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Pre-sowing seed treatment with systemic fungicides is a firmly entrenched practice for 
most agricultural crops worldwide. The treatment is intended to protect the crop against 
seed- and soil-borne diseases. In recent years, there is increasing evidence that fungicidal 
applications to manage diseases might inadvertently also affect non-target organisms, 
such as endophytes. Endophytes are ubiquitously present in plants and contribute to 
plant growth and development besides offering resistance to biotic and abiotic stresses. 
In seeds, endophytes may play a role in seed development, seed germination, seedling 
establishment and crop performance. In this paper, we review the recent literature on 
non-target effects of fungicidal applications on endophytic fungal community and discuss 
the possible consequences of indiscriminate seed treatment with systemic fungicide on 
seed endophytes. It is now well recognized that endophytes are ubiquitously present in 
all parts of the plant, including the seeds. They may be transmitted vertically from seed 
to seed as in many grasses and/or acquired horizontally from the soil and the environment. 
Though the origins and evolution of these organisms in plants are a matter of conjecture, 
numerous studies have shown that they symbiotically aid in plant growth and development, 
in nutrient acquisition as well in protecting the plants from abiotic and biotic stresses. 
Against this background, it is reasonable to assume that the use of systemic fungicides 
in seed treatment may not only affect the seed endophytes but also their attendant benefits 
to seedling growth and establishment. While there is evidence to indicate that fungicidal 
applications to manage plant diseases also affect foliar endophytes, there are only few 
studies that have documented the effect of seed treatment on seed-borne endophytes. 
Some of the convincing examples of the latter come from studies on the effect of fungicide 
application on rye grass seed endophyte AR37. More recently, experiments have shown 
that removal of seed endophytes by treatment with systemic fungicides leads to significant 
loss of seedling vigour and that such losses could be partially restored by enriching the 
seedlings with the lost endophytes. Put together, these studies reinforce the importance 
of seed endophytes to seedling growth and establishment and draw attention on how to 
trade the balance between the benefits of seed treatments and the direct and indirect 
costs incurred due to loss of endophytes. Among several approaches, use of 
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reduced-risk fungicides and identifying fungicide-resistant endophytes are suggested 
to sustain the endophyte contribution to early seedling growth.

Keywords: fungal endophyte, seedling growth, carbendazim, bavistin, seed microbiome, holobiome, pathogen, 
seed endophytes

INTRODUCTION

Seed treatment with systemic fungicides is a routine integrated 
crop management practice for crops. Despite the benefits realized 
by fungicide seed treatment including improved seed emergence, 
plant vigour and protection from seed- and soil-borne fungal 
pathogens (Lamichhane et al., 2020), recent studies have raised 
some concerns regarding this practice (Vasanthakumari et  al., 
2019; You et  al., 2020). Of particular concern is the off-target 
effects of such treatment on the seed-borne microbiome, 
especially on fungi (Karlsson et  al., 2014; Prior et  al., 2017). 
Both culture-dependent and independent methods have 
demonstrated that there is a rich diversity of fungi inside 
seeds (Kinge et  al., 2019; Chun et  al., 2021). These fungal 
endophytes (FE) may have a role in early seedling growth 
and establishment. Considering that the seed microbiota serves 
as an important link between the maternal sporophyte generation 
and the next seedling generation, it is important to assess the 
consequences of seed treatments on these processes.

This paper offers a critical review of the practice of seed 
treatment with systemic fungicides. First, we  trace the history 
of seed treatment and discuss briefly the different types of 
fungicides and their modes of action. Second, we  highlight 
the possible role of seed microbiome in basic physiological 
processes, such as seed germination, seedling growth and 
establishment, and how such effects might be  affected by 
systemic fungicides. We  draw upon the literature that have 
examined the effects of fungicidal treatments on plants and 
seeds as well as their effects on non-target organism, including 
endophytes. Finally, we discuss the need to reduce indiscriminate 
use of seed treatment with systemic fungicides, which have 
adverse consequences on seed endophytes and seed health.

