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Cross talking between natural senescence and cell death in response to pathogen
attack is an interesting topic; however, its action mechanism is kept open. In this study,
33 OsWRKY genes were obtained by screening with leaf aging procedure through
RNA-seq dataset, and 11 of them were confirmed a significant altered expression
level in the flag leaves during aging by using the reverse transcript quantitative PCR
(RT-qPCR). Among them, the OsWRKY2, OsWRKY14, OsWRKY26, OsWRKY69, and
OsWRKY93 members exhibited short-term alteration in transcriptional levels in response
to Magnaporthe grisea infection. The CRISPR/Cas9-edited mutants of five genes were
developed and confirmed, and a significant sensitivity to M. oryzae infection was
observed in CRISPR OsWRKY93-edited lines; on the other hand, a significant resistance
to M. oryzae infection was shown in the enhanced expression OsWRKY93 plants
compared to mock plants; however, enhanced expression of other four genes have no
significant affection. Interestingly, ROS accumulation was also increased in OsWRKY93
enhanced plants after flg22 treatment, compared with the controls, suggesting that
OsWRKY93 is involved in PAMP-triggered immune response in rice. It indicated that
OsWRKY93 was involved in both flag leaf senescence and in response to fungi attack.

Keywords: OsWRKY93, rice, flag leaf, senescence, biotic stress

INTRODUCTION

Rice is the main food crop of the developing world. However, the increase of yield is seriously
restricted by flag leaf senescence in rice. The flag leaf, the uppermost leaf in the rice plant, is thought
to contribute highly to what is accumulated in grain (Ghosh et al., 1990; Li et al., 1998). Delaying the
senescence of rice leaves and prolonging the photosynthesis time are beneficial for increasing the
rice yield, and the yield can increase by about 2% after flag leaf senescence is delayed for 1 day (Ma
and Lu, 1990). Therefore, studying the mechanism of flag leaf senescence is essential to improving
the yield of rice grain.

Leaf senescence is the final stage of leaf development. As an organ level senescence, leaf
senescence is a crucial means for plants to reallocate nutrients and valuable substances from
senescent leaves to reproducing seeds, eventually maximizing reproductive success (Himelblau and
Amasino, 2001). Leaf senescence is a strictly organized process finely governed by developmental
age. However, leaf senescence is also influenced by various internal and environmental signals that
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are integrated with age information (Lim et al., 2007). The
internal factors that affect leaf senescence include developmental
cues and reproductive development as well as phytohormones
(Gan and Amasino, 1995; Pic et al., 2002; Riefler et al., 2006).
The environmental cues include various stresses such as extreme
temperatures, nutrient deficiency, drought, radiation, and
infection from pathogens. Interestingly, the leaf transcriptome
varies immensely accompanying the onset and progression of leaf
senescence. It was previously reported that 20 different families
of transcription factors that are transcriptionally up-regulated in
senescent leaves remarkably contain several large groups such
as NAC, WRKY, C2H2-type zinc finger, AP2/EREBP, and MYB
proteins (Guo and Gan, 2005).

Among these large groups, WRKY proteins are plant specific
transcription factors that are especially believed to play central
roles in regulating senescence. All WRKY proteins contain at
least one WRKY domain that is composed of a zinc finger
structure and a 60-amino acid region with WRKYGQK at
the N-terminal end. The WRKY domain is a DNA-binding
domain that binds directly to various W-box variants (Eulgem
et al., 2000; Yu et al., 2001). To date, many WRKY TFs
regulating leaf senescence have been characterized in Arabidopsis.
WRKY6 is highly induced during leaf senescence (Robatzek
and Somssich, 2001). WRKY45 positively regulates age-triggered
leaf senescence through interacting with a DELLA protein,
RGL1 (Chen L. et al., 2017). Another well-known WRKY
member, WRKY53 plays a regulatory role in the early events of
leaf senescence (Hinderhofer and Zentgraf, 2001; Miao et al.,
2004). Overexpression of WRKY75 accelerates age-dependent
leaf senescence (Guo et al., 2017). In rice, WRKY family has over
102 members (Xie et al., 2005). However, relatively few OsWRKY
members involved in leaf senescence have been examined. For
instance, overexpressing OsWRKY5 promotes leaf senescence
under natural and dark-induced senescence conditions (Kim
et al., 2019). Heterologous expression of OsWRKY23 promotes
dark-induced leaf senescence in Arabidopsis (Jing et al.,
2009). OsWRKY42 enhances leaf senescence by repressing the
expression of OsMT1d to induce reactive oxygen species (ROS)
in rice (Han et al., 2014).

