
REVIEW
published: 03 June 2021

doi: 10.3389/fpls.2021.644870

Frontiers in Plant Science | www.frontiersin.org 1 June 2021 | Volume 12 | Article 644870

Edited by:

Jung-Youn Lee,

University of Delaware, United States

Reviewed by:

Zhonglin Mou,

University of Florida, United States

Sabine Dagmar Zimmermann,

Délégation Languedoc Roussillon

(CNRS), France

*Correspondence:

Dawei Yan

ydw2019@henu.edu.cn

Specialty section:

This article was submitted to

Plant Pathogen Interactions,

a section of the journal

Frontiers in Plant Science

Received: 22 December 2020

Accepted: 28 April 2021

Published: 03 June 2021

Citation:

Liu J, Zhang L and Yan D (2021)

Plasmodesmata-Involved Battle

Against Pathogens and Potential

Strategies for Strengthening Hosts.

Front. Plant Sci. 12:644870.

doi: 10.3389/fpls.2021.644870

Plasmodesmata-Involved Battle
Against Pathogens and Potential
Strategies for Strengthening Hosts

Jie Liu 1, Lin Zhang 2 and Dawei Yan 1*

1 State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng,

China, 2 Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education,

Yangzhou University, Yangzhou, China

Plasmodesmata (PD) are membrane-lined pores that connect adjacent cells to mediate

symplastic communication in plants. These intercellular channels enable cell-to-cell

trafficking of various molecules essential for plant development and stress responses,

but they can also be utilized by pathogens to facilitate their infection of hosts. Some

pathogens or their effectors are able to spread through the PD by modifying their

permeability. Yet plants have developed various corresponding defense mechanisms,

including the regulation of PD to impede the spread of invading pathogens. In this review,

we aim to illuminate the various roles of PD in the interactions between pathogens and

plants during the infection process. We summarize the pathogenic infections involving

PD and how the PD could be modified by pathogens or hosts. Furthermore, we propose

several hypothesized and promising strategies for enhancing the disease resistance

of host plants by the appropriate modulation of callose deposition and plasmodesmal

permeability based on current knowledge.
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INTRODUCTION

Throughout their life span, plants are constantly challenged by pathogens, namely fungi, bacteria,
and viruses (Jones and Dangl, 2006). It is well-known that plant cells can respond to pathogens
autonomously. Plants recognize microbe-associated molecular patterns (MAMPs) via pattern
recognition receptors (PRRs) on the cell membrane, which initiates a series of signaling events and
activates pattern-triggered immunity (PTI; Ranf, 2017; Saijo et al., 2018). Some pathogens, however,
can produce effectors capable of inhibiting PTI to overcome the host immune system (Grant et al.,
2006; Le Fevre et al., 2015; Toruno et al., 2016). A second defense response, which is activated by
recognizing pathogenic effectors with corresponding nucleotide-binding leucine-rich repeat (NLR)
proteins of hosts, is called effector-triggered immunity (ETI; Cui et al., 2015). Recently, the PTI and
ETI systems were found to share common elements and to interact with each other (Ngou et al.,
2021; Yuan et al., 2021). Besides the cell-autonomous immunity within infected regions, uninfected
host cells could also establish immune responses in what is known as systemic acquired resistance
(SAR; Klessig et al., 2018). To gain SAR, signaling molecules must move from infected cells to distal
uninfected tissues (Wendehenne et al., 2014; Singh et al., 2017). Further, SAR confers an immune
“memory” in hosts enabling them to activate defense responses more quickly and effectively when
exposed to another pathogen attack (Conrath, 2006; Ramirez-Prado et al., 2018; Hake and Romeis,
2019; Guerra et al., 2020).
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Plant cells have evolved unique cell-wall-spanning structures,
termed PD, that link neighboring cells for their symplastic
communication (Epel, 1994; Lucas et al., 2009). The typical PD
are composed of plasma membrane (PM), cytoplasmic sleeve,
and desmotubule derived from the endoplasmic reticulum (ER)
(Zambryski and Crawford, 2000; Zambryski, 2008). Various key
PD-localized proteins and lipids have been identified, including
actin, receptor-like kinases, glycosylphosphatidylinositol-anchor
proteins, remorins, sphingolipids, and sterols (Fernandez-
Calvino et al., 2011). By controlling the intercellular exchange of
both micromolecules and macromolecules, PD are functionally
critical during the development of plants and in their responses
to abiotic and biotic stresses (Maule, 2008; Lee and Lu, 2011;
Lee et al., 2011; Han et al., 2014; Lee, 2014; Sager and Lee,
2014; Cui and Lee, 2016; Wu et al., 2016; Reagan et al., 2018;
Miyashima et al., 2019; Yan and Liu, 2020). The aperture of the
PD pore, which determines the size exclusion limit (SEL), is a
major determinant of PD permeability (Lucas and Lee, 2004;
Peters et al., 2021). This PD aperture is dynamically controlled
by the deposition and degradation of callose within the cell
walls near the neck of PD (Amsbury et al., 2017; Wu et al.,
2018). Callose synthases (CalSs) and β-1,3 glucanases (BGs)
govern the production and degradation of callose, respectively,
fulfilling crucial roles in various developmental and physiological
processes of plants (Chen and Kim, 2009; Zavaliev et al., 2011).
PD-LOCALIZED PROTEINS (PDLPs) and PLASMODESMATA
CALLOSE-BINDING PROTEINS (PDCBs) are two key protein
families that positively regulate the dynamics of callose
accumulation at PD (Simpson et al., 2009; Lee et al., 2011). Apart
from callose, the architecture of PD also affects their conductivity
and functioning. In this respect, PD may be classified as
type I or II according to the status of the cytoplasmic sleeve
between the PM and desmotubule. Compared with type II, the
structure of type I PD lacks a visible cytoplasmic sleeve and
internal tethers (Nicolas et al., 2017). Loss of function of the
PHLOEM UNLOADING MODULATOR gene results in the lack
of type II PD, whereas enhances PD permeability, fosters phloem
unloading, and accelerates root elongation (Yan et al., 2019).

