
fpls-12-650802 April 12, 2021 Time: 15:23 # 1

ORIGINAL RESEARCH
published: 13 April 2021

doi: 10.3389/fpls.2021.650802

Edited by:
Xiaoying Gong,

Fujian Normal University, China

Reviewed by:
Xiao-Tao Lu,

Institute of Applied Ecology (CAS),
China

Rubén Retuerto,
University of Santiago
de Compostela, Spain

*Correspondence:
Zhenqing Li

lizq@ibcas.ac.cn

Specialty section:
This article was submitted to

Functional Plant Ecology,
a section of the journal

Frontiers in Plant Science

Received: 11 January 2021
Accepted: 19 March 2021

Published: 13 April 2021

Citation:
Liu Y, Xu M, Li G, Wang M, Li Z

and De Boeck HJ (2021) Changes
of Aboveground and Belowground

Biomass Allocation in Four Dominant
Grassland Species Across

a Precipitation Gradient.
Front. Plant Sci. 12:650802.

doi: 10.3389/fpls.2021.650802

Changes of Aboveground and
Belowground Biomass Allocation in
Four Dominant Grassland Species
Across a Precipitation Gradient
Yongjie Liu1, Mingjie Xu1, Guoe Li1, Mingxia Wang1, Zhenqing Li2,3* and
Hans J. De Boeck4

1 State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry
of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China,
2 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing,
China, 3 University of Chinese Academy of Sciences, Beijing, China, 4 Plants and Ecosystems (PLECO), Department
of Biology, University of Antwerp, Wilrijk, Belgium

Climate change is predicted to affect plant growth, but also the allocation of biomass
to aboveground and belowground plant parts. To date, studies have mostly focused
on aboveground biomass, while belowground biomass and allocation patterns have
received less attention. We investigated changes in biomass allocation along a
controlled gradient of precipitation in an experiment with four plant species (Leymus
chinensis, Stipa grandis, Artemisia frigida, and Potentilla acaulis) dominant in Inner
Mongolia steppe. Results showed that aboveground biomass, belowground biomass
and total biomass all increased with increasing growing season precipitation, as
expected in this water-limited ecosystem. Biomass allocation patterns also changed
along the precipitation gradient, but significant variation between species was apparent.
Specifically, the belowground biomass: aboveground biomass ratio (i.e., B:A ratio) of
S. grandis was not impacted by precipitation amount, while B:A ratios of the other
three species changed in different ways along the gradient. Some of these differences
in allocation strategies may be related to morphological differences, specifically, the
presence of rhizomes or stolons, though no consistent patterns emerged. Isometric
partitioning, i.e., constant allocation of biomass aboveground and belowground,
seemed to occur for one species (S. grandis), but not for the three rhizome or stolon-
forming ones. Indeed, for these species, the slope of the allometric regression between
log-transformed belowground biomass and log-transformed aboveground biomass
significantly differed from 1.0 and B:A ratios changed along the precipitation gradient.
As changes in biomass allocation can affect ecosystem functioning and services, our
results can be used as a basis for further studies into allocation patterns, especially in a
context of environmental change.

Keywords: aboveground biomass, belowground biomass, climate change, grassland, grassland persistence,
rangeland sustainability, precipitation amount
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INTRODUCTION

Climate change is affecting rainfall patterns in many regions
around the world (Arnbjerg-Nielsen et al., 2013; Ohba and
Sugimoto, 2019; Hyun and Yeh, 2020). Such changes can
significantly alter plant growth and vegetation dynamics, both
when precipitation amounts decrease or when they increase
(Felton et al., 2019). Drought triggers mostly neutral or negative
responses regarding growth and biomass (Zhang et al., 2012;
Gherardi and Sala, 2019; Meng et al., 2019), while increased
precipitation mostly leads to neutral or positive growth responses
(Chu et al., 2016; Michaletz et al., 2018; Gherardi and Sala, 2019).
While these are general patterns, where the biomass ends up
under any response scenario (decreased, increased, or unchanged
biomass) is also relevant as this can affect, for example, livestock
feeding, soil stability, and carbon sequestration (Herrero et al.,
2013; Maryol and Lin, 2015; Reinhart and Vermeire, 2017).