The WRKY family is also known for being the key player
in plant biotic stress response. The initial study investigated the
expression of WRKY TFs in rice response to M. oryzae and found
that 15 OsWRKYs were induced upon pathogen infection (Ryu
et al., 2006). Subsequent research revealed more details about
the involvement of many OsWRKYs in plant defense. At least
nine OsWRKYs have been identified to regulate rice response to
M. oryzae positively. For example, overexpression of OsWRKY31,
OsWRKY45, OsWRKY47, OsWRKY53, or OsWRKY67 in rice
plants enhances resistance to M. oryzae (Chujo et al., 2007;
Shimono et al., 2007; Zhang et al., 2008; Wei et al., 2013;
Vo et al., 2018). On the contrary, several OsWRKY members
function as negative regulators of the rice response to M. oryzae
infection. For instance, through suppressing JA signaling-
related genes, OsWRKY42 negatively regulate rice response to
M. oryzae (Cheng et al., 2015). Overexpression of OsWRKY28 or
OsWRKY76 in rice plants resulted in increased susceptibility to
M. oryzae (Chujo et al., 2013; Yokotani et al., 2013).

In this study, the transcriptome analysis shows that 33
OsWRKY members in rice flag leaves are differentially expressed
during plant aging. Besides, RT-qPCR analysis displayed that the
expression of five OsWRKY genes were altered in Guy11-treated
rice plants. The Crispr/Cas9-edited mutants of five OsWRKY
genes were developed and confirmed. Genetic analysis reveals
that enhanced expression of OsWRKY93 resulted in an enhanced
resistance to M. oryzae infection in rice. This finding suggests
that OsWRKY93 plays a role in the defense response and is
also associated with the regulation of flag leaf senescence in
rice. All in all, this study provides a new candidate gene for in
depth understanding of the regulatory mechanisms of pathogen
induced leaf senescence, helping in breeding high yield and
disease resistant crops.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The rice (Oryza sativa L. subsp. japonica) of the Kitaake
accession was used for generating OsWRKY2, OsWRKY14,
OsWRKY26, OsWRKY69, and OsWRKY93 transgenic plants with
increased OsWRKY2, OsWRKY14, OsWRKY26, OsWRKY69,
and OsWRKY93 expression level via a transcriptional activator
containing four copies of VP16 (i.e., VP64), and named
OsWRKYVP64 (Sadowski et al., 1988; Yaghmai and Cutting,
2002). Rice plants were grown in the growth chamber at 30◦C for
12 h (day) and 20◦C for 12 h (night) or under outdoor conditions
(natural long-day conditions) in Fuzhou Fujian Province, China,
from April to September.

Identification of CRISPR/Cas9-Edited
Mutants
The OsWRKY2, OsWRKY14, OsWRKY26, OsWRKY69, and
OsWRKY93 CRISPR transgenic plants were produced by
the Biogle company (Hangzhou, China). Genomic DNA
from individual transgenic plants was isolated using Edwards
buffer (Edwards et al., 1991) for PCR analysis. The PCR
products were amplified with OsWRKY93-specific primers
and were sequenced directly. The OsWRKY93-specific primers
were designed for amplifying targeted regions of OsWRKY93
(Supplementary Table S2).

Pathogen Inoculation
M. oryzae strain Guy11 was used in this study. At the three-
leaf stage, rice seedlings were spray-inoculated with the spore
suspension of M. oryzae (1 × 105 spores/ml in water containing
0.02% Tween 20). Subsequently, the inoculated plants were
incubated in the dark at high humidity for 24 h and transferred to
a growth chamber at 24◦C with 12 h of light and 12 h of darkness.
The disease lesions in the infected leaves were observed, and were
scanned at 0, 1, 3, 4 days post-inoculation (dpi).