Beyond the key roles in plant development, the PD can
participate in plant-pathogen interactions (Faulkner et al., 2013;
Wang et al., 2013; Brunkard and Zambryski, 2017; Cheval
and Faulkner, 2018). Specifically, PD facilitate the intercellular
transport of mobile signal molecules, such as azelaic acid and
glycerol-3-phosphate, needed for the establishment of SAR
(Singh et al., 2017). Yet many pathogens and effectors can also
spread in a cell-to-cell manner via PD to hasten the infection
(Lent et al., 1991; Waigmann et al., 1994; Benitez-Alfonso et al.,
2010; Cao et al., 2018). Currently, it remains an open question
how plants modulate the timing of PD closure and the movement
of SAR signals and pathogenic effectors to achieve the defense
response. We speculate the apoplastic trafficking of immune
molecules might provide an alternative way to impede the spread
of pathogens or effectors in the case of blocked PD (Lim et al.,
2016b; Singh et al., 2017). Further study of PD in the battle
between plants and pathogens is gaining interest and becoming
important. Here, we summarize the studied mobile pathogens
and effectors, the recognition between pathogens and PD, and the

antagonistic regulation of PD by plants and pathogens. Finally,
we propose several hypothesized strategies to assist hosts in their
battle against pathogens via the appropriate modulation of PD.

PATHOGENS EXPLOIT PD TO FACILITATE
HOST INFECTIONS

Through the PD, the cell-to-cell movement of a variety of
molecules is possible. But based on this intercellular connection,
phytopathogens have evolved mechanisms that take advantage of
PD as gateways to facilitate their host infections (Figure 1). To do
this, pathogens encode their own proteins and recruit or interact
with the host proteins to target and modify the PD, either directly
or indirectly (Table 1).

Viral Spread Through PD
Plant viruses are biotrophic pathogens that utilize the
transcriptional machinery of hosts to replicate and propagate
with them. To overcome the cell wall barrier, viruses may
exploit the PD to engage in cell-to-cell movement and thereby
systemically spread throughout the host plants. Viruses encode
movement proteins (MPs) to target to and dilate PD (Heinlein
and Epel, 2004; Waigmann et al., 2004; Lucas, 2006). For
example, a plasmodesmal localization signal sequence in tobacco
mosaic virus (TMV) and sugar canemosaic virus MPs was found
necessary and sufficient for PD localization (Yuan et al., 2016;
Cheng et al., 2017). Viruses harbor different transport strategies
based on differing MP numbers (Epel, 2009). TMV encodes
only a single MP, which binds to its RNA and increase the
SEL of PD in the form of ribonucleoprotein complexes (Wolf
et al., 1989; Brill et al., 2000; Asurmendi et al., 2004; Peña
and Heinlein, 2012). In cowpea mosaic virus, grapevine fanleaf
virus, and cauliflower mosaic virus, the MPs reorganize and
expand the PD pores by forming a movement tubule (Thomas
and Maule, 1995; Laporte et al., 2003; Pouwels et al., 2004).
Carnation mottled virus encodes two small MPs (DGBp1 and
DGBp2) by the double-gene block module (Epel, 2009; Hull,
2014). An early model was proposed, in which DGBp2 interacts
with DGBp1:vRNA and drives the transportation of this ternary
complex to PD via the endomembrane system. This model is
not perfect, however, because of some inconsistencies and the
mechanism of carmovirus movement is believed to be more
complicated (Navarro et al., 2019). The triple gene block module
encodes three MPs termed TGBp1, TGBp2, and TGBp3; the
TGBp2 and TGBp3 are ER membrane-associated proteins
and they form both homologous and heterologous complexes
(Morozov and Solovyev, 2003; Lim et al., 2008). Binding of
TGBp2/TGBp3 to TGBp1:vRNA allows for the targeting of
vRNA to PD and its cell-to-cell spread in the host (Epel, 2009).
Beet yellows virus (BYV) assembles five MPs to facilitate its
intercellular movement, including four viral components-an
Hsp70h, a 64kDa protein, and two capsid proteins-and a none-
structural 6-kDa hydrophobic protein (Alzhanova et al., 2000).
The Hsp70h autonomously targets to PD and its ATPase activity
drives the intercellular translocation of BYV (Dolja, 2003; Avisar
et al., 2008).
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FIGURE 1 | Plasmodesmal components involved in both pathogen infection of

plants and host defense responses. Virions, effectors of fungi and bacteria, as

well as the fungal hyphae are transported from infected cells to the

neighboring healthy cells through the plasmodesmata (PD). Many PD-localized

components are jointly exploited by both pathogens and host plants, for use in

their interaction during an infection. The pathogens inhibit callose synthesis by

inactivating CalSs, suppressing PDCBs, destabilizing PDLPs, and/or recruiting

PDBGs to assist in their intercellular movement. Viruses can interact with SYTA

by relying on MP to remodel the PD. Conversely, PD harbor specific

plasmodesmal PM-located receptors of LYM2-LYK4 complex and FLS2 for

perception of fungal elicitor chitin and bacterial flagellin, respectively. During

infection, some CalS and PDLP genes can be induced so as to promote

callose accumulation and PD closure. The remorins in the membrane

microdomains of plasmodesmal PM interact with MP and impede the

movement of the virus among host cells. PD, plasmodesmata; DT,

desmotubule; CalS, callose synthase; PDCB, PLASMODESMATA

CALLOSE-BINDING PROTEIN; PDLP, PD-LOCALIZED PROTEIN; PDBG,

plasmodesmal-localized β-1,3 glucanase; SYTA, synaptotagmin A; MP,

movement protein; PM, plasma membrane; LYM2, LYSM-CONTAINING

GPI-ANCHORED PROTEIN 2; LYK4, LysM-CONTAINING RECEPTOR-LIKE

KINASE 4; FLS2, FLAGELLIN SENSING.