Disinfection of seed can be  traced to as early as the 17th 
century, when wheat seeds were treated with brine solution 
to free them of smut caused by Ustilago (Tillet, 1755). In 
1807, Prevost showed that dilute copper sulphate solution 
reduced seed-borne smuts and this practice became the main 
treatment throughout the 19th century. Following the 
establishment of the International Seed Testing Association in 
the late 1920s and the increased awareness of the damage 
caused by seed-borne pathogens, both during storage and post-
seedling development, new seed treatment options were 
developed. The first contact fungicide, Captan, was used in 
seed treatments in the 1950s to protect seeds against a variety 
of fungal pathogens (Kittleson, 1952). This class of fungicide 
inhibited fungi from entering the plant tissue. At about the 
same time, the efficacy of methylmercury for the treatment 
of small grains was also recognized. However, due to 
environmental concerns, its use was discontinued in the early 
1970s (Birah et  al., 2014). The discovery in the early 1970s 

of systemic fungicides, such as carboxin and thiabendazole, 
which not only reduced seed-borne pathogens but also soil-
borne pathogens, made them the choice for seed treatment. 
Systemic fungicide treatment of seed is an important strategy 
in disease management for many field and vegetable crops 
worldwide (Bhushan et  al., 2013; Lamichhane et  al., 2020).

One of the most commonly used systemic fungicides to manage 
fungal diseases is carbendazim, a methyl benzimidazole carbamate 
(MBC) group of fungicides. It was introduced and registered 
under USEPA in 1973 (Campos et  al., 2015). The MBCs, which 
include bavistin and benomyl, bind to β-tubulin in microtubules 
and interfere with spindle fibre proliferation, resulting in the 
suppression of cell division. MBC is used in pre- and post-harvest 
applications to protect a wide class of both agricultural and 
horticultural crops, such as beet, banana, cereals, fodder rapeseed, 
mango, oranges, pomes, pineapples, strawberries, medicinal herbs, 
turf grasses and ornamental plants (Tortella et  al., 2013; Singh 
et  al., 2016). It is also used in combination with several other 
fungicides, such as mancozab, to manage fungal disease in mango 
and sunflower (Devi et  al., 2015; Singh et  al., 2016). Several 
other classes of fungicides, such as triazoles, phenylpyrroles, 
phenylamides, benzimidazoles and strobilurines, are also used for 
seed treatment (Zeun et  al., 2013).

In many countries including the United  States, Australia 
and France, pre-sowing fungicidal treatment of field crops is 
a routine practice (White and Hoppin, 2004; Agreste, 2019; 
Lamichhane et  al., 2020; You et  al., 2020). However, in these 
countries, there has been an increasing emphasis on the use 
of reduced-risk fungicides which have a high specificity for 
target organisms (Adaskaveg et  al., 2005; Udayashankar et  al., 
2012). In India, the annual consumption of MBC fungicide 
is more than 2,000 metric tons (Singh et  al., 2016) and it is 
registered for use in 18 crops including apple, bean, brinjal, 
barley, mango, cucurbit, cotton, grape, groundnut, jute, pea, 
paddy, rose, sugar beet, wheat, walnut and tapioca 
(Bhushan  et  al., 2013).

Seed treatments are generally provided before sowing as 
seed dressing, seed coating or seed pelleting (Pedrini et  al., 
2017). In seed dressing, which is the most common method 
of seed treatment, the seeds are dressed either with dry or 
wet formulations of fungicides and pesticides. Additionally, 
seeds are treated with natural bio-formulants like Pseudomonas, 
Trichoderma and Rhizobia to enhance their field performance. 
Seed coating is usually undertaken by industries for large lots 
of seeds and seed pelleting is practiced for crops with small 
seeds, such as carrots and onions (Tamil Nadu Agritech portal, 
2020).1 Seeds may also be  treated at the time of harvest to 
maintain quality during seed storage and transport.