Darkness Treatment
Kitaake, NIP, oswrky93-1 mutant and the T2 generation
OsWRKY93vp64 plants were cultured in soil for 39 days after
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germination. The fully expanded part of the sixth leaves were
cut into 1–2 cm pieces and pooled, and then the leaf pieces
were suspended in 3mM MES (pH5.8) buffer and cultured in
the dark at 28◦C for 0, 24, 36, 48, 60, 72, 84, and 96 h. The
color changes of leaves were observed and photographed. Three
biological replicates were used.

Chlorophyll Measurements
The chlorophyll content of flag leaves were measured using a
chlorophyll meter (DUALEX SCIENTIFIC). For measurement
3–4 points in the central region of the leaf were picked up.

Reverse Transcription Quantitative PCR
Three-leaf stage rice seedlings were spray-inoculated with Guy11
(1 × 105 spores/ml) and water, and leaf samples were collected
at 0, 24, 48, 72, 96, and 108 hrs post-inoculation (hpi). Two
biological replicates were tested, and each biological replicate
contains leaves from three independent plants. Total RNA
was extracted from those leaf samples using TRIzol reagent
(Invitrogen), followed by cDNA synthesis with RevertAid
Reverse Transcriptase (Thermo Fisher Scientific). Quantitative
PCR was performed using TransStart Green qPCR SuperMix
Kit (TransGen Biotech, China) and the indicated primers
(Supplementary Table S1). The rice actin1 (OsACTIN1) gene was
selected as an internal control.

ROS Assay
Oxidative bursts were measured using a luminal-based assay with
leaf discs from 5-week-old plants. The leaf discs were incubated in
sterile water overnight, and then water was replaced with 20 µM
luminal and 2.5 µg/ml peroxidase. To measure ROS, leaf discs
were treated with 1 µM flg22 or water (Ctrl). Immediately, the
luminescence was measured at 3 min intervals with a Varioskan
LUX Multimode Microplate Reader (Thermo Fisher Scientific).
Then 3–5 replications were carried out for each sample.

RESULTS

Expression Patterns of OsWRKYs in Rice
Flag Leaves During Natural Senescence
To monitor the transcriptional changes in rice flag leaves during
natural senescence, a genome-wide transcriptome analysis was
carried out in flag leaf tissue of the Nipponbare through massive
RNA sequencing. For generation of RNA-seq libraries, six flag leaf
samples were taken. The first sample of the flag leaf was collected
at the heading stage when the flag leaf was fully expanded
[0 weeks after heading (WAH) and named 0W]; chlorophyll
content is higher in 1w than 0w, and then it is gradually decreased
from 1w to 5w; the following five flag leaf samples were collected
every week (named 1W, 2W, 3W, 4W, and 5W, respectively, 0W
used as control). The onset of leaf senescence coincides with the
start of Chlorophyll (Chl) degradation, while the initiation of leaf
senescence is before Chl degradation. Therefore, the senescence
initiation of flag leaves started at the time period between 0W
and 2W (Supplementary Figure S1). Through RNA-Seq analysis,

the expression patterns of 102 OsWRKY family members in rice
flag leaves during aging stages were investigated (Supplementary
Dataset S1). EdgeR program was used for differential expression
analysis of OsWRKY genes between any of the six samples
(Nikolayeva and Robinson, 2014). In comparison with the
control (0W), a differential expression profile of a total thirty-
three OsWRKY genes were exhibited during natural senescence
of flag leaves (Figure 1 and Supplementary Dataset S1).