The optimal partitioning theory predicts that plants tend
to allocate relatively more biomass to organs increasing the
uptake of the most limiting resources (Bloom et al., 1985;
Gedroc et al., 1996; Mao et al., 2012). Therefore, plants are
expected to allocate more biomass belowground under dry
conditions, and more aboveground when growing under wet
conditions (Villar et al., 1998). The isometric partitioning theory
suggests that aboveground biomass and belowground biomass
follows an isometric pattern (Enquist and Niklas, 2002; Wang
et al., 2014), implying that there is not necessarily a trade-off
between aboveground and belowground. However, contrasting
results have been found, with both studies in support (e.g.,
Enquist and Niklas, 2002; Wang et al., 2014) and studies that
rejected isometric partitioning (e.g., Chen et al., 2016; Ma and
Wang, 2021). Thus, further studies are needed to shed more
light on this theory.

While it is clear that environmental changes can significantly
affect biomass allocation (Fan et al., 2009; Zhang et al., 2017;
Yang et al., 2018; Zhou et al., 2020), most studies that explored
the effects of climate change on biomass allocation have focused
on aboveground biomass (Bai and Xu, 1997; Mokany et al.,
2006; Bai et al., 2008; Gonzalez-Dugo et al., 2010). Few studies
include belowground biomass as this is more difficult to measure,
especially in the field (Milchunas et al., 2005; Ma et al., 2008).
Therefore, our knowledge of changes in plant allocation pattern
triggered by changes in the environment is generally incomplete
(Achten et al., 2010; Liu et al., 2015) and exact allocation strategies
merit further investigation (Pan et al., 2005; Cai et al., 2005; Lv
et al., 2016).

Grasslands, as one of the main terrestrial ecosystems, occupy
more than 30% of the terrestrial area (Parton et al., 2012).
They play an important role in biogeochemical cycles and
energy transformation (Huang et al., 2010; Bai et al., 2012).
Compared with forests, grasslands show more pronounced
responses to climate change, at least in the short term (Eziz
et al., 2017; Maurer et al., 2020), and are thus a relevant
ecosystem to study in the context of environmental change.
In grasslands, biomass allocation is a key mechanism for
understanding the dynamics involved in plant growth, and
changes therein can alter the structure and functioning of these
systems (Poorter et al., 2012a,b).

To improve the knowledge on changes in biomass allocation
patterns under varying environmental conditions in grasslands,
we conducted an experiment to explore effects of growing
season precipitation on biomass aboveground and belowground.
We focused on four plant species (i.e., Leymus chinensis, Stipa
grandis, Artemisia frigida, and Potentilla acaulis) dominant in
Inner Mongolia steppe, and applied a gradient including eight
levels of precipitation centered around the local annual mean
precipitation. L. chinensis is a perennial forage grass with long
strong rhizomes, S. grandis is a perennial tussock grass with
closely clumped shoots, while A. frigida and P. acaulis are
perennial herbs with stolons and developed adventitious roots
(Li et al., 2005; Liu et al., 2006, 2007). The objective of this
study was to test the optimal partitioning theory and the
isometric partitioning theory at the species scale. Specially, we
aimed to explore the relationships between precipitation amount
and aboveground biomass, belowground biomass, total biomass
and belowground biomass: aboveground biomass (B:A) ratio.
Previous studies found that species with rhizomes or stolons
tended to allocate more biomass to roots (i.e., belowground)
(Schmid, 1987; Enquist and Niklas, 2002; Rhazi et al., 2009),
leading to hypothesis (1), namely that the B:A ratio of L. chinensis,
A. frigida, and P. acaulis is expected to be larger than that
of S. grandis. Furthermore, if species with rhizomes or stolons
indeed allocate more biomass belowground, they may respond
differently along a gradient of changing precipitation compared
to other species, according to the optimal partitioning theory.
Under this hypothesis (2) the B:A ratios of L. chinensis, A. frigida,
and P. acaulis would increase with precipitation amount, while a
different pattern may be apparent in S. grandis. However, under
the isometric partitioning hypothesis (3), the B:A ratios of these
species are expected to be constant with precipitation amount
(Enquist and Niklas, 2002; Yang and Luo, 2011; Wang et al.,
2014). This same hypothesis also states that aboveground biomass
should be scale with belowground biomass across our dataset.