1 http://agritech.tnau.ac.in/
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FUNGAL ENDOPHYTES OF SEEDS

The successful association between two eukaryotes belonging 
to two different Kingdoms (the fungal endophytes (FE) and 
their plant hosts) is not inconsequential (Krings et  al., 2009). 
FE residing in tissues of a plant can enhance the plant’s 
ecological fitness by increasing its tolerance to pests (Raman 
and Suryanarayanan, 2017) and pathogens (Busby et al., 2016), 
and abiotic stresses like salinity (Sampangi-Ramaiah et  al., 
2020), high temperature (Ali et  al., 2018; Sangamesh et  al., 
2018) and drought (Rodriguez et  al., 2008). Although a sensu 
stricto definition of FE based on their taxonomy and mode 
of dispersal identifies different types (Rodriguez et  al., 2009),  
here we  follow a broader definition as fungi inhabiting seeds 
internally without causing apparent harm to the seed or crop.

Postulated to have evolved from a pathogenic ancestry, FE 
produces no disease symptoms and occurs in the apoplastic 
spaces of the seed tissues. Although a plant can harbour FE 
in all its tissues, the species composition of the FE assemblage 
differs among the different tissues of individual plants 
(Suryanarayanan and Vijaykrishna, 2001). This is true for the 
seed FE as well (Geisen et  al., 2017). Seed FEs are located in 
the seed coat, integument and rarely in the endosperm and 
cotyledon or the embryo (Philipson and Christey, 1986). Their 
mobilization into the seed tissues could occur vertically from 
parent to seeds, as in some cool-season grasses (Afkhami and 
Rudgers, 2008), in which case the endophytes move into the 
ovule and embryo through the caryopsis. Alternatively, FE may 
be  transmitted horizontally; in such cases, endophytes gain 
entry into the phyllosphere through stomatal opening or physical 
injuries and then spread to various parts of the plant (Barret 
et  al., 2016). Since the sieve tubes in the maternal tissues 
(seed coat and integument) and the offspring tissue (endosperm 
and embryo) of seed are not connected (Thorne, 1985), endophyte 
is generally not present in the latter tissue. Fungi from soil 
also infect fallen seeds and are retained and spread to the 
aerial tissues as endophytes (U’Ren et  al., 2009).

Both culture-dependent and independent (metagenomic) 
analyses have revealed a rich diversity of bacterial and fungal 
endophytes in seed tissues (Shahzad et  al., 2018; Kinge et  al., 
2019; Chun et al., 2021). It is believed that the seed microbiome 
(endophytes) is the first to be mobilized into a growing seedling, 
before it receives endophytes from the soil litter or through 
wind distribution (Mitter et  al., 2017). Using metagenomics 
analysis, Chen et al. (2020) demonstrated that a greater diversity 
and density of seed-vectored microbes in rice may benefit 
seedlings by helping them tolerate stress and counter disease-
causing organisms. Delinting of cotton seeds by acid treatment 
is done to facilitate easier mechanical planting. This process 
removes the cotton fibre-borne microbes, leading to increased 
susceptibility of seedlings to pests and pathogens (Irizarry and 
White, 2017). Long-term cultivation involving seed cleaning of 
wild tobacco (Nicotiana attenuata) eliminated the associated 
microbes, making the seedlings susceptible for fungal pathogens 
(Santhanam et  al., 2015). Functional annotation of genes of 
endophytes associated with finger millet indicates their involvement 
in many plant growth and development responses, including 

abiotic and biotic stress tolerance, secondary metabolism, aromatic 
compound synthesis, and the glutathione and cysteine synthesis 
pathways (Prasannakumar et  al., 2020). In fact, considering the 
overarching role of fungal endophytes in plant growth and 
development, it is clear that they play an important role in 
sustainable agriculture (Lugtenberg et  al., 2016).

