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Illegal logging is a major threat to forests in Peru, in the Amazon more broadly, and in
the tropics globally. In Peru alone, more than two thirds of logging concessions showed
unauthorized tree harvesting in natural protected areas and indigenous territories, and
in 2016 more than half of exported lumber was of illegal origin. To help combat illegal
logging and support legal timber trade in Peru we trained a convolutional neural network
using transfer learning on images obtained from specimens in six xylaria using the open
source, field-deployable XyloTron platform, for the classification of 228 Peruvian species
into 24 anatomically informed and contextually relevant classes. The trained models
achieved accuracies of 97% for five-fold cross validation, and 86.5 and 92.4% for top-1
and top-2 classification, respectively, on unique independent specimens from a xylarium
that did not contribute training data. These results are the first multi-site, multi-user,
multi-system-instantiation study for a national scale, computer vision wood identification
system evaluated on independent scientific wood specimens. We demonstrate system
readiness for evaluation in real-world field screening scenarios using this accurate,
affordable, and scalable technology for monitoring, incentivizing, and monetizing legal
and sustainable wood value chains.

Keywords: XyloTron, wood identification, illegal logging and timber trade, computer vision, machine learning,
deep learning

INTRODUCTION

State-owned Amazonian forests cover 60% of the total area of Peru with over 15.3 million hectares
of the Amazon forest being classified as natural protected areas (SERNANP, 2020) and the rest
supporting diverse modes of managed production (e.g., 11 million hectares designated as Forest
Logging Concessions; Kometter, 2019). However more than 68% of supervised logging concessions
showed unauthorized tree harvesting from natural protected areas and indigenous territories (Finer
et al., 2014), and in 2016 alone at least 58% of exported lumber was of illegal origin (SBS and
GIZ, 2018). According to official data, over the past decade the volume of wood produced from
illegally logged trees increased from 1.15 to 1.8 million cubic meters per annum (OSINFOR,
2015—onward).
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For the last twenty years Peru has been building governance
infrastructure to achieve sustainability of its forest products,
facilitated by national and international policies (Office of the
US Trade Representative, 2006; SERFOR, 2015) to improve the
monitoring and regulation of the forest products supply chain.
Oversight of this monitoring is conducted at inspection stations
by government authorities such as the National Forestry and
Wildlife Service, the Supervisory Agency for Forest and Wildlife
Resources, the Regional Offices of Forests and Wildlife, and
the National Customs Superintendency of Peru. Rapid field
identification of wood can help efficiently establish due cause for
further investigation (UNODC, 2016) at these inspection stations
when officials are confronted with falsified documentation. In
contrast to plant identification, which is based on common
botanical structures (i.e., flowers, fruits, leaves), conventional
wood identification is dependent on recognizing anatomical
patterns in wood and comparing them to reference descriptions
or specimens. Such identifications are best performed by highly
trained wood anatomists with substantial training in forensic
wood identification, and are typically conducted in a laboratory,
which does not meet the needs for rapid field screening at the
inspection stations.

In the larger Amazonian context, two notable initiatives that
enable human-based wood identification are: a mobile phone-
based identification key that enables humans to identify 157
species (Gontijo et al., 2017), and the development of electronic
identification keys as part of the Brazil-Colombia Amazon
Cooperation Treaty Organization (OTCA, 2018). The knowledge
of wood anatomical characteristics of Peruvian species conveyed
in academic publications (Acevedo and Kikata, 1994; Chavesta,
2015, 2018) and industry guides/manuals (Rodriguez and Sibille,
1996; Gonzales, 2008; Ugarte and Mori, 2018) have not yet been
encapsulated in similar solutions and adopted for widespread
human-based wood identification in Peru. The development
and uptake of these solutions at the national level in Peru has
been challenging, in part, due to limited institutional wood
forensics capacity, limited opportunities (university courses and
infrequent workshops) for human expertise development, and
mostly localized access to xylaria for comparative forensic work
(the largest Peruvian xylarium, with around 8,500 samples, is
housed in the National Agrarian University, Lima). It should be
noted that these approaches emphasize or depend on developing
human-based expertise.