As mentioned before, some plant viruses reorganize the inner
structure of PD to produce a movement tubule while passing
through it (Thomas and Maule, 1995; Laporte et al., 2003;
Pouwels et al., 2004). In this process, MPs are assembled into
tubular structures by interacting with the host PDLPs, and this
replaces the PD desmotubule to leave only a simple PM-lined
tunnel remaining, which aids the viral transport (Amari et al.,
2010). The pdlp1/2/3 triplemutant showed a significant reduction
of tubule formation along with diminished local and systemic
spread of infection, indicating the important roles of PDLPs
(Amari et al., 2010). The cytoskeletons, which are involved in
the physical formation and structural operation of PD, are also
the modification targets of certain viruses (Liu et al., 2005;
Prokhnevsky et al., 2005; Wright et al., 2007; Avisar et al., 2008).

One study proved that the MPs of Cucumber mosaic virus and
TMV are able to sever F-actin, weakening the integrity of PD,
thereby allowing larger molecules to pass (Su et al., 2010).

Callose around the PD plays a critical role in regulating their
permeability and symplastic communication (Amsbury et al.,
2017; Wu et al., 2018). Decreasing this callose was shown to
result in an enhanced viral infection (Bucher et al., 2001; Li et al.,
2012), whereas increasing callose in the β-1,3-glucanase-deficient
and atbg pap mutants slowed the spread of the virus (Iglesias
and Meins, 2000; Zavaliev et al., 2013). Nevertheless, viruses can
facilitate their intercellular movement in hosts by limiting the
synthesis of callose and promoting its degradation at PD. For
example, potato virus Y is capable of inducing the activity of a
class I β-1,3-glucanase and suppressing callose accumulation in a
strain-nonspecific manner, which may explain why some viruses
are still able to spread in resistant-genotype hosts (Chowdhury
et al., 2020).

PD is a compelling type of membrane contact site, perhaps
best illustrated by the specialization of the ER and the PM
at the sites of cell-to-cell junctions (Tilsner et al., 2016). The
desmotubule and PM together provide a cytoplasmic conduit
for intercellular transport (Roberts and Oparka, 2003; Brunkard
et al., 2015). Plant synaptotagmin A (SYTA), a membrane
protein, can be recruited to form ER-PM contact sites adjacent
to the PD. But viral MPs can interact with SYTA to remodel
these contact sites to alter PD and aid viral movement (Lewis
and Lazarowitz, 2010; Uchiyama et al., 2014; Levy et al., 2015;
Pitzalis and Heinlein, 2017). Recently, the multiple C2 domains
and transmembrane region protein family were reported to act
as ER-PM tethers specifically at PD (Brault et al., 2019). Further
studies need to clearly elucidate the role of the ER-PMmembrane
in PD functioning and identify more PD tethering machineries
that participate in the interactions between pathogens and plants.

Chloroplasts are the organelle responsible for not only
the generation of small molecules and secondary metabolites
important for plant defense, but also the origination of signals in
response to developmental and environmental cues (Ganusova
and Burch-Smith, 2019). Nevertheless, particular plant viral
proteins can interact with chloroplast proteins to impair the
defense of hosts and facilitate the infection of virus (Zhao et al.,
2016; Bhattacharyya and Chakraborty, 2018). During Potato
virus X (PVX) infection, the viral p25 protein interacts with the
chloroplast protein ferredoxin 1 (FD1) to reduce its mRNA and
protein levels, resulting in a dramatic decrease of PD callose
accumulation that is probably associated with the reduction
in phytohormones abscisic acid (ABA) and salicylic acid (SA)
(Yang et al., 2020). Arabidopsis INCREASED SIZE EXCLUSION
LIMIT (ISE) 2 encodes a chloroplast DEAH RNA helicase, whose
mutation increases the branched PD formation and intercellular
trafficking (Kobayashi et al., 2007). The ISE2 expression can
be induced by the infection of TMV or turnip mosaic virus
in Nicotiana benthamiana. However, ISE2-overexpressing plants
are more susceptible to viral infection, without any influence
on callose deposition (Ganusova et al., 2017). These findings
imply a still, as of yet unknown mechanism of ISE2-mediated
chloroplast-nucleus signaling in the interactions between PD
and viruses.
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TABLE 1 | Viral, fungal, and bacterial pathogens and the effectors that move cell-to-cell through the plasmodesmata of attacked plants.

Pathogens MPs/Effectors Function References

Virus Tobacco mosaic virus (TMV) MP30 MPs bind viral RNAs and increase the SEL of PD in the form of

ribonucleoprotein complexes.