EFFECTS OF FUNGICIDE TREATMENT 
ON FUNGAL ENDOPHYTES

In light of the increasing evidence of the role of endophytes 
on plant growth and stress tolerance, their use in real world 
agriculture could be constrained by the practice of seed treatment 
with fungicide (Murphy et  al., 2017). Although seed treatment 
could include application of fungicides, insecticides or 
rodenticides, the majority of seed treatments is with fungicides 
(White and Hoppin, 2004). Seed treatments are sine qua non 
for managing diseases to increase stand establishment, seed 
yield and quality (Rothrock et  al., 2012). Indeed, the practice 
of treating seeds with fungicides has increased many fold over 
the years (Urrea et  al., 2013). While the major aim of seed 
treatments with fungicides is to bring down the pathogen load 
on the seed surface or inside without affecting seed viability 
and seedling fitness, several studies have cast doubts if this 
is indeed the case. Since environmental filtering and maternal 
factors determine the constitution of the fungal microbiome 
in seed (Fort et  al., 2019), the effects of seed treatment with 
systemic fungicides on the seed endobiome and their 
consequences on seed and seedling performance need to 
be  addressed.

In recent years, there is mounting evidence to suggest that 
foliar application of fungicides significantly affects non-target 
organisms, such as the endophytic fungi (Table  1). Fungicide 
application on wheat plants leads to significant differences in 
relative abundance and diversity of non-target fungi (Karlsson 
et  al., 2014) and also inhibited the growth of endophytic yeast 
and filamentous fungi (Wachowska et  al., 2013). For example, 
fungicide treatment affects the diversity of epiphytic and 
endophytic fungi in Phaseolus vulgaris (Prior et  al., 2017). 
Comparing soybean grown using conventional plant protection 
versus those cultivated organically, Da Costa Stuart et al. (2018) 
reported a one-third reduction in foliar endophytes in the 
former. Batzer and Mueller (2020) reported differential effects 
of fluxapyroxad and pyraclostrobin sprays on Diaporthe and 
Alternaria endophytes; the fungicides significantly increased 
the proportion of endophyte species belonging to Diaporthe 
but decreased those of Alternaria. Besides affecting endophytic 
fungi, application of foliar fungicides and other plant protectants 
also reduce the endophytic proteobacteria (Chen et  al., 2020).

Though less documented, seed treatment with fungicides 
could lead to similar loss or disruption of the seed microbiome 
including the endophytes compromising seed germination and 
early seedling development (Lugtenberg et al., 2016). For example, 
in rye grass and tall fescue, seed treatment with fungicides 
reduced endophyte loads by over 60% (Leyronas et  al., 2006). 
Seedling endophyte abundance in rye grass was always higher 
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when no fungicides were applied (Hill and Brown, 2000). 
Fungicide application reduced the vertical transmission of 
Neotyphodium endophyte AR37 into germinated seedlings of 
rye grass (Chynoweth et  al., 2012), although Cruz et  al. (2018) 
reported no detrimental effect of fungicide application on AR37 
endophyte content in rye grass seeds. Thus, whether through 
foliar application, as most studies have demonstrated, or through 
seed treatments, there is evidence to suggest that fungicides 
adversely affect the endophyte load and composition of plants 
and seeds, possibly impairing the ecological fitness of plants 
(Nettles et  al., 2016).

Since endophytes are inextricably embedded in the plant 
tissue, unravelling their role in seedling growth is problematic. 
Nevertheless, several studies have attempted to cleanse the seed 
using systemic fungicides to examine the effects thereof on 
seedling growth attributes. Vasanthakumari et al. (2019) examined 
the effect of pre-sowing fungicidal treatment on seedling growth 
of rice, green gram, soybean and cowpea. In all these crops, 
treatment with 0.2% bavistin eliminated the endophytes and 
reduced seedling growth and vigour compared to untreated 