To further confirm the differential expression of thirty-
three OsWRKY genes during natural senescence according to
transcriptome data (Figure 2 and Supplementary Dataset S1),
all of 33 OsWRKY genes were checked by RT-qPCR, the
transcript levels of eight OsWRKYs (OsWRKY2, OsWRKY10,
OsWRKY14, OsWRKY29, OsWRKY47, OsWRKY49, OsWRKY72,
and OsWRKY73) were immediately up-regulated in 1W-vs-
0W comparison, while that of three OsWRKYs (OsWRKY69,
OsWRKY93, OsWRKY26) were slightly down-regulated in 1W-
vs-0W comparison then up-regulated in 2W vs. 0W again
(Figure 2), suggesting that they are senescence-related OsWRKY
genes. Among the 11 OsWRKY genes, OsWRKY2, OsWRKY69,
and OsWRKY93 shared a similar expression pattern in rice
flag leaves that the transcript level increased and peaked at
the second week after heading (2W) and declined afterward
compared with the 0W control. The expression of OsWRKY10
and OsWRKY14 reached the highest level at 1W and remained
relatively high afterward. The level of OsWRKY26 mRNA was
slightly increased at 1W and then stayed low level at 2W and

FIGURE 1 | Heat map diagram of relative gene expression levels of 33
OsWKRYs from total 102 WRKYs (Supplementary Dataset S1) in rice flag
leaves at six stages during aging. Developmental stages comprising six
stages of flag leaf (0, 1, 2, 3, 4, and 5 weeks after heading). Expression values
were scaled by Log2Fold change ≥ 1 and FDR < 0.05 normalized to 0W
stage of flag leaf development. 10 OsWRKY candidates are indicated with
yellow highlight.
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FIGURE 2 | Analyses of several OsWRKYs expression level in rice flag leaves during natural senescence. The expression level was assessed by RT-qPCR. All values
were normalized to OsACTIN expression. Box-and-whisker plots show the median value (horizontal lines), interquartile range (boxes), and minimum and maximum
values (whiskers). Three biological replicates and three technique replicates were used. The broken-line graphs indicate expression profiles of 11 OsWRKYs from
RNA-seq dataset. Asterisks indicate significant differences relative to the 0W controls calculated using the Student t-test: *P < 0.05; **P < 0.01; and ***P < 0.001.
The leaf Y_axis denotes relative expression by RT-qPCR. The right y-axis denotes ratio of the fold change of RPKM compared with 0W by RNA-seq. 0W means 0
week after heading.

3W and suddenly highly increased at 4W. At 3 weeks after
heading, the expression ofOsWRKY29,OsWRKY47,OsWRKY49,
and OsWRKY72 was significantly higher than other controls and
began to decrease later (Figure 2). Overall, the results of RT-
qPCR were similarly consistent with the RNA-seq data except
OsWRKY26 and OsWRKY47 (Figure 2 broken line).

Expression Profiles of OsWRKYs in
Response to Pathogen Infection
In nature, plants are often attacked by various pathogens, leading
to senescence and even death of plants. In this case, plants
will initiate a series of immune defense responses to fight back.

A number of WRKY family TFs are involved in regulation of
both leaf senescence and pathogen defense response, evidently
through the ROS and SA pathways, both of which play
an important role in leaf senescence and defense responses
induced by pathogens (Zhang et al., 2020). To investigate
whether these 11 OsWRKYs are induced by infection from
pathogens, we performed RT-qPCR (Figure 3). For pathogen
treatment, three-leaf-stage rice seedlings were spray-inoculated
with Magnaporthe oryzae strain Guy11. The infected leaf samples
were collected every 24 h for near 5 days. The defense-
related gene, OsNAC4, was used as a positive marker control,
showing increased transcript levels in the infected leaves (Kaneda
et al., 2009). Among 11 OsWRKYs, OsWRKY2, OsWRKY14,
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FIGURE 3 | Expression analysis of five OsWRKY genes and the defense-related marker gene OsNAC4 in response to M. oryzae infection. qRT-PCR analysis of five
OsWRKYs and OsNAC4 in WT at 0, 24, 48, 72, 96, and 108 h after pathogen treatment. The Y-axis represents the relative expression level normalized to OsACTIN.
Box-and-whisker plots show median value (line within box), interquartile range (boxes), and minimum and maximum values (whiskers). Three biological replicates and
three technique replicates were used. Asterisk indicate significant differences (**P < 0.01, and ***P < 0.001) based on Student t-test compared to 0 h.