Wolf et al., 1989; Brill et al., 2000; Peña

and Heinlein, 2012; Pitzalis and Heinlein,

2017

Carnation mottled

carmovirus (CarMV)

P7 and P9 Vilar et al., 2002

Turnip crinkle virus (TCV) P8 and P9 Hacker et al., 1992; Li et al., 1998

Melon necrotic spot virus

(MNSV)

P7A and P7B MPs bind viral RNAs and transit through PD in the form of ribonucleoprotein

complexes. TGBp1 of PVX and TGBp2 and TGBp3 of PVX and PMTV

increase the PD SEL Tamai and Meshi, 2001; Howard et al., 2004; Haupt

et al., 2005

Genoves et al., 2006

Pelargonium flower break

virus (PFBV)

P7 and P12 Martinez-Turino and Hernandez, 2011

Potato virus X (PVX)

TGB: TGBp1, TGBp2 and TGBp3

Tilsner et al., 2013

Bamboo mosaic virus

(BaMV)

Chou et al., 2013

Barley stripe mosaic virus

(BSMV)

Lim et al., 2008;

Poasemi latent virus (PSLV) Shemyakina et al., 2011

Potato mop-top virus (PMTV) Zamyatnin et al., 2004

Beet yellows virus (BYV) Hsp70h, 64kDa protein, two capsid

proteins, and 6-kDa hydrophobic

protein

Alzhanova et al., 2000; Dolja, 2003;

Avisar et al., 2008















































Tobacco etch virus Capsid protein (CP) The CP is required for cell-to-cell and long-distance movement of virus. Dolja et al., 1995

Cowpea mosaic virus

(CPMV)

MP 58K and 48K Pouwels et al., 2004; Ritzenthaler and

Hofmann, 2007

Grapevine fanleaf virus

(GFLV)

MP 2B Laporte et al., 2003; Amari et al., 2010

Cauliflower mosaic virus

(CaMV)

MP P1 MPs form movement tubles to replace PD desmotubule. Thomas and Maule, 1995

Broad bean wilt virus 2 MP VP37 Xie et al., 2016


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Turnip mosaic virus (TuMV) 6K2 protein 6K2 induces vesicle formation for intercellular movement through PD. Grangeon et al., 2013

Viroids Potato spindle tuber viroid

(PSTVd)

/ 11 RNA loop motifs are critical for cell-to-cell mvement. Ding et al., 1997; Zhong et al., 2008

Fungi Magnaporthe oryzae (M.

oryzae)

/ IH seek for the pit fields, followed by crossing the PD channels into adjacent

cells with constricted hyphae.

Kankanala et al., 2007

BSA3 BSA3 locates near PD. Mosquera et al., 2009

PWL2 and BAS1 PWL2 and BAS1were delivered into the cytoplasm of rice cells by biotrophic

interfacial complex (BIC), and finally into neighboring cells via PD.

Khang et al., 2010

Melampsora larici-populina AvrL567 AvrL567 accumulates at PD. Germain et al., 2018

Ustilago maydis Cmu1 Cmu1 could likely spread to the neighboring cells through PD and repress SA

biosynthesis in host plants.

Djamei et al., 2011
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Viroids are the smallest known pathogenic agents,
consisting only of circular single-stranded RNAs that replicate
autonomously and traffic themselves systemically throughout
their hosts via the vascular tissue phloem (Flores et al.,
2005). Viroids differ from viruses in having unique structural,
functional, and evolutionary properties (Flores et al., 2005).
Work by Ding et al. (1997) demonstrated that potato spindle
tuber viroid (PSTVd) can move rapidly from the initially
injected mesophyll cells which are interconnected by PD into
neighboring cells, whereas it was retained in mature guard
cells lacking PD connections. The PSTVd consists of 27 RNA
loop motifs flanked by short helices, of which 11 loops were
identified as critical for its intercellular movement (Zhong et al.,
2008). A small RNA from the virulence-modulating region of
PSTVd can suppress the expression of tomato CalS11-like and
CalS12-like genes, pointing to a hypothesized mechanism of
viroid movement through PD (Adkar-Purushothama et al.,
2015). More mechanisms underpinning the regulation of viroid
intercellular trafficking by RNA motifs and cellular factors are
reviewed by Takeda and Ding (2009).

Fungal Infection by Invasive Hyphae (IH)
and Effectors
Perhaps the best example of how a fungal pathogen can spread
through PD is the study of the hemibiotrophic rice blast fungus,
Magnaporthe oryzae (M. oryzae; Kankanala et al., 2007; Sakulkoo
et al., 2018). Bymeans of the enormous turgor pressure generated
by their appressoria,M. oryzae breaches the outer cell surface and
produces special hyphae named the penetration peg (Howard
and Valent, 1996). When entering the epidermal cell lumen,
this penetration peg expands to form primary hyphae, which
differentiate into bulbous invasive hyphae (IH; Heath et al.,
1990). These IH are encased in a plant-derived extra-invasive
hyphal membrane outside their cell wall. Then, the bulbous IH
seek out pit fields composed of PD clusters in the cell wall, after
which they crossing the PD channels into adjacent cells using
constricted hyphae (Kankanala et al., 2007). Callose occlusions
around the PD were found absent only during the early stages
(24–27 h post-inoculation) of invasion in the first rice cell; hence,
over this period the PD stayed open, indicating the fungus is
able to suppress the callose deposition at pit fields in the host at
a specific time before invading the neighboring cells (Sakulkoo
et al., 2018). Consistent with this key role of PD, another
investigation revealed the failure of IH to move into mature
guard cells from neighboring cells due to the degeneration of PD
(Kankanala et al., 2007).