seed in the absence of disease. The reduced seedling growth 
in rice was partially restored upon enrichment of the seedlings 
by a consortium of endophytes obtained from untreated seeds. 
These results strongly suggest that the decrease in seedling 
growth upon fungicide treatment is due to the loss-of-function 
associated with the endophytes, rather than to the phytotoxicity 
of the fungicide. In another study, Puente et  al. (2009) found 
that seedling establishment was impaired in cactus seeds 
disinfected with antibiotics. Inoculation of antibiotic-treated 
cactus seedlings with bacteria isolated from control seeds 
restored seedling vigour, as reflected by the increased number 
of root hairs and average root numbers per seedling. Similar 
results were reported by Verma et al. (2017, 2018) for bacterial 
endophytes of rice seeds. Re-inoculation of endophytic bacteria 
isolated from control seeds resulted in partial recovery of 
seedling growth. Since MBC fungicide effects are not fungal 
species-specific, it is likely that the fungicide treated seeds 
when sowed may eliminate certain keystone soil fungal species 
as well leading to cascading effects on the ecosystem 
(Zotti et al., 2020). It is pertinent to note that limited information 

TABLE 1 | Studies highlighting the role of fungicide application on endophytes.

S. No. Plant Application Effect on endophytes Reference

1 Tall Fescue Foliar spray Significant reduction in leaf endophytic load Williams et al., 1984
2 Tall Fescue Foliar spray Seedling endophyte abundance rates were higher when 

terrazole or chloroneb was applied compared with no fungicide 
or propiconazole

Hill and Brown, 2000

3 Rye grass and tall Fescue Seed treatment Endophyte load was reduced by more than 60% in leaf sheath Leyronas et al., 2006
4 Mangifera indica Foliar spray Reduction in the colonization frequency of fungal endophytes in 

leaves
Mohandoss and 
Suryanarayanan, 2009

5 Rye grass Foliar spray Neotyphodium endophyte AR37 transmission into germinating 
seedlings was reduced by two different de methylation-inhibitor 
fungicides

Chynoweth et al., 2012

6 Wheat Foliar application Inhibited the growth of endophytic yeast-like and filamentous 
fungi on wheat kernels

Wachowska et al., 2013

7 Wheat Foliar application Causes significant difference in the relative abundance and 
diversity of non-target fungi in wheat leaves

Karlsson et al., 2014

8 Barley Seed dressing No effect on seed endophytes offered as seed dressing; 
improved seedling growth

Murphy et al., 2017

9 Oats Seed dressing No effect on seed endophytes offered as seed dressing; 
improved seedling growth

Murphy et al., 2017

10 Phaseolus vulgaris Foliar application Changes in the composition of epiphytic and endophytic 
community in leaves

Prior et al., 2017

11 Vicia faba Foliar application Changes in the composition of epiphytic and endophytic 
community in leaves

Prior et al., 2017

12 Perennial ryegrass Foliar spray No detrimental effect on AR37 endophyte content in seed Cruz et al., 2018
13 Tomato Root drenching No effect on root endophyte Malandrakis et al., 2018
14 Grapevine Hot water dipping in 

combination with fungicide 
(stem cutting treatment)

Reduced incidence of endophytic fungi in the stem cuttings Gorur and Akgul, 2019

15 Grapevine Foliar spray Wood mycobiome of grapevine cuttings is significantly affected 
by fungicide application

Del Frari et al., 2019

16 Rice Soil application No detrimental effect on root endophytes Shen et al., 2019
17 Soybean Foliar application during pod 

setting
Affects endophytes differentially; Alternaria increased while 
Diaporthe spp. decreased in leaves and stems

Batzer and Mueller, 2020

18 Nicotiana tabacum Seed dressing Reduces prevalence of seed bacterial endophytes Chen et al., 2020
19 Wheat Media amended with fungicides Two dark septate endophytes, namely, Alternaria alternata and 

Cochliobolus sp. were tolerant to glyphosate, carbendazim and 
cypermethrin in vitro

Spagnoletti and 
Chiocchio, 2020

20 Tea plant Foliar spray Reduction in colonization of treated tissues (bark, xylem, old 
leaves and new leaves)

Win et al., 2021
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is available on the dynamics of migration of seed endophytes 
to the soil and vice versa, and this could determine seed 
endobiome composition (Nelson, 2018).