MATERIALS AND METHODS

Field Site
This study was conducted on Inner Mongolia steppe in China
(43◦33′N, 116◦40′E), where the mean elevation ranges from
1,200 to 1,250 m. Local climate is characterized by a mild
humid summer and a dry cold winter, with the mean annual
temperature (MAT) ranging from −1.1 to 0.2◦C, and large
seasonal differences (−21.4◦C on average in the coldest month,
January, and 18.5◦C on average in the warmest month, July).
Mean annual precipitation (MAP) is 350 mm (from 1980 to
2000), of which around 280 mm falls in the growing season.

Experimental Design
To explore biomass allocation to aboveground and belowground
plant parts, a manipulation experiment was conducted from May
2000 to October 2001. Four plant species dominant in the Inner
Mongolia steppe were subjected to eight levels of growing season
precipitation (administered through watering), centered around
the local MAP (i.e., 350 mm): 170, 250, 300, 350, 525, 595, 665,
and 700 mm. Such a large gradient enabled us to explore the
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effects of precipitation (including both dry and wet conditions)
on plant biomass and biomass allocation, and was not intended
to mimic the variation of local rainfall expected under climate
change (cf. Kayler et al., 2015). Our experiment was conducted
in a plot with a rainout shelter in order to block natural rainfall.
This shelter was covered by highly transparent plastic foil upward
from 2 m above the ground in order to prevent warming and to
allow wind circulation. The impact on temperature, air humidity
and light with such a design is limited (Kreyling et al., 2017).

Plants were grown in pots of 50 cm height and 30 cm
diameter, filled with soil collected from nearby grasslands (mainly
dark chestnut soil with a thin humus layer, cf. Li and Li,
2002; Jia et al., 2005). We used soil from the top 50 cm,

which was well mixed and from which roots were carefully
removed. There were three replications of each treatment for
each species. For L. chinensis, seeds were randomly sown in
the pots in early May 2000, and four similar-sized individuals
were retained after germination. For S. grandis, four ramets
with similar size were transplanted into each pot in late May
2000 following unsuccessful seed germination in early May. For
A. frigida and P. acaulis, plants were excavated and ramets
were separated into similar size. Four of them were transplanted
into each pot in early May 2001. All the plants were first
grown in an open air area under natural conditions, and
rainout shelters were deployed and treatments were applied
from 10 June to 10 September 2001. During the experiment,

FIGURE 1 | At the pot scale, mean ± SE of (A) aboveground biomass, (B) belowground biomass, (C) total biomass, and (D) B:A ratio (i.e., ratio of belowground
biomass and aboveground biomass), across the precipitation gradient, per species, i.e., Leymus chinensis, Stipa grandis, Artemisia frigida, and Potentilla acaulis.
Significant (P < 0.05) differences between species have different letters (post hoc analyses with Bonferroni corrections).
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water was added daily to each pot, with the water amount
determined by dividing the total amount of precipitation amount
in each treatment by the total growing days. To reduce water
runoff, water was evenly added by hand at the soil surface.
Note that around 80% of the annual rainfall occurs from
June through August. The watering we provided thus covered
most of the annual precipitation in line with previous studies
(Hagiwara et al., 2010).

At the end of the experiment, all plants were washed free of
soil with distilled water, and separated into aboveground and
belowground parts. For L. chinensis and S. grandis, aboveground
parts included leaves and stems, while belowground parts
included roots and rhizomes. For A. frigida, aboveground parts
included leaves, flowers, and stems, while belowground parts
included roots. Finally, for P. acaulis, aboveground parts included
leaves and stems, while belowground parts included roots. All
of these were oven-dried at 65◦C to constant weight and
subsequently weighed.