To remove the need for extensive human expertise and to
enable officials with only a modicum of training to identify
wood, computer vision-based approaches (Khalid et al., 2008;
Ravindran et al., 2018) have been explored for automated
wood identification. Souza et al. (2020) and de Andrade
et al. (2020) used machine learning for macroscopic image-
based identification for woods of 21 and 46 Brazilian species,
respectively. Apolinario et al. (2018) used a convolutional neural
network (CNN) for identification of 7 commercial Peruvian
timber species using a portable microscope. Recently, the
open source XyloTron system (Ravindran et al., 2020), was
used to demonstrate a field deployable computer vision wood
identification model for fourteen commercial Colombian woods
by Arévalo et al. (2021). Among these works, it should be noted

that XyloTrons have been shown to have comparable/better
accuracy than expensive mass spectrometric methods (Ravindran
and Wiedenhoeft, 2020), have been deployed for charcoal
identification across the European Union in partnership with the
Forest Stewardship Council (as noted in Wiedenhoeft, 2020), and,
critically, have been field-tested for wood identification in Ghana
(Ravindran et al., 2019). This field testing of a machine learning
model on wholly new specimens, ideally by distinct users and
using distinct instantiations of the system, especially at the scale
undertaken in this work, is lacking in virtually all forensic wood
identification literature, regardless of the modality, technique, or
the taxa studied.

In this study, we train 24 class (228 taxa grouped into
anatomically informed classes representing 57% by volume of
the commercially harvested roundwood and 66% by volume
of the sawn wood produced in 2019 in Peru; SERFOR, 2020)
CNN based computer vision identification models of Peruvian
commercial woods for the XyloTron. We use wood specimens
from the MADw, SJRw, BCTw, BOFw, Tw, and FORIGw
xylaria to develop five-fold cross-validated models and then
train a field model using the same hyperparameter values. The
field model was trained by incorporating all the images and
specimens used in the cross-validation analysis but was evaluated
on completely different specimens from the PACw xylarium,
using different hardware and different operators. Performance
evaluation of an automated wood identification system requires
expert verification of each specimen identified by the system
and can be logistically challenging. Our approach using verified,
mutually exclusive specimens from distinct xylaria during the
training and testing phases serves as a practical surrogate for
field evaluation (a first step toward real-world field deployment)
and provides a useful measure of the generalization capability
of the identification system. To the best of our knowledge this
is the first, large-scale study of Peruvian commercial timber
identification using distinct instantiations of a computer vision
identification system, in this case, the XyloTron.

MATERIALS AND METHODS

Species Selection
The 24 Peruvian woods selected for this study represent 57% by
volume of the commercially harvested roundwood and 66% by
volume of the sawn wood produced in 2019 in Peru (SERFOR,
2020) and are listed in Supplementary Material 1. Because wood
anatomy is typically accurate only to the genus level (Gasson,
2011) and given that the XyloTron operates on macroscopic
anatomical variation, we included a range of wood anatomically
appropriate, congeneric, Amazonian species and restricted data
collection to the transverse surface of the specimens (e.g.,
congeneric species that are differentiable only from the tangential
surface are clubbed into the same class here).

Sample Preparation
The transverse surface of 1,419 wood specimens from seven
xylaria (Table 1) were polished by sanding with progressively
finer-grit sandpapers (240, 400, 600, 800, 1,000, 1,500). To
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the extent possible, compressed air and adhesive tape were
employed to remove dust from cell lumina between each grit.
This sample preparation protocol enabled the consistent and
efficient preparation of wood samples for imaging.

Image Collection
The XyloTron (Ravindran et al., 2020), an open-source
macroscopic imaging system, was used to collect 6244 non-
overlapping RGB images of the polished transverse surfaces of
specimens from 228 taxa. Each XyloTron image shows 6.35 ×

6.35 mm of tissue and has dimensions 2,048 × 2,048 pixels. Each
institution employed one or more unique XyloTrons to collect
images, so at least seven different hardware instantiations were
employed. The details of the collected image dataset are presented
in Table 2.

Label Space Design
The 228 taxa included: (i) the species of interest to the Peruvian
wood value chain, and (ii) additional congeneric macroscopically
inseparable species native to South America. Brosimum was
separated into two anatomically distinguishable classes while
the remaining species were grouped into genus level classes,
producing 24 classes. Complete details about the class labels and
their constituent taxa are provided in Supplementary Material 2.

Model Architecture and Training
A convolutional neural network (CNN; LeCun et al., 1989)
classifier, with a aResNet50 (He et al., 2016) backbone and a

TABLE 1 | The seven xylaria providing images of wood specimens and the
number of specimens from each collection used to build the training image data
set.

Institution (Xylarium acronym) Specimen counts

USDA Forest Products Laboratory, Madison collection
(MADw)

501

USDA Forest Products Laboratory, Samuel J. Record
collection (SJRw)

589

Instituto de Pesquisas Tecnologicas do Estado de Sao
Paulo (BCTw)

139

Wood Laboratory, Universidad Distrital Francisco Jose
de Caldas (BOFw)

37

Royal Museum of Central Africa (Tw) 32

Forestry Research Institute of Ghana (FORIGw) 2

Mississippi State University (PACw) 119

The testing xylarium and specimen count is in bold case.