The results of a few studies allow us to speculate on the 
negative effects of treating seeds with systemic fungicides. The 
significant reduction of germination in bavistin- and thiram-treated 
wheat seeds was due of their inability to mobilize stored starch 
in the absence of endophytes (Gogna et  al., 2015). The increased 
propensity of citrus, banana and leather leaf fern for infection 
by virulent pathogenic strains after application of benolate could 
be  because of the lowered defences in the absence of endophytes 
(Kloepper et  al., 2013). Though direct evidence is lacking, the 
results obtained for leaf tissues in this regard bolster such a 
hypothesis. Mango leaves treated with hexaconazole, a broad 
spectrum triazole systemic fungicide, became infected by FE species 
that could not infect untreated leaves (Mohandoss and 
Suryanarayanan, 2009). Another recent study shows that fungicide 
treatment alters the density of the native endophyte communities 
as well (Batzer and Mueller, 2020). Considering the ability of FE 
to produce antifungal and antibacterial compounds as well as 
phyto hormones (Santos et  al., 2015; Hamayun et  al., 2017; Bian 
et al., 2021), it is conceivable that a fungicide-induced disturbance 
in the community of native FE in the leaf affects host plant traits 
(Suryanarayanan, 2020).

Since fungicides have direct effects on plant metabolism, 
all fungicide-induced effects cannot be  attributed to the 
elimination of endophytes by the chemicals. It is known that 
high concentrations of fungicides can disrupt plant metabolism. 
Storing seeds after treatment with fungicide for long periods 
can result in phytotoxicity (Lamichhane et  al., 2020). Similarly, 
at higher concentrations, benomyl inhibits root mitotic activity 
(Dane and Dalgic, 2005). Many fungicides reduce root nodule 
development (Martensson, 1992) and reduce the development 
of mycorrhizal fungi (Menge, 1982). Fungicide application also 
reduces carboxylation efficiency and regeneration of ribulose1,5 
bisphosphates and thus affecting CO2 assimilation (Dias, 2012).

RESEARCH GAPS

Until recently, it was thought that seedlings acquire their 
symbiotic microbes from the soil, so the seed microbiome 
was studied, if at all, only for the presence of pathogens. It 
is now clear that seeds carry abundant fungi and bacteria as 
well as some Archaea as endophytes (Wassermann et al., 2019) 
and that a plant-specific core of microbiota is transmitted by 
seeds (Berg and Raaijmakers, 2018). With increasing evidence 
of the role of seed microbiome (especially endophytes) in seed 
development, seed germination and seedling growth, the merits 
of the century-old practice of systemic fungicidal seed treatment 
are now being questioned (Vasanthakumari et  al., 2019). Have 
such treatments done more harm than good? What are the 
effects of fungicide combinations on non-target microbes and 
the ecosystem services they provide? Should seed treatment 
be  a default option or based on anticipated risks? Are there 
alternatives to circumvent the effect of fungicides on seed 
endophytes? These and many other questions need some critical 

analysis (Figure 1). Just as the indiscriminate use of antibiotics 
has adverse consequences on the gut microflora (Antunes et al., 
2011), routine fungicidal seed treatment in the absence of 
significant pathogen load could reduce crop performance and 
productivity. Simple risk assessment based on the growing 
conditions could potentially eliminate the use of millions of 
tonnes of fungicide and thereby help not only to sustain seed 
endophytes but also de-burden the environment of one source 
of chemical pollution (Lamichhane et al., 2020). Thus, it might 
be  prudent not to view systemic fungicide seed treatments as 
routine and indispensable insurance against risks of crop failure, 
but rather as a choice depending on whether crop growth 
conditions are ideal or not (Alberta, 2021).2

The effect of fungicide seed treatment on the environment 
and non-target organisms is not well known. Although a few 
studies address the effect of fungicides on non-target soil 
microbes (Chen et  al., 2001) and carbon and nitrogen cycling 
in soils, soil respiration, and nitrogen pools (Ullah and Dijkstra, 
2019), there are hardly any investigations that quantitatively 
analyse the net benefits of fungicidal seed treatments. Gaspar 
et  al. (2014) showed that fungicidal seed treatment of soybean 
did not significantly increase seed yield compared to untreated 
control. Thus, additional investments made in seed treatment 
might result in net economic loss. More meta-studies on different 
crops and regions are required to statistically validate the net 
economic returns of seed treatments.