Statistical Analysis
Aboveground and belowground biomass per square meter was
calculated by dividing biomass of the four individuals in each
pot by the surface area of each pot. Total biomass relates to
the sum of aboveground and belowground biomass and the
belowground biomass: aboveground biomass ratio (i.e., B:A
ratio) was calculated by dividing belowground biomass by
aboveground biomass.

Two-way analysis of variance (ANOVA) was conducted
to explore the effects of species, precipitation amount and
their interaction on the aboveground biomass, belowground
biomass, total biomass and B:A ratio. Post hoc analysis (pairwise
comparisons with Bonferroni corrections) was applied to test
the differences among the target plant species. One data point
of aboveground biomass of S. grandis at 700 mm precipitation
was identified as an outlier and was removed. All statistics were
carried out using SPSS 21.0.

Curve estimations were done to test the relationships between
precipitation amount and aboveground biomass, belowground

biomass, total biomass and B:A ratio, where linear, quadratic,
power and exponential curves were tested. AIC (Akaike
Information Criterion) and P value were used to identify better
models, i.e., lower AIC and significant (and lower) P value
(Cottingham et al., 2005).

The relationship between log-transformed belowground
biomass and log-transformed aboveground biomass
across the precipitation gradient was determined with
ordinary least square regression and standardized major
axis regression (Niklas, 2005; Cheng and Niklas, 2007).
The slopes were tested against the 1:1 line, where non-
significant difference indicates an isometric relationship
between belowground and aboveground biomass. Slopes
and intercepts were obtained with a software package
developed by Falster et al. (2006).

RESULTS

Regarding species differences, S. grandis and A. frigida on
average had more aboveground (Figure 1A) and total biomass
(Figure 1C) than L. chinensis and P. acaulis. Meanwhile,
P. acaulis had a lower belowground biomass than the other
three plant species (Figure 1B). Interestingly, L. chinensis
had a larger B:A ratio than the other species (Figure 1D).
Precipitation amount significantly affected aboveground
biomass, belowground biomass, total biomass and B:A
ratio and these effects differed amount the target plant
species (Table 1). Moreover, significant interactive effects
of species and precipitation amount on the aboveground
biomass, belowground biomass, total biomass and B:A
ratio were found (Figures 2–5 and Table 2). Specially,
positive patterns were found in relationships between
precipitation amount and (i) aboveground biomass
(Figure 2), (ii) belowground biomass (Figure 3), and (iii)
total biomass (Figure 4).

Along the precipitation gradient, we observed different
B:A ratios in the four target plant species. Increasing
precipitation did not significantly affect the B:A ratio of

TABLE 1 | Effects of species, precipitation amount and their interaction in two-way ANOVA on aboveground biomass, belowground biomass, total biomass, and B:A
ratio (i.e., ratio of belowground biomass and aboveground biomass).

Aboveground biomass Belowground biomass

df F P df F P

Species
Precipitation amount
Species × Precipitation amount

3.64
7.64
21.64

104.595
23.252
2.665

<0.001
<0.001
0.001

3.64
7.64

21.64

36.571
17.412
2.817

<0.001
<0.001
0.001

Total biomass B:A ratio

df F P df F P

Species
Precipitation amount
Species × Precipitation amount

3.64
7.64
21.64

89.819
33.479
3.606

<0.001
<0.001
<0.001

3.64
7.64

21.64

33.623
2.139
3.023

<0.001
0.052

<0.001

Significant differences are indicated in bold.
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FIGURE 2 | At the pot scale, regressions between precipitation amount and aboveground biomass, separately for (A) Leymus chinensis, (B) Stipa grandis,
(C) Artemisia frigida, and (D) Potentilla acaulis.