TABLE 2 | Details of the image data set.

Training data
(counts)

PACw data
(counts)

Total (counts)

Number of specimens 1,300 119 1,419

Number of images 5,715 529 6,244

Number of taxa 186 70 228*

1,419 specimens from 228 unique taxa were prepared and imaged. *Some taxa
appeared in both data sets, thus the total number of taxa is not the sum of the
training and testing taxa.

custom head that included batchnorm (Ioffe and Szegedy, 2015),
dropout (Srivastava et al., 2014), global average and max pooling,
and linear layers (Goodfellow et al., 2016), was implemented
for identification (see Figures 1A,B). A two-stage (Howard
and Gugger, 2020) transfer learning (Pan and Yang, 2010)
methodology, comprising locking the ImageNet (Russakovsky
et al., 2015) pre-trained backbone weights while training the
randomly initialized weights (He et al., 2015) of the custom head
followed by fine tuning the weights of the entire network, was
adopted (see Figures 1C,D). The Adam optimizer (Kingma and
Ba, 2015) with simultaneous cosine annealing of the learning rate
(maximum value of 1.8e-2) and momentum (Smith, 2018) was
employed with cross-entropy loss for both the stages. Random
2,048 × 768 image patches were sampled from the training
images, downsampled to 512 × 192 pixel images, and fed
to the CNN in batches of size 16 with a data augmentation
strategy that included horizontal/vertical flips, small rotations
and cutout (Devries and Taylor, 2017). The hyperparameters
were the same across all the training runs. Further details about
the hyperparameter settings and training methodology can be
found in Ravindran et al. (2020). The model definition, training
and evaluation was performed using PyTorch (Paszke et al., 2019)
and scientific Python tools (Pedregosa et al., 2011).

Model Evaluation
The predictions of the trained models were evaluated at the
specimen level with the predicted class for a specimen taken to be
the majority of class predictions for the images contributed by the
specimen. Accuracies based on the top prediction (top-1) for each
specimen are reported for all the models. Additionally, the top
two image-level predictions (from a specimen) are aggregated,
with equal weights, to generate the top-2 predictions for a
specimen. If the true label is one of the top-2 specimen level
predictions, the specimen is considered to be correctly identified.

The following two analyses were performed to evaluate model
performance in this study:

(1) Training and evaluation using five-fold cross validation:
Images from 1,300 specimens were split into five folds with class
level stratification while maintaining mutual exclusivity at the
specimen level between the folds i.e., each specimen contributed
images to exactly one fold. This specimen-aware partitioning
of the data into folds with distinct specimens is required for
correct evaluation of a trained model’s generalization capability
to unseen samples. It should be noted that cross validation
analysis did not include specimens from the PACw xylarium.
A standard cross validation strategy, with four folds used for
training and the trained model tested on the hold-out fold, was
implemented and the specimen-level predictions over the five
folds were accumulated to compute the accuracy (Table 3) and
the confusion matrix (Figure 2).

(2) Training a field model for evaluation on PACw specimens:
All images in the five-fold cross-validation analysis were used to
train a single model—the field model—using the same training
hyperparameters. The specimen-level prediction performance
of the field model was tested on 119 specimens from the
PACw xylarium at Mississippi State University. The top-1 and
top-2 predictions of the field model are reported in Table 3.
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FIGURE 1 | (A) The CNN architecture comprises a ResNet50 backbone with a custom head. Given an input image, the network produces a 24-element vector that
represents the prediction confidence for each of the 24 classes in the model. Tensor dimensions are depicted over the connections between the modules. (B) The
custom head includes global average pooling (A), global max pooling (M), concatenation (C), batchnorm (B), dropout (D) and linear layers with ReLU (R) and softmax
(S) activations. Dp represents a dropout layer with drop probability parameter p. Tensor dimensions are depicted over the connections between the layers. (C) The
first stage of transfer learning locks (or freezes) the ImageNet pretrained weights of the ResNet50 backbone and optimizes the randomly initialized weights of the
custom head using the cross-entropy (CE) loss. (D) The weights of the entire network are fine tuned using the CE loss during the second stage of the training
methodology.

The operators and XyloTron hardware used to collect the 529
images from the PACw specimens were different from those
for the training data, and the images were used to evaluate
the prediction accuracy of the trained model as a proxy for
in-country field testing.