OsWRKY26, OsWRKY69, and OsWRKY93 were induced by
M. oryzae infection. For instance, OsWRKY69 and OsWRKY93
had slightly elevated mRNA levels in infected plants, and they
were exclusively expressed at the early stage of infection. On
the contrary, OsWRKY2 and OsWRKY14 were up-expressed
at the late stage after infection. Specifically, the expression of
OsWRKY26 was strongly up-regulated at 96 h after inoculation
with Guy11. Taken together, the five OsWRKYs appear to play
roles in M. oryzae mediated resistance.

We summarized the expression profiles of five OsWRKYs
genes both after pathogen infection and during plant aging
and showed that OsWRKY2 was down-regulated, which might
mean no resistance and no senescence; OsWRKY14 was down-
regulated after infection but up-regulated during plant aging,
which might imply senescence but no resistance; OsWRKY26
was both up-regulated, which might mean both resistance
and senescence. Both OsWRKY69 and OsWRKY93 showed up-
resistance after infection but down-regulation during plant aging,
which might mean resistance but no senescence (Table 1).
Therefore, OsWRKY69 and OsWRKY93 were our favorite
candidates for breeding of high yield and disease-resistant rice.

Evaluation of Disease Resistance of
OsWRKY93 Transgenic Lines to
Magnaporthe oryzae Guy11
We showed that five OsWRKYs were induced in response
to Guy11 treatment. In order to genetically evaluate five
OsWRKYs protein functions, five OsWRKYVP64 transgenic
lines were generated to explore the potential functions in rice
disease resistance (see section “Materials and Methods”). We

TABLE 1 | Summary of the expression profiles of five OsWRKYs genes after
pathogen infection and during plant aging.

Genes Expression profile
response to M. oryzae

Expression profile during
aging

OsWRKY2 Down Down

OsWRKY14 Down Up

OsWRKY26 Up Up

OsWRKY69 Up Down

OsWRKY93 Up Down
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first detected their transcript levels of five OsWRKY genes
by RT-qPCR. The results showed that five OsWRKYs genes
all increased their transcript levels in the transgenic lines
(OsWRKYs VP64) compared with WT Kitaake (Figure 4A and
Supplementary Figure S2). We then inoculated the three-
leaf-stage OsWRKYsVP64 plants with Magnaporthe oryzae
Guy11 using the spray-inoculation method. Surprisingly, we
found that only OsWRKY93VP64 plants showed a significant
enhanced resistance to blast disease (Figure 4B). However,
the other four of them have no significant alteration of
disease resistance to Magnaporthe oryzae Guy11 in the
transgenic lines (OsWRKYsVP64) compared with WT Kitaake
(Supplementary Figure S3).

In order to further confirm the role of OsWRKY93 in disease
resistance, we generated oswrky93 mutants using CRISPR/Cas9
system in Nipponbare (Figure 4C). We found one mutant line
oswrky93-1 that carries a one-base insertion in the first exon of
the OsWRKY93 gene (Figure 4D). In contrast to Nipponbare
plants, the CRISPR/Cas9-edited oswrky93 mutants are more
susceptible to M. oryzae, showing more disease lesions and less
healthy leaf area (Figure 4E), suggesting that oswrky93-1 plants
exhibited elevated susceptibility to M. oryzae. Together with the
results from the above analysis, these data imply the contribution
of OsWRKY93 to rice defense against M. oryzae infection.

Detection of ROS Production in
OsWRKY93 Transgenic Lines
Reactive oxygen species (ROS) burst is a common feature in plant
response to a number of biotic stresses, and flg22 has been shown
to trigger ROS production in Arabidopsis (Mersmann et al.,
2010). To examine whether enhanced-expression or knockout
of OsWRKY93 affect ROS production after flg22 treatment, we
collected leaves from the OsWRKY93VP64, oswrky93-1 and WT
plants and measured immediately the ROS level after flg22
treatment. In our experiments, ROS production was increased in
OsWRKY93VP64 activation plants after treatment with flg22, and
the flg22-induced ROS generation was twofold higher, compared
to the Kitaake plants control and water treatment (Figure 5A).
As expected, no constitutive ROS production was observed in
oswrky93-1 mutant plants (Figure 5B). Given these facts, we
concluded that overexpressing OsWRKY93 enhances PAMP-
triggered immune response in rice.