S. grandis (Figure 5B), while it increased the B:A ratio
of L. chinensis (Figure 5A), decreased for P. acaulis,
and seemingly first decreased and then increased for
A. frigida (with a threshold around 475 mm). A greater
B:A ratio suggests a greater biomass investment in the
belowground organs.

Aboveground biomass was positively correlated with
belowground biomass for all four target species, as expected
(Figure 6). The slopes of the relationship between log-
aboveground biomass and log-belowground biomass for
L. chinensis, S. grandis, A. frigida, and P. acaulis were 1.25, 0.90,
0.49, and 0.53, respectively. These values differed significantly
from 1.0 for three species (P = 0.001, <0.001, and <0.001 for
L. chinensis, A. frigida, and P. acaulis, respectively), indicating
non-isometric growth for these rhizome or stolon-forming

species. The relationship did not differ significantly from the 1:1
line for S. grandis (P = 0.275).

DISCUSSION

In this study, we subjected four species common in grasslands
of Inner Mongolia to a precipitation gradient. In general, we
found that both aboveground biomass and belowground biomass
production was stimulated as growing season precipitation was
increased. This was unsurprising, given that these grasslands
are known to be precipitation-limited (Kang et al., 2011; Guo
et al., 2015). The focus in the current study was primarily on
biomass allocation patterns, which we considered by testing
three hypotheses. The first hypothesis stated that species with
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FIGURE 3 | At the pot scale, regressions between precipitation amount and belowground biomass, separately for (A) Leymus chinensis, (B) Stipa grandis,
(C) Artemisia frigida, and (D) Potentilla acaulis.

rhizomes or stolons would allocate more biomass belowground.
This pattern was only found for one rhizome and stolon
forming species, namely L. chinensis. The other two such species,
A. frigida and P. acaulis, displayed similar allocation patterns
with the non-rhizome or stolon forming S. grandis. It should be
noted that in contrast to studies calculating biomass allocation
based on root biomass (e.g., Berendse and Möller, 2009), we
considered the complete belowground biomass, including roots,
rhizomes, and stolons.

The second hypothesis studied here, assumed that biomass
allocation of species with rhizomes or stolons would increase
along the precipitation gradient. This was not convincingly
supported, with different patterns between precipitation amount
and B:A ratios being observed for the four target plant species.

Specifically, the B:A ratio of non-rhizome or stolon forming
S. grandis remained constant along the precipitation gradient,
suggesting that the biomass allocation of this species was not
sensitive to precipitation amount. In line with our expectations,
a positive pattern was found in L. chinensis, which could be
explained by the fact that L. chinensis has a strong forage ability
as a rhizomatous species (Wang et al., 2004), which enables it to
allocate more biomass to roots when growing in wet conditions
(Yang and Yang, 1998). Similar patterns were also found in species
such as Salix psammophila, Hedysarum leave, Artemisia ordosica,
and Caragana korshinskii (Dong et al., 1999; Xiao et al., 2001).
Nevertheless, a contrasting (negative) pattern was apparent for
P. acaulis, indicating more biomass was allocated aboveground
with increasing precipitation amount. Interestingly, our data
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FIGURE 4 | At the pot scale, regressions between precipitation amount and total biomass, separately for (A) Leymus chinensis, (B) Stipa grandis, (C) Artemisia
frigida, and (D) Potentilla acaulis.

suggested a unimodal pattern between precipitation amount and
B:A ratio for A. frigida, with higher precipitation only increasing
the biomass allocation belowground up to a certain point.

According to isometric partitioning, aboveground biomass
and belowground biomass would be isometric at the species scale
(hypothesis 3). This would suggest both no changes in B:A ratios
along the precipitation gradient and no deviation from 1:1 lines in
the aboveground biomass vs. belowground biomass relationship.
Our results suggest that only S. grandis seemed to respond in
line with isometric partitioning. The three rhizome or stolon-
forming species did not adhere to isometric partitioning, with
both asymmetrical variation between aboveground biomass and
belowground biomass, in contrast with Enquist and Niklas (2002)

and Yang et al. (2009), as well as differences in B:A ratios along
the precipitation gradient. Regarding the allometric relationships
between aboveground biomass and belowground biomass, the
average slope of the four target plant species was 0.79, which is in
line with the global grasslands’ slope (i.e., 0.72, Wang et al., 2014),
but smaller than China’s grasslands’ slope (i.e., 1.05, Wang et al.,
2014). Such differences may be caused by the limited number
of plant species used in this study, and because we explored
allometric partitioning at the species scale, not at the individual or
the community scale like in previous studies (Enquist and Niklas,
2002; Wang et al., 2010, 2014).