All images of the misclassified specimens in the five-fold
cross validation were qualitatively evaluated and the misclassified
specimens were categorized into three types: (1) taxa are
anatomically consistent and the test specimen is typical; (2) the

TABLE 3 | Predictive accuracies for the trained models and the corresponding
number of specimen-level prediction errors.

Accuracy (%) Number of specimens
misclassified

Predictions on
cross-validation folds

97% 39/1,300

Top-1 prediction on PACw
specimens

86.5% 16/119

Top-2 prediction on PACw
specimens

92.4% 9/119

test specimen is atypical—but within reasonable variation for
the taxon (i.e., it is not an archetypal image for the taxon); and
(3) the taxa and test specimen are anatomically typical, but not
anatomically consistent with each other. Types 1 and 2 represent
misidentifications that trained field inspectors are likely to make,
and so are sensible. Type 3 represents misidentifications not as
likely to be made by trained human field inspectors, and for which
there is no clear anatomical explanation.

RESULTS

The cross-validated specimen-level identification accuracy
(accumulated over the five folds) was 97%. The field model
had top-1 and top-2 specimen-level accuracies of 86.5 and
92.4% when tested on the PACw specimens. The predictive
performance of the models is summarized in Table 3, and the
cross-validation confusion matrix is shown in Figure 2.

Figure 3 presents examples of each of the three types of
misclassifications, which are summarized and reported in
Table 4. When comparing two wood anatomically similar taxa
(Type 1 misclassification, Figures 3A,B) the misclassification
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FIGURE 2 | Confusion matrix for the top-1 predictions of the five-fold cross-validation models. The specimen-level accuracy accumulated over the five folds was
97%. The majority of misclassifications are between anatomically similar woods.

is sensible—both woods are characterized by vessels with
similar grouping, arrangement, and of similar diameter,
with lozenge-aliform-to-confluent axial parenchyma, and
narrow, abundant rays. In Figures 3C,D (an example of
Type 2 misclassification) the similarities between the atypical
specimen of class Virola (Virola surinamensis; Figure 3C) and
class Swietenia (Swietenia macrophylla; Figure 3D) include
prominent marginal parenchyma, roughly similar vessel
diameters, similar vessel grouping and arrangement, and
absence of axial parenchyma in the body of the growth ring.
An example of anatomically disparate misclassification (Type 3
misclassification) is shown in Figures 3E,F where the apotracheal
banded parenchyma and much smaller vessels of class Cariniana
(Cariniana pyriformis; Figure 3E) present a pattern not at all
similar to the human eye to the larger vessels and vasicentric
axial parenchyma of class Cedrelinga (Cedrelinga cateniformis;
Figure 3F).

DISCUSSION

The top-1 specimen-level accuracy of the field model was
approximately 10 percentage points lower than the cross-
validation accuracy while the top-2 specimen-level accuracy
was over 90% — a level which is arguably sufficient to
establish probable cause and initiate a full forensic investigation
when fraud or misrepresentation is detected. The generalization
capability of machine learning wood identification models must
be evaluated on specimens that were not used to train the
model. Additionally, real world systems deployed at scale must
also be robust to the skills of operators (with different levels of
training) and variations in system instantiations. The prediction
accuracies reported above were obtained using training and
testing datasets that were mutually exclusive at the specimen
level. We maintained specimen-level mutual exclusivity of
specimens across folds for cross validation analysis, and likewise
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FIGURE 3 | Images of the transverse surface of test specimens (A,C,E) and
exemplars of the class to which they were assigned (B,D,F). All images are
6.35 mm on a side. An anatomically representative specimen of class
Amburana (A) was misclassified as the anatomically similar class Ormosia (B).
An anatomically atypical specimen of class Virola (C) was classified as class
Swietenia (D). An anatomically typical specimen of class Cariniana (E) was
misclassified as the wood anatomically disparate class Cedrelinga (F).

xylaria specimen mutual exclusivity for field model evaluation.
Additionally, the performance evaluation metrics were obtained
using data collected at multiple sites and by multiple operators
using different instantiations of the XyloTron system.

Our approach of testing models on specimens from a xylarium
that did not contribute data to model training was employed as
a logistically manageable, practically useful surrogate for real-
world field testing. The ultimate test of any automated wood
identification system is in-country field testing, but the main
logistical challenge is the requirement of a wood identification
expert for validation of the specimens being tested. Prior field-
testing by Ravindran et al. (2019) of a pilot XyloTron model
for Ghanaian woods showed a 10% drop in identification
accuracy when comparing results on xylarium specimens to
testing on field specimens. Such losses of accuracy of computer
vision models when tested on wholly new datasets have been
found by research in other domains of computer vision (Recht
et al., 2018, 2019; Zech et al., 2018). The drop in performance
shown in Ravindran et al. (2019) and in this study could be

TABLE 4 | Number and proportion of misclassified specimens from Figure 2
when categorizing into one of three misclassification types.