Furthermore, the mobile effectors PATHOGENICITY
TOWARDWEEPINGLOVEGRASS (PWL2) and BIOTROPHY-
ASSOCIATED SECRETED (BAS1) produced by M. oryzae can
move in a cell-to-cell fashion to facilitate host infection (Khang
et al., 2010). Both PWL2 and BAS1 are released by IH into the
cytoplasm of rice cells by a biotrophic interfacial complex, and
move into non-invaded neighboring cells via PD before the
spread of IH, which was presumed to better prepare the host
cells for the following invasion of IH (Khang et al., 2010). Pmk1,
a single fungal mitogen-activated protein kinase, regulates the
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expression of secreted fungal effectors that inhibit ROS (reactive
oxygen species) generation and callose deposition at the PD
in rice (Sakulkoo et al., 2018). Accordingly, inhibiting Pmk1
prevents M. oryzae from infecting adjacent plant cells, leaving it
trapped in the present cell, yet without affecting the biotrophic
interfacial complex structure and hyphae morphology (Sakulkoo
et al., 2018). These findings indicate the importance of PD for
the cell-to-cell invasion of rice cells by M. oryzae during the
infection process.

The RxLR3 effector produced by Phytophthora brassicae can
interact with and inhibit CalS1, CalS2, and CalS3, to reduce
the callose deposition around PD, so as to promote symplastic
trafficking (Tomczynska et al., 2020). In wheat, three PDCB-
like genes and seven CalS genes are suppressed by the virulence
factor Fusaoctaxin A during Fusarium graminearum infection,
which suggests this pathogen may interfere with normal callose
accumulation and disrupt the PD status of host plants (Jia et al.,
2019). The effectors Avr2 and Six5 secreted by F. oxysporum
interact at the PD during its infection of tomato; however, Avr2
only moves cell-to-cell in the presence of Six5, while Six5 alone
does not alter plasmodesmal conductivity (Cao et al., 2018).
Generally, however, the consensus PD-targeting signal peptides
of such pathogen effectors have yet to be identified.

Bacterial Infection With Symplastic
Trafficking
Presently, the cell-to-cell spread of bacteria has been mostly
reported to occur in the sieve tubes of phloem tissues.
Candidatus Liberibacter asiaticus (CLas) is a phloem-inhabiting
bacterium that causes a destructive disease of citrus trees called
Huanglongbing (HLB), which is achieved by its spread via sap
flow in the phloem throughout the host plants (Bove, 2006).
The cells of CLas adhere to the plasma membrane of those
phloem cells positioned specifically adjacent to the sieve pores,
and the ensuing morphology changes there enable its movement
(Achor et al., 2020). Although we know HLB-infected phloem
cells undergo callose accumulation and sieve-pore plugging (Koh
et al., 2012; Achor et al., 2020), there is still no evidence showing
CLas passing through PD between cells in other plant tissues.
The interaction between CLas and phloem cells evidently needs
more careful investigation. Usually, bacterial pathogens do not
cross the cell wall, probably because their suitable habitat is
mostly limited to the apoplastic spaces between plant cells,
unlike viruses and fungi which spread intercellularly during
local and systemic infections (reviewed by Lee and Lu, 2011).
Still, bacteria can release specific effector molecules into plant
cells not unlike fungi do, which then move through the PD to
spread intercellularly in the host (Li et al., 2020; Figure 1). Only
a few effectors have been studied to date. A notable example
is the effector protein HopO1-1 of Pseudomonas syringae pv.
tomato (Pst) DC3000, a putative mono-ADP-ribosyltransferase.
The amino acids in position 41 to 283 (C-terminal end residue)
of HopO1-1 are required for its localization to PD (Aung
et al., 2020). Once there, HopO1-1 enhances the PD-dependent
intercellular molecular flux by destabilizing the PDLP7 and
PLDP5 proteins of hosts without affecting their transcript levels

(Aung et al., 2020). Further, Li et al. (2020) recently proved
that the movement of 16 Hop effectors of Pst DC3000 move
from transformed cells into neighboring cells through PD
depends on their molecular weights. Among them, HopAF1 was
characterized by the highest PD-dependent movement, which
can nonetheless be inhibited by callose overproduction (Li et al.,
2020). This study provided robust evidence that the effectors of
bacteria, like fungi, may possess an intercellular mobile ability. It
would seem those mobile effectors exploit different mechanisms
when interacting with the host during its infection, a topic that
warrants further investigation.

UTILIZATION OF PD BY HOSTS FOR
DEFENSE

In plant-pathogen interactions, plants have evolved two protein
families to recognize pathogens: PM-anchored PRR receptors
for PAMPs and intracellular NLR receptors for pathogens
effectors (reviewed by Dodds and Rathjen, 2010). The lysin
motif (LysM) domain-containing protein CHITIN ELICTOR
BINDING PROTEIN (CEBiP) and the receptor-like kinases
FLAGELLIN SENSING (FLS2) respectively recognize chitin
and flagellin (Kaku et al., 2006; Shimizu et al., 2010; Bücherl
et al., 2017). The plasmodesmal PM that is enriched with
particular proteins and lipids will integrate extracellular signals
differently from the other remaining PM. Increasing numbers
of receptors and kinases have been shown to be active in
or recruited to plasmodesmal PM (Stahl et al., 2013; Grison
et al., 2019; Hunter et al., 2019). A PD-located receptor, LYSM-
CONTAINING GPI-ANCHORED PROTEIN 2 (LYM2)/ CEBiP,
responds to chitin and signaling, thereby reducing the molecular
flux through PD (Faulkner et al., 2013). A receptor complex
called LYM2-LYSIN MOTIF-CONTAINING RECEPTOR-LIKE
KINASE 4 (LYK 4) (Table 3) found localized at plasmodesmal
PM is utilized for plant defense in response to fungal chitin
(Cheval et al., 2020). Downstream chitin signaling triggers the
phosphorylation of the NADPH oxidase RESPIRATORY BURST
OXIDASE HOMOLOG PROTEIN D via a calcium-dependent
protein kinase, leading to callose deposition and eventual PD
closure. Intriguingly, FLS2 was observed in the vicinity of PD
and mediates flg22-triggered changes of PD-mediated trafficking
(Faulkner et al., 2013). This phenomenon suggests FLS2 may
have an unconsidered role in recognizing flagellin at PD. More
receptors at the plasmodesmal PM await discovery.