Biomass allocation between belowground biomass and
aboveground biomass differed among species in our study,
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FIGURE 5 | At the pot scale, regressions between precipitation amount and B:A ratio (i.e., ratio of belowground biomass and aboveground biomass), separately for
(A) Leymus chinensis, (B) Stipa grandis, (C) Artemisia frigida, and (D) Potentilla acaulis, where each dot refers to a B:A ratio from a pot.

in line with previous findings (Ma et al., 2008; Kang et al.,
2013; Gong et al., 2015; Zhang et al., 2019). Mokany et al.
(2006) suggested that the root/shoot (R/S) ratio in grasslands
tends to decrease with increasing MAP. However, Yang et al.
(2010) reported that the R/S ratio in China’s grasslands
did not show any significant pattern along increasing MAP.
Several potential causes were proposed, relating to climatic
factors (e.g., MAT and MAP). The plant species used in our
experiment, which are dominant species in the Inner Mongolia
steppe, displayed various relationships between B:A (similar
to R/S) ratio and precipitation amount. Plant communities
with species responding differently regarding biomass allocation,
e.g., in an opposite direction, to precipitation may see little

total effect at the community scale. Nevertheless, the species-
specific changes in allocation patterns could lead to different
competitive outcomes (Aerts et al., 1991), thus changing species
composition in the longer term, and thus the B:A (or R: S) ratio
of the community.

Results of this study should be interpreted and extrapolated
with caution for a number of reasons. First, the experiment
was short term, featuring a limited number of species. Studying
longer term effects on more species would allow more extensive
generalization. Furthermore, two species in this study were sown
at the beginning of the experiment, while the other two were
transplanted from local grasslands. It is possible that plant age
affects allocation patterns, with for example Yu et al. (2019)
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TABLE 2 | Results of the curve estimation of the relationships between precipitation amount and aboveground biomass, belowground biomass, total biomass, and B:A ratio (i.e., ratio of belowground biomass and
aboveground biomass) of Leymus chinensis, Stipa grandis, Artemisia frigida, and Potentilla acaulis with linear, quadratic, power, and exponential equations, where AIC, F, df, and P value were showed.

Aboveground biomass Belowground biomass Total biomass B:A ratio

AIC F df P AIC F Df P AIC F df P AIC F df P

Leymus chinensis Equation

Linear 116.2 3.1 1.22 0.094 155.1 45.5 1.22 <0.001 168.0 33.2 1.22 <0.001 −19.6 32.240 1.22 <0.001

Quadratic 111.5 4.0 2.21 0.033 155.0 21.8 2.21 <0.001 167.1 16.74 2.21 <0.001 −20.8 16.650 2.21 <0.001

Power −56.2 5.7 1.22 0.026 −43.2 41.9 1.22 <0.001 −54.7 36.4 1.22 <0.001 −48.0 26.391 1.22 <0.001

Exponential −54.6 4.0 1.22 0.061 −41.7 38.0 1.22 <0.001 −52.5 31.3 1.22 <0.001 −50.1 30.641 1.22 <0.001

Stipa grandis Equation

Linear 171.4 11.8 1.22 0.002 161.4 13.3 1.22 0.001 194.9 15.4 1.22 0.001 −79.5 1.2 1.22 0.285

Quadratic 154.9 21.6 2.21 <0.001 155.1 11.5 2.21 <0.001 180.4 22.1 2.21 <0.001 −81.0 1.3 2.21 0.284