Detection of Darkness-Induced Leaf
Senescence Phenotype in OsWRKY93
Transgenic Lines
In order to further evaluate the potential role of OsWRKY93
in leaf senescence, the OsWRKY93vp64, oswrky93-1 mutant and
two ecotypes of rice (Kitaake and NIP) plants were used for
phenotype observation. The plants grown in the soil during the
period of 39 days after germination did not show any visibly
different phenotypes among enhanced-expression or knockout
of OsWRKY93 and WT. However, the results of detached
leaves after darkness treatment showed that the enhanced
OsWRKY93 level clearly delayed leaf senescence after darkness
treatment for 84 h in OsWRKY93vp64 line compared to Kitaake

(Figure 6A), while knockout ofOsWRKY93 apparently promoted
leaf senescence after darkness treatment for 72 h in the oswrky93-
1 line compared to NIP (Figure 6B). Therefore, OsWRKY93
plays function in darkness induced leaf senescence, although
there is no visible senescence phenotype in the seedling stage of
oswrky93 mutants.

In view of these facts, OsWRKY93 is a new candidate protein
for in-depth understanding of the regulatory mechanisms of
pathogen-induced cell death and leaf senescence, helping in
breeding high-yield and disease-resistant crops.

DISCUSSION

Plant breeders are facing a serious challenge in rice production,
that is, the premature senescence of leaves, in particular, flag
leaves, which causes yield loss. There are, however, quite
few studies that investigate the molecular mechanism of flag
leaf senescence in rice. In this paper, we have identified
11 OsWRKYs that were differentially expressed during the
senescence of flag leaves through RNA-Seq together with the
RT-qPCR analysis. Importantly, we also surveyed the responses
of 11 OsWRKY genes to M. oryzae to explore the correlation
between leaf senescence and plant defense. Finally, we genetically
identified OsWRKY93 as a new candidate protein for in-
depth understanding of the regulatory mechanisms of pathogen-
induced leaf senescence, helping in breeding high-yield and
disease-resistant crops.

Our experimental results demonstrate that five senescence-
inducible genes, OsWRKY2, OsWRKY14, OsWRKY26,
OsWRKY69, and OsWRKY93, were induced in response to
M. oryzae infection, implying that part of OsWRKY TFs
connect leaf senescence and plant defense. In light of the fact
that numerous studies have shown that the WRKY family
plays a central role in leaf senescence as well as biotic stress
tolerance (Bakshi and Oelmüller, 2014), it’s not surprising that
some WRKY members might have dual functions between
them, such as WRKY53, WRKY6, WRKY22, and WRKY70 in
Arabidopsis (Robatzek and Somssich, 2002; Miao and Zentgraf,
2007; Rushton et al., 2010; Zhou et al., 2011; Hu et al., 2012;
Chen J. et al., 2017; Zhou et al., 2018; Ramos et al., 2021). In
this study, the transcript levels of OsWRKY93 increased as leaf
senescence progressed, suggesting that OsWRKY93 is involved
in the onset of flag leaf senescence. Gain-of OsWRKY93 delays a
dark-induced leaf senescence, contrary to the loss-of OsWRKY93,
and promotes a dark-induced leaf senescence (Figure 6). We
further showed that rice transgenic plants overexpressing
OsWRKY93 displayed an enhanced resistance to M. oryzae
and the knockout oswrky93-1 mutants are more susceptible to
M. oryzae. In addition, we also found that the OsWRKY93VP64
lines accumulated ROS highly in response to flg22 treatments
(Figure 5A). In contrast, enhanced ROS production couldn’t
be detected in the oswrky93-1 mutant plants (Figure 5B).
These results clearly indicate that the senescence-inducible gene
OsWRKY93 is also a positive regulator of the defense response in
rice. These results also corroborate the findings of the previous
study on OsWRKY23. As described in that paper, OsWRKY23
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FIGURE 4 | Generation and analysis of the OsWRKY93 transgenic lines. (A) Real-time quantitative PCR experiments showing expression changes of OsWRKY93 in
Kitaake and the OsWRKY93V P64. (B) Representative leaves of Kitaake and the OsWRKY93V P64 3 and 4 days after inoculation with M. oryzae. Pathogen infection
assays were performed on three biological replicates. (C) Schematic diagram for the CRISPR-edited mutant of OsWRKY93. Yellow boxes and black lines represent
exons and introns, respectively. The sgRNA target is cyan. (D) Sequence of the oswrky93-1 mutant identified from transgenic plants of the OsWRKY93 sgRNA
target. The reverse complementary sequence of the PAM sequence (5’-CGG-3’) of the sgRNA target is green. The red T represents a one-base insertion. (E)
Representative leaves of Nipponbare and oswrky93-1 3 and 4 days after inoculation with M. oryzae. Pathogen infection assays were performed on three biological
replicates.