The effect of long-term use of fungicides on endophytes of 
crops is not known (White et  al., 2019). It is time that 
we reinvestigate well-known gains from fungicidal seed treatment, 
such as disease reduction (Russell, 2005), augmented field 
germination, seedling vigour (Babadoost and Islam, 2003), seedling 
stand and establishment (Loehken, 1990; Bradley, 2008), in the 
light of loss of endophyte microbes and environment quality.

Since seed microbiome influences plant protection as well 
as contributes to its ecosystem flexibility and diversification 
(Wassermann et al., 2019), knowledge on the role and metabolic 
function of endophytes in seeds could open up new possibilities 
for crop improvement. Studies in this direction are limited, 
partly because of methodological constraints in freeing seeds 
of their endophytes. Nonetheless, understanding the role of 
endophytes in early seed development, seed germination and 
seedling growth might allow for development of alternative 
options to seed treatment with fungicide. For instance, treating 
seedlings with foliar sprays of the endophytes critical to growth 
and development could be explored. Alternatively, identification 
of endophytes with tolerance to the applied fungicide and 
possessing the positive traits of the sensitive endophytes could 
allow seed treatments to be  continued without impairment of 
the endophyte-induced functions (Murphy et  al., 2017; Shen 
et  al., 2019). The use of reduced-risk fungicide with narrower 
activity and targeted against specific pathogens could also 
alleviate the problems imposed by broad spectrum conventional 
fungicides (Adaskaveg et  al., 2005; Udayashankar et  al., 2012). 
The consequences of seed treatment with fungicides could also 
vary among plant species. For example, in the case of vertically 

2 https://www.alberta.ca/use-of-new-seed-treatments.aspx
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transmitted endophytes, seed treatments could impose a greater 
penalty than in the horizontally transmitted endophytes. Walking 
the thin line between controlling the disease-causing organisms 
and conserving the beneficial organisms in the seeds opens 
up new challenges and calls for a greater understanding of 
these processes to reach a win-win situation.

CONCLUSION

Management of seed- and soil-borne pathogenic fungi using 
fungicides is important for ensuring food security (Steinberg 
and Gurr, 2020). It is only recently that the crops have been 
recognized as a holobiome consisting of the plant and all its 
associated microbes. This has led to the suggestion of conserving 
seeds along with their associated microbes, such that these 
microbes are not lost forever due to the global practice of seed 
treatment (Berg and Raaijmakers, 2018). We reviewed the trade-off 
of pre-sowing seed treatment in defending seeds against seed- 
and soil-borne pathogens on the one hand and the possibility 
of losing seed benefiting endophytes on the other. Considering 
the potentially important role of seed-borne endophytes in seed 
germination and seedling growth, and being a source of endophyte 
inoculum for the different tissues of the developing plant, the 
century-old practice of routine seed treatment should be revisited. 
The gain accrued by seed treatment in disease management 

versus the potential loss in crop performance due to disturbance 
of seed endobiome by seed treatment should be  studied for 
more crops using fungicides exhibiting different modes of action.
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FIGURE 1 | The effect of seed treatment with systemic fungicide on plant growth in presence or absence of seed- and soil-borne pathogens. The decrease in plant growth 
(B) represents the loss of endophyte-mediated growth promotion in seeds treated with systemic fungicide in the absence of seed- and soil-borne pathogens. This has to 
be contrasted with the phenotype of plant in (D). The difference in growth between (B) and (D) can be attributed to the beneficial effects of endophytes which are lost due 
to seed treatment with systemic fungicides. (A,C) refers to plants subjected to soil and seed borne pathogens but either treated (A) or untreated (C) with fungicide.
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