Being more than simply passive conduits for trafficking, PD
also act as hubs capable of integrating multiple signals from
the plant development and defense pathways. How do plants
protect themselves from pathogens invasion relying on PD?
The underlying molecular mechanisms have been elucidated
by a few studies. Callose deposition at PD was proven able
to restrict infection by pathogen (Cheval and Faulkner, 2018;
Wu et al., 2018), suggesting one potential mechanism. The
expression levels of CalS1, 5, 9, 10 and 12 genes were stimulated
by Hyaloperonospora infection and a SA treatment, whereas the
induction of CalS1 and CalS12 was significantly repressed in
the npr1 mutant, thus implying a NPR1-dependent regulation
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FIGURE 2 | Strategies for improving the disease resistance of hosts by modulating their plasmodesmata (PD). Under normal plant growing conditions, the cals3m,

PDLPs/PDCBs, and edited CalSs genes are expressed at a relatively low level, without affecting the plants’ ordinary development. Once a pathogen attack is

detected, the expression of cals3m, PDLPs/PDCBs, and edited CalSs could be induced quickly and strongly, resulting in prompt callose overproduction around the

PD and PD closure; this is followed by imposing a blockage of connections between the primary invaded cells and neighboring uninfected cells, which should also

stop the intercellular trafficking of pathogens or effectors. These hypothesized approaches are supposed to slow down the spread of pathogens and thus enhance the

disease resistance of host plants. PD, plasmodesmata; CalS, callose synthase; PDLP, PD-Localized Protein; PDCB, Plasmodesmata Callose-Binding Protein.

(Dong et al., 2008). In the cals1 mutant, callose at the PD is
not affected by either an SA treatment or Pseudomonas infection
(Cui and Lee, 2016), which suggests CalS1 is essential for SA-
mediated callose deposition. The pdlp1/2/3 triple mutant is more
susceptible to the downy mildew pathogen Hyaloperonospora
arabidopsidis, whereas PDLP1 overexpression increases callose
deposition around the haustoria and enhances plant resistance
(Caillaud et al., 2014). PDLP5, localized at the central region
of PD, plays a positive role in conferring an enhanced innate
immunity of host plants against bacterial pathogens in a
SA-dependent manner, by modulating PD callose deposition
(Lee et al., 2011; Wang et al., 2013). Enrichment of t18:0-
based sphingolipids were found to facilitate the recruitment of
PDLP5 proteins to PD, which consequently led to reduced PD
conductivity and enhanced resistance to the fungal-wilt pathogen
Verticillium dahlia and the bacterium Pst DC3000 (Liu et al.,
2020). Remorins are plant-specific proteins found especially in
PM microdomains (Raffaele et al., 2009). Applying SA to plants
can trigger a remorin-dependent reorganization of lipid raft
nanodomains at PD, thereby modifying the inner structure of PD
to impede viral spreading in hosts (Huang et al., 2019). Further,
remorins can physically interact with TGBp1, a MP of PVX, to
impede the cell-to-cell spread of PVX in tomato leaves (Raffaele
et al., 2009).

The number and architecture of PD vary among different
cell types and plant developmental stages, which enables the
dynamic changes of symplastic transport (Ormenese et al., 2000;
Ehlers and Kollmann, 2001; Burch-Smith et al., 2011). During
the floral transition of the shoot apical meristem in Sinapis

alba, for example, the PD frequency increased substantially
(Ormenese et al., 2000). While sink leaf cells may contain simple
PD in excess of 90%, in stark contrast the source leaf cells
mainly contain highly branched PD in Arabidopsis thaliana.
Correspondingly, the PD in sink cells permit the transport of
relatively large molecules, whereas tissues composed of source
cells predominantly show a decline in their transport ability
(Oparka et al., 1999). Tomato yellow leaf curl virus infection
leads to an increased number of PD in susceptible tomato plants
(Reuveni et al., 2015). Similarly, in Casuarina glauca nodules
there are fewer PD, perhaps because of the cell enlargement
combined with a failed secondary PD formation (Schubert
et al., 2013). One study proved ABA negatively regulates PD
permeability via callose induction, leading to restricted viral cell-
to-cell spreading (Alazem and Lin, 2017). Another study showed
treating plants with ABA can modify the number, width, and
frequency of their PD (Kitagawa et al., 2019). Collectively, these
findings indicate that host plants may reduce and modulate the
density and architecture of PD to better defend against invading
pathogens. Further investigation is arguably needed to explore in
depth the functional PD regulators involved.

STRATEGIES FOR IMPROVING DISEASE
RESISTANCE OF HOSTS BY MODULATING
PD

Overall, it is evident that PD can be employed as a weapon, by
both pathogens and their hosts, who may compete for control
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TABLE 2 | Experimentally studied Host proteins/lipids that can regulate the

plasmodesmata for plant defense.