was strongly induced by dark-induced senescence and its
overexpression in Arabidopsis increased tolerance to pathogen
infection (Jing et al., 2009). In addition, as we knew, plant
senescence is controlled by genetically materials and influenced
by environmental cues. In this study our RT-qPCR profiles of a
few of 11 candidate WRKYs are not matched well with RNA-seq
data (Figure 2), an uncontrollable growth condition of different
years might be one of reasons for a few OsWRKY members
sensitively in response to unknown environmental factors.

Phylogenetic analyses of the WRKY domain sequences
provide support for the hypothesis that gene duplication of
single- and two-domain WRKY genes and loss of the WRKY
domain occurred in the evolutionary history of this gene family

in rice (Xie et al., 2005). Based on the number of WRKY domains
and the characteristics of the zinc-finger-like motif, the WRKY
family can be divided into three types. According to amino
acid sequence similarity, 97 WRKY proteins in O. sativa were
divided into three types and 13 groups, of which class II WRKYs
were divided into 10 subclasses (IIa–IIj), and class III WRKYs
were divided into two subclasses (IIIa and IIIb) (Qiu et al.,
2004; Rushton et al., 2010). It has been reported that class II
or III WRKY members are mostly involved in plant defense
response (Dong et al., 2003; Cheng et al., 2019; Wang et al.,
2020). Here, OsWRKY2, OsWRKY14, and OsWRKY26 belonged
to class II of the WRKY family. OsWRKY69 and OsWRKY93
belonged to class III of the WRKY family. Interestingly, we
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FIGURE 5 | ROS accumulation in rice leaves after flg22 treatment. (A) A
flg22-induced ROS burst in the OsWRKY93V P64 and Kitaake plants. (B) A
flg22-induced ROS burst in the oswrky93-1 and Nipponbare plants. Rice leaf
disks were treated with 1 µM Flg22 or water. Error bars represents the SE
(n = 3–5).

found that the expression profiles of five OsWRKYs genes were
altered in both after pathogen infection and during plant aging,
which showed that OsWRKY2 was down-regulated: there was no
resistance and no senescence; OsWRKY14 was down-regulated
after infection but up-regulated during plant aging: there was
no resistance and senescence; OsWRKY26 was up-regulated,
with respect to both resistance and senescence; both OsWRKY69
and OsWRKY93 showed up-resistance after infection but were
down-regulated during plant aging, with respect to resistance
and no senescence (Table 1). Although the enhanced transgenic
rice plants of OsWRKY2, OsWRKY14, and OsWRKY26 did
not show significantly changing phenotypes of infection to
M. oryzae at seedling stage, it is possible they rely on a specific
kind of pathogen or developmentally dependent. OsWRKY69
and OsWRKY93, especially the latter, both are our favorite
candidate genes for further in-depth understanding of their
acting mechanism and the high yield and strong resistant
genetically manipulation.

FIGURE 6 | Phenotyping of detached leaves after darkness treatment. (A) A
delaying leaf senescence shown in the OsWRKY93V P64 (OsW93vp64)
compared to Kitaake plants. (B) An early leaf senescence shown in the
oswrky93-1 compared to Nipponbare (NIP) plants. Detached leaf pieces of
rice were incubated with 1 µM MES (pH8.5) buffer after darkness treatment
for 0, 48, 72, and 84 h.
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