the light and supplementation of bicarbonate
induced higher production of lipids even without N limitation
overcoming the trade-off between growth and lipid production.

4. DISCUSSION AND CONCLUSION

In this study, we have combined metabolic modeling and
experimental approach to design an optimized growth media
(called EE) for P. tricornutum. The model analysis suggested
contribution of glycerol and HCO3 fixation toward lipid
production. Further, it suggest that high lipid production
utilizes various aspects of metabolism such as photosynthesis,
respiration, inorganic (HCO3), and organic (glycerol) carbon
fixation. The addition of both organic (i.e., glycerol) and
inorganic C (i.e., NaHCO3), along with the optimization of the
trace elements, improved both biomass quantity and quality in P.
tricornutum in our study.

Carbon is the major macronutrient that affects the growth
of microalgae and to increase the biomass/growth and storage
compounds such as lipid and carbohydrate, it is necessary to
increase the dissolved inorganic carbon (DIC) concentration,
as shown in different algal species, including Phaeodactylum
(Levering et al., 2016; Hammer et al., 2019). The most common
practice to supplement the algal culture with the DIC is to bubble

air into the growth medium. Another method includes addition
of HCO3 to the media (Lohman et al., 2015; Mokashi et al.,
2016), which is a cheaper and more suitable inorganic carbon
alternative to the CO2. Diatoms, including Phaeodactylum,
possesses biophysical and/or biochemical CO2 - concentrating
mechanism (CCM) (Reinfelder et al., 2000; Roberts et al.,
2007; Hopkinson et al., 2011; Matsuda et al., 2011). Biophysical
CCMs involve active transport of CO2 or HCO3 and CA
maintains equilibrium between the two species by catalyzing the
reversible interconversion of CO2 and water into HCO3 and
protons. Biochemical CCMs involving C4-type photosynthesis,
on the other hand, utilizes carboxylation enzymes such as
PEP/pyruvate carboxylase, which catalyzes the carboxylation of
PEP/pyruvate with HCO3, forming a C4 carbon compound.
This compound is then cleaved by decarboxylating enzymes
to produce CO2 in the proximity of Rubisco (Sage, 2004).
In addition, anaplerotic production of C4 skeletons through
HCO3 fixation by PEP/pyruvate carboxylase independent of
photosynthesis, as observed in the model (section 3.1), has
also been reported in diatoms (Granum and Myklestad, 1999;
Needoba and Harrison, 2004). Results in this study confirm that
addition of HCO3 improves the algal growth, although further
investigation using C labeling and multi-omics techniques would
be required to confirm the fate and mechanism of HCO3

utilization in P. tricornutum.
In addition, most microalgae can simultaneously assimilate

organic carbon such as glycerol, fructose, glucose, lactose,
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mannose, and acetate (Garcì et al., 2004; Villanova et al., 2017).
P. tricornutum is also able to use organic carbon in presence of
light, and in particular, the glycerol has been shown to be the
best candidate for enhancing biomass and lipids productivity
(Garcìa et al., 2005, 2006, 2013; Villanova et al., 2017). Model
analysis shows that glycerol enters the central carbon metabolism
through glycolysis and PPP and that both the Calvin cycle
located in plastid and PPP located in cytosol can be active
simultaneously. In other photosynthetic eukaryotes where both
the Calvin cycle and PPP are located in the same compartment
(i.e., plastid), the simultaneous operation of the Calvin cycle
and oxidative limb of PPP would lead to the futile cycling of
NADPH. This is prevented by the action of the thioredoxin
system (Anderson, 1981, 1986; Sibley and Anderson, 1989;
Schurmann and Jacquot, 2000). This is a redox mediated system
that serves (among other things) to activate the oxidative limb
of the PPP in the dark, and inactivate it in the light. Although
diatoms possess the thioredoxin system, its targets are unclear:
the only Calvin cycle enzyme under thioredoxin control appears
to be fructose bisphosphate aldolase (Wilhelm et al., 2006;
Kroth et al., 2008). Moreover, PPP is translocated to the cytosol.
Overall, we propose that this compartmental re-arrangement
and redox deregulation could possibly be a metabolic
advantage for P. tricornutum to simultaneously activate both
the processes.

The increased concentration of micronutrient has also been
shown to enhance both biomass and biotech relevant molecules,
as TAGs, probably due their involvement in the key enzymes of
photosynthesis, respiration, and carbon fixation in microalgae
(Morel et al., 2003). Here, we showed that the addition
of both organic (i.e., glycerol) and inorganic carbon (i.e.,
NaHCO3), along with increased micronutrients (trace elements),
improved both biomass quantity and quality in P. tricornutum.
It also enhanced both the respiration and photosynthesis
performance (both in the model analysis and experimental
results), suggesting that there is an energetic coupling between
chloroplast and mitochondria and the communication between
the two organelles is crucial for optimizing carbon fixation and
growth as reported by Bailleul et al. (2015).

The medium optimization by implementing the
micronutrients and NaHCO3 supply largely enhanced
mixotrophy growth, allowing to reach the state of the art biomass
and lipid concentration levels. The total lipid and biomass
concentration in our improved EE medium, under mixotrophic
regime in the flask experiments, are higher (641 mg/L and
1.8 g/L, respectively) as compared to previous experiments by
Yang et al. (2017) and Yodsuwan et al. (2017) in f/2 medium,
which obtained total lipid and biomass concentration in the
range of 40–133 mg/L and 0.2–0.4 g/L, respectively, for the
same or higher duration of the cultivation time. Fucoxanthin
concentration in EE medium is comparable to that in f/2
medium (4.47 mg/g DW) (Yang et al., 2017). In upscaled 2-L
photobioreactor, Fucoxanthin concentration was increased by a
factor of about 6 compared to the initial condition. The biomass
concentration, which was achieved in the presence of relatively
low light intensities (in the range of 70–300 µE m−2 s−1) is
comparable to previous experiments by Garcìa et al. (2013) that

used light intensity of 750 µE m−2 s−1 where similar biomass
concentration was obtained, in comparable cultivation time, in
both phototrophy and mixotrophy (5 and 14 g/L, respectively).
A further investigation would be required to comment if
increasing light intensity, as in Garcìa et al. (2013), would have
further enhanced the biomass and lipid concentration in our
improved media.

The addition of glycerol also enhances carbohydrates
concentration in P. tricornutum (Villanova et al., 2017).
Here, the carbohydrate productivity was enhanced of about
3 times compared to the initial condition. The inhibition of
the biosynthesis of storage carbohydrates could potentially
direct the carbon (derived from glycerol) toward TAG
production as already reported in the case of the main
sugar storage polymer, chrysolaminarin in Daboussi et al. (2014).
Our study demonstrated that the combination of different
optimization processes, i.e., elemental balancing, process design
and mathematical model, can be successfully integrated to design
an optimized growth media that, in our experiments, have
increased the algal production capabilities. Moreover, the algal
productivity and lipid production could be further enhanced by
metabolic engineering and improving the quality and quantity
of light.
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