Proteins/lipids Function References

LYM2-LYK4 PD located LYM2-LYK4 recognize the

chitin and trigger downstream

signaling to reduce the molecular flux

through PD.

Faulkner et al.,

2013; Cheval et al.,

2020

FLS2 FLS2 is observed in the vicinity of PD

and mediates flg22-triggered

changes of PD-mediated trafficking.

Faulkner et al., 2013

RBOHD RBOHD produce ROS that induces

PD closure in the signaling cascade

of LYM2-LYK4.

Cheval et al., 2020

CalS1 Callose deposition Dong et al., 2008;

Cui and Lee, 2016

CalS12 Callose deposition Dong et al., 2008

PDLP1 Callose deposition Caillaud et al., 2014

PDLP5 Callose deposition Lee et al., 2011;

Wang et al., 2013

Calreticulin Calreticulin interact directly with TMV

MP and interferes with targeting of

TMV MP to delay cell-to-cell

movement of the virus.

Chen et al., 2005

Remorins Remorins interact with MP TGBp1 of

PVX and impairs PVX movement.

Raffaele et al., 2009

Remorins narrow the PD channels to

impede virus spreading depended on

SA signaling.

Huang et al., 2019

Sphingolipids Sphingolipids recruited PDLP5

proteins to PD, which consequently

results in the decreased PD

conductivity.

Liu et al., 2020

of key PD sites. Although PD confer benefits to both pathogenic
infections and their host defense responses (Tables 1, 2), we
can try to impede the invasion of one or more pathogens
by developing corresponding strategies capable of modifying
the PD of the host accordingly. Due to the possible trade-
off in functioning between the closure of PD and symplastic
transmission of immune signals (Lim et al., 2016b), these
strategies must feature quick and effective regulation of PD
conductivity spatiotemporally. The prompt and timely induction
of PD closure in hosts suffering pathogen attacks are thus
speculated to block the trafficking of pathogens, effectors, and
toxic molecules from the primary invaded cells into adjacent
cells, as well as the needed nutrient import into invaded cells for
pathogen growth (Lee et al., 2011; Zavaliev et al., 2011); thismight
weaken the necessity of systemic immune signal transport. Based
on previous findings, we propose three promising hypothesized
approaches to spatiotemporally induce callose overproduction
and PD closure after pathogen invasion, which would be worth
trying to improve plant resistance against enemies (Figure 2).

Inducible Callose Overproduction by
icals3m System
Vatén et al. (2011) developed a system, named icals3m, which
blocks PD-mediated trafficking by inducing the overproduction

TABLE 3 | Abbreviation list.

Abbreviation Full name

ABA Abscisic acid

A. thaliana Arabidopsis thaliana

BG β-1,3 glucanase

PD Plasmodesmata

CalS Callose synthase

CEBiP CHITIN ELICTOR BINDING PROTEIN

DGB Double gene block

ER Endoplasmic reticulum

ETI Effector-triggered immunity

FLS2 FLAGELLIN SENSING

HLB Huanglongbing

IH Invasive hyphae

ISE INCREASED SIZE EXCLUSION LIMIT

LysM Lysin motif

LYM2 LYSM-CONTAINING GPI-ANCHORED PROTEIN 2

LYK4 LysM-CONTAINING RECEPTOR-LIKE KINASE 4

MAMPs Microbe-associated molecular patterns

MP Movement protein

NLR Nucleotide-binding leucine-rich repeat

PDBG Plasmodesmal-lacalized β-1,3 glucanase

PDCB PLASMODESMATA CALLOSE-BINDING PROTEIN

PDLP PD-LOCALIZED PROTEIN

PM Plasma membrane

PRRs Pattern recognition receptors

PSTVd Potato spindle tuber viroid

PTI Pattern-triggered immunity

PVX Potato virus X

SA Salicylic acid

SAR Systemic acquired resistance

SEL Size exclusion limit

SYTA Synaptotagmin A

TGB Triple gene block

TMV Tobacco mosaic virus

of callose surrounding PD in a cell-specific manner. The icals3m
system has been widely applied to the studies of intercellular
trafficking of proteins and small RNAs in biological processes.
For example, the symplastic movements of the transcription
factor SHORT-ROOT and microRNA165 between the stele and
the endodermis were confirmed by the study in plants expressing
pCRE1::icals3m and p6xUAS::icals3m (Vatén et al., 2011). The
cals3m was also used to investigate cell-cell connectivity between
pericycle cells, founder cells, and the neighboring tissues during
lateral root formation and patterning in Arabidopsis thaliana
(Benitez-Alfonso et al., 2013). In the shoot apical meristem,
cals3m expression could lead to abnormal development and
differentiation due to limited movement of WUSCHEL (Daum
et al., 2014). Inducible blocking of symplastic signaling going
in and out of endodermis by cals3m disrupts the coordinated
growth and development of roots, which includes an increase of
cell layers and the misspecification of stele cells (Wu et al., 2016).
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The icals3m system provides a wonderful tool for spatially and
temporally modulating the aperture of PD. The strategy is to
introduce the icals3m under the control of pathogen infection-
induced promoters into the hosts. Therefore, PD trafficking
should get blocked, due to ectopic callose synthesis, once
pathogens invade the host cells. The best situation would be that
where the attacking pathogens are trapped in primary infected
cells without any further spread. In such a case, the usual
trafficking of immune signals might not be required even they
are also affected. The following three important points likely
merit consideration as prerequisites for this approach. First,
the promoters must be induced only by pathogen invasion, so
they remain inactive or active at very low levels under normal
conditions. Otherwise, the callose produced by cals3m might
interfere with the usual growth and development of host plants.
Second, the promoters must respond to the pathogen invasion as
soon as possible, preferably prior to the start of its spread into the
second plant cell. Third, the induced activities of the promoters
must be high enough to yield sufficient callose to constrict the
PD. It is known that plant defense responses vary within the same
host and among differing ones against different pathogens, so
the screening, analysis, and testing for appropriate promoters are
crucial steps.