Misclassification type Number of
misclassified
specimens

Proportion of
misclassified
specimens

Taxa are anatomically consistent,
test specimen typical (Type 1)

13 0.333

Test specimen atypical for its taxon*
(Type 2)

11 0.282

Taxa and test specimen are not
anatomically consistent (Type 3)

15 0.385

Total 39 1.0

Types 1 and 2 are consistent with wood anatomy and the kind of misidentifications
likely to be made by human field inspectors. Type 3 misclassifications are
inconsistent with macroscopic wood anatomy and would not be expected to be
made by a human inspector. *But within reasonable variation for the taxon.

attributed to a combination of many factors such as differences
in the quality of specimen surface preparation; differences in
subtle anatomical patterns present in xylarium specimens as
compared to material currently in trade; differences between
green and dry wood; and slight variations in operator use of the
equipment or the equipment itself. A well-designed field-testing
strategy for evaluating automated wood identification systems
must incorporate these factors in a context-specific manner. For
example, given that the XyloTron platform is intended as a field-
screening rather than a forensic tool, a testing protocol that
incorporated taking multiple images per specimen of multiple
specimens per shipment/consignment, etc., should yield reliable,
robust results when characterizing the shipment at large, rather
than any single piece of wood.

Our top-2 specimen-level accuracy was computed with equal
weights for the top-2 image-level predictions, but for practical
deployment a weighting scheme should be chosen in a context
dependent fashion that takes into account factors such as
the taxa-aware cost of making an incorrect identification, the
anatomical similarity of the taxa being considered, the number
of specimens to field screen per shipment, and the calibration
of the model predictions (Niculescu-Mizil and Carauna, 2005;
Guo et al., 2017). By including top-2 specimen level accuracy,
we provide a window into the performance of the model and
how such a model could be deployed. For example, the XyloTron
platform’s classification software, xyloinf (Ravindran et al., 2020),
provides the confidence value and an exemplar image for each
class for the top-3 predictions per image, plus the sum of the
confidences for the remaining N-3 classes in a given model of
N classes. An operator thus has access not only to the ranked
results, but also the confidence of a prediction and an exemplar
image for human evaluation. This opens an interesting avenue
for future research into the real-world deployment of computer
vision wood identification systems (and other modalities) for
maximum practical effect by incorporating human judgment
(e.g., visual matching of an image from a field specimen to
reference exemplar images for human approval and for flagging
Type 3 misclassifications) or comparison of top-k results to
some affirmative claim (e.g., a shipping manifest or transit
permit). Even as field screening and forensic tools grow in
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power and sensitivity, it is critical to ensure that users of those
tools are guided in how to achieve best practical effect with
the tools at hand.

The uptake of computer vision and machine learning for
automated wood identification is accelerating (Ravindran et al.,
2018, 2019, 2020; de Andrade et al., 2020; Souza et al., 2020;
Arévalo et al., 2021) and the real-world adoption of these
systems is critically dependent on rigorous validation metrics and
methodologies underlying any well-considered field-deployment
framework. An easy first step toward rigorous validation is
to enforce specimen-level separation between the training and
testing splits (as in this work) rather than only image-level
separation (most prior works). As affordable mobile phone
adaptations (Tang et al., 2018; Wiedenhoeft, 2020) democratize
access to these automated technologies, for wider impactful
adoption it is critical that they be rigorously evaluated on external
validation data. For this work, the next obvious steps will be
testing the field model on specimens in Peruvian xylaria; folding
in the PACw specimens to train a new field model to test in
Peruvian xylaria; folding in the specimens from the Peruvian
xylaria to iterate a new field model; and then, taking that model
into the real-world and conducting the necessary field-testing
coupled with independent forensic validation of the field tested
specimens, an approach that should be applied to all modalities
(Dormontt et al., 2015) in forensic wood science.

SUMMARY

We provided the largest tested computer vision wood
identification model for Peruvian woods that is ready for
immediate in-country field evaluation on the XyloTron platform.
We demonstrated the utility and practicality of our model by
evaluation using completely new specimens with independent
hardware instantiations and different users, emphasized the
critical need for specimen-level control of training and testing
splits, and laid out a clear, iterative plan for augmenting the
existing model. It is our hope that this work can be deployed
within Peru to prevent illegally logged material from entering
trade, and to support the trade in legal timber.
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