Power −49.1 23.0 1.22 <0.001 −46.4 24.0 1.22 <0.001 −52.1 28.6 1.22 <0.001 −57.1 0.2 1.22 0.655

Exponential −43.4 13.5 1.22 0.001 −42.3 16.8 1.22 <0.001 −46.1 17.4 1.22 <0.001 −57.4 0.5 1.22 0.504

Artemisia frigida Equation

Linear 144.0 48.5 1.22 <0.001 114.2 49.4 1.22 <0.001 149.6 91.4 1.22 <0.001 −78.5 3.0 1.22 0.095

Quadratic 137.9 32.9 2.21 <0.001 113.9 24.0 2.21 <0.001 146.1 52.2 2.21 <0.001 −86.0 5.9 2.21 0.009

Power −74.6 60.8 1.22 <0.001 −88.3 48.4 1.22 <0.001 −95.1 104.9 1.22 <0.001 −63. 8 4.3 1.22 0.051

Exponential −68.2 41.4 1.22 <0.001 −90.1 53.9 1.22 <0.001 −88.5 74.6 1.22 <0.001 −62.1 2.5 1.22 0.127

Potentilla acaulis Equation

Linear 112.3 68.9 1.22 <0.001 83.8 41.3 1.22 <0.001 124.1 86.1 1.22 <0.001 −67.2 19.7 1.22 <0.001

Quadratic 112.2 33.1 2.21 <0.001 79.6 25.5 2.21 <0.001 122.8 43.8 2.21 <0.001 −67.4 9.5 2.21 <0.001

Power −60.2 96.2 1.22 <0.001 −73.9 55.7 1.22 <0.001 −73.3 106.5 1.22 <0.001 −62.0 19. 1 1.22 <0.001

Exponential −54.2 70.0 1.22 <0.001 −66.8 35.8 1.22 <0.001 −64.8 68.3 1.22 <0.001 −62.7 20.4 1.22 <0.001

A better estimation (marked in red) is determined by a smaller AIC (Akaike Information Criterion) and a significant P value (marked in bold).
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FIGURE 6 | At the pot scale, allometric relationships between log-transformed aboveground biomass and long-transformed belowground biomass for (A) Leymus
chinensis, (B) Stipa grandis, (C) Artemisia frigida, and (D) Potentilla acaulis. The 1:1 line (dotted) is added for clarity.

reporting that resource limitation could be partially the reason of
decreasing allocation with age, where resources such as nutrients
and waters become limited with plant grow (age). Moreover, we
allowed intraspecific competition in our study, which is realistic,
but which would also alter allocation patterns (Yang et al., 2019).
Comparisons with experiments considering individual plants
(e.g., Lamb et al., 2007), are thus not straightforward. Another
factor to consider in future studies is soil heterogeneity. Plants
may allocate more biomass to roots when growing in higher levels
of soil heterogeneity (James et al., 2003; Michael and Elizabeth,
2004; Hagiwara et al., 2010; Wu et al., 2014; Liu et al., 2017a),
and plants growing on low-nutrient patches have been reported
to grow more roots into their neighboring high-nutrient patches
(Liu et al., 2017b, 2019).

In sum, in our experiment we found that changes in
precipitation affected biomass allocation in general, but that
significant species-specific differences were apparent. Increasing

precipitation increased the biomass allocation to belowground
organs for one species with rhizomes or stolons, while it did
not impact the biomass allocation of the non-rhizomes or
stolon-forming species in our study. Isometric partitioning,
meaning constant allocation of biomass aboveground and
belowground regardless of plant size or precipitation amounts,
seemed to occur for one species, but not for the rhizome
or stolon-forming ones. Increased knowledge of allocation
patterns leads to improved understanding of the structure and
functioning of grasslands under changes in the environment,
such as altered precipitation. Moreover, changed allocation
patterns matter as they can affect agricultural value, carbon
sequestration, and climate resilience. The results of our
study could be used as a basis for further research into
allocation patterns in a changing environment, spanning a wider
range of species, and explicitly considering consequences for
ecosystem services.
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