Inducible Callose Overproduction Utilizing
the PDLPs/PDCBs
PDLPs and PDCBs are well known for being positive
regulators of callose production. Compared to wild-type
plants, overexpression of PDLP5 restricts the movement
of the symplastic tracers CFDA and GFP and some MPs,
and conversely the reduction of PDLP5 leads to increased
intercellular trafficking (Lee et al., 2011). These findings indicate
that changes in PDLP5 expression were sufficient to regulate
both basal PD permeability and MP movement. Similarly,
overexpression of PDLP1 decreased the efficiency of protein
diffusion through PD (Thomas et al., 2008). Furthermore, the
overexpression of both PDLP1 and PDLP5 enhanced plant
resistance against pathogens revealing a positive relationship
between the levels of PDLPs and plant resistance (Lee et al.,
2011; Caillaud et al., 2014). The PDCBs are located at the
outer neck region of PD, and greater expression of PDCB1 can
lead to increased callose deposition and reduced cell-to-cell
trafficking (Simpson et al., 2009). Therefore, we speculate that a
timely increase in the expression of PDLPs or PDCBs, or both,
could make same contribution to plant defense as cals3m. The
same selective promoters mentioned above in icals3m system
may be applied to drive the expression of PDLPs and PDCBs
to increase the callose deposition at the initially infected cells
during the onset of infection, thereby preventing pathogens
from continuing to invade uninfected tissues. However, a study
showed that PDLP5-overexpressing plants are still susceptibility
to turnip crinkle virus (Lim et al., 2016a), probably due to the
ability of virus to alter the aperture of PD (Singh et al., 2017).
It is hoped that our approach will prove useful for helping
to augment plant resistance to some pathogens to a certain
extent. It cannot be expected to inhibit all possible pathogen

infections facing host plants due to their different and unknown
pathogenic mechanisms.

Gene Editing of Native Callose Synthases
in Hosts
Vatén et al. (2011) identified three allelic semidominant A.
thaliana mutants called cals3-1d, -2d, and -3d, which showed
aberrant unloading patterns due to the blockage of PD. The cals3-
1d, cals3-2d, and cals3-3d mutations lead to non-synonymous
amino acid changes of R84K, R1926K, and P189L, respectively.
By combining the two mutations of R84K and R1926K together,
the enzymatic activity of encoded callose synthase (cals3m) is
increased by 10 to 50% (Vatén et al., 2011). In brief, such
mutations in CALS3 can foster the increased production of
callose and reduced aperture of PD that together impair cell-to-
cell trafficking activity. This raises an intriguing hypothesis: the
introduction of same-site mutations of cals3m into other native
CalS genes that are quickly and dramatically induced by pathogen
attacks, may function similarly as cals3m, precluding the
introduction of an exogenous gene resource. CRISPR technology
is a suitable choice for gene editing (Zaynab et al., 2020). For
instance, it was reported that the expression levels of CalS1 and
CalS12 were highly induced in response to biotic stresses (Dong
et al., 2008; Cui and Lee, 2016). Through sequence alignments, we
found that both 84R and 1926R of CalS3 are conserved in CalS1
and CalS12 (Supplementary Figure 1), suggesting the feasibility
of generating cals1m and cals12m similarly. However, a pre-test
for screening those modifications that do not interfere with the
normal functioning of plants in the absence of pathogens is still
necessary. When pathogens attack, these improved CalS proteins
are then functioning at high efficiency.

FUTURE PERSPECTIVES

Over the last few decades, findings have increasingly emerged
which are helpful for addressing how pathogens modify the
PD structure and permeability to facilitate their intercellular
movement and how plants manipulate PD to impede pathogenic
infections. It is known that various PD-localized components
are involved in the interactions between pathogens and plants,
but many questions about mechanistic differences in how PD
are regulated remain unanswered. For example, is there any
conserved molecular mechanism conferring symplastic mobility
to various pathogens? How do some pathogens or effectors
overcome the blockage of PD by callose, and why do others
fail to? How do plants manage themselves to gain control
over the modification of PD when competing for this with
pathogens during an infection? Previously, high-resolution
electron microscopy and genetic approaches have greatly
advanced our understanding of PD structure and function.
Methodological improvements in the isolation and purification
of PD may be helpful for identifying new PD components and
examining their modifications that occur during interactions
between pathogens and plants. PD regulation by pathogens and
plants could provide us with a new perspective for the genetic
improvement of plant disease resistance.
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Supplementary Figure 1 | Sequence alignments of callose synthase proteins in

A. thaliana. Protein sequences from AtCalS1 (NP_563743.2), AtCalS2

(Q9SL03.3), AtCalS3 (Q9LXT9.3), AtCalS4 (Q9LTG5.2), AtCalS5 (Q3B724.1),

AtCalS6 (Q9LYS6.2), AtCalS7 (NP_172136.2), AtCalS8 (Q9LUD7.2), AtCalS9

(Q9SFU6.2), AtCalS10 (ACV04899.1), AtCalS11 (Q9S9U0.1), and AtCalS12

(Q9ZT82.1). The red boxes and asterisks denote those amino acids mutated in

cals3m which are conserved in CalS1 and CalS12.
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