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The promotion and application of transgenic Bt crops provides an approach for

the prevention and control of target lepidopteran pests and effectively relieves the

environmental pressure caused by the massive usage of chemical pesticides in fields.

However, studies have shown that Bt crops will face a new risk due to a decrease

in exogenous toxin content under elevated carbon dioxide (CO2) concentration, thus

negatively affecting the ecological sustainability of Bt crops. Arbuscular mycorrhizal

fungi (AMF) are important beneficial microorganisms that can effectively improve the

nutrient status of host plants and are expected to relieve the ecological risk of Bt crops

under increasing CO2 due to global climate change. In this study, the Bt maize and its

parental line of non-transgenic Bt maize were selected and inoculated with a species

of AMF (Funneliformis caledonium, synonyms: Glomus caledonium), in order to study

the secondary defensive chemicals and yield of maize, and to explore the effects of

F. caledonium inoculation on the growth, development, and reproduction of the pest

Mythimna separata fed on Bt maize and non-Bt maize under ambient carbon dioxide

concentration (aCO2) and elevated carbon dioxide concentration (eCO2). The results

showed that eCO2 increased the AM fungal colonization, maize yield, and foliar contents

of jasmonic acid (JA) and salicylic acid (SA), but decreased foliar Bt toxin content and

Bt gene expression in Bt maize leaves. F. caledonium inoculation increased maize yield,

foliar JA, SA contents, Bt toxin contents, and Bt gene expression in Btmaize leaves, and

positively improved the growth, development, reproduction, and food utilization of theM.

separata fed on non-Bt maize. However, F. caledonium inoculation was unfavorable for

the fitness ofM. separata fed on Btmaize, and the effect was intensified when combined

with eCO2. It is indicated that F. caledonium inoculation had adverse effects on the

production of non-Bt maize due to the high potential risk of population occurrence ofM.

separata, while it was just the opposite for Bt maize. Therefore, this study confirms that

the AMF can increase the yield and promote the expression levels of its endogenous (JA,
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SA) and exogenous (Bt toxin) secondary defense substances of Bt maize under eCO2,

and finally can enhance the insect resistance capacity of Bt crops, which will help ensure

the sustainable utilization and safety of Bt crops under climate change.

Keywords: elevated CO2, transgenic Bt maize, arbuscular mycorrhizal fungi, Mythimna separata, control

efficiency, yield

INTRODUCTION

In recent years, many transgenic Bt crops, such as Bt maize and
Bt cotton, have been grown around the world and have shown
high resistance to specific target pests, mainly Lepidoptera insects
(Wu et al., 2008; Liu et al., 2016). As a result, Bt crops have
been used to control a wider range of pests, such as Helicoverpa
armigera (Hübner), Heliothis virescens, and Mythimna separata
(Riddick et al., 1998; Chen F. J. et al., 2011; Chang et al., 2013).
Meanwhile, human activities, specifically fossil fuel burning and
land-use change, are rapidly increasing the level of carbon
dioxide (CO2) in the atmosphere (Yu and Chen, 2019; Yao et al.,
2020). Specifically, it has been reported that the atmospheric CO2

concentration increased from 288 to 405 ppm from 1800 to 2018
(www.esrl.noaa.gov/gmd/ccgg/trends/). With the acceleration of
industrialization, it is estimated that the concentration of CO2 in
the atmosphere will increase from 800 to 1,000 ppm by the end
of the twenty-first century (Pachauri and Reisinger, 2014).

Plant productivity is fundamentally tied to atmospheric
CO2 by photosynthesis, and the increase in atmospheric CO2

concentration can improve the photosynthetic capacity of plants
and undoubtedly affect the plant physiology with profound
impacts on all aspects, including the increase in photosynthetic
rate, biomass, and seed production (Dietterich et al., 2015;
Johnson and Hartley, 2018; Zhu et al., 2018). Most studies
reported that elevated CO2 (eCO2) increased the C/N ratio
in plant tissues; thus, the content of carbohydrates in plant
tissues increased and the content of N-containing compounds
decreased (Chen et al., 2005a; Xu et al., 2015; Dai et al., 2018).
All these changes in turn affect the production of plant secondary
metabolites (Stiling and Cornelissen, 2007). Elevated CO2 may
enhance or weaken plant defense against herbivorous insects,
at least partly due to the changes in C- and N-based defensive
metabolites, as well as plant nutrients, especially protein content
(Kretzschmar et al., 2009). Some studies have shown that
jasmonic acid (JA), ethylene (ET), and salicylic acid (SA) are
secondary defense substances of plants against aphids under
eCO2 (Sun et al., 2013; Guo et al., 2014), and reported that eCO2

caused a significant reduction of N-based compounds (i.e., Bt
toxin proteins) in Bt crops (Chen et al., 2005b; Wu et al., 2011a;
Liu et al., 2019). Hence, it is speculated that under the condition
of climate change, transgenic Bt crops will face a new risk that the
effective control of the target pests will be reduced.

Arbuscular mycorrhizal fungi (AMF) can form associations
with the roots of about 80% of terrestrial plant species (Smith
and Read, 2008) and exchange soil-derived nutrients (Marschner
andDell, 1994) for plant-derived hexoses and lipids (Helber et al.,
2011; Keymer and Lankau, 2017). AMF improve the supply of
inorganic nutrients, especially phosphate (Rillig and Mummey,

2006). However, since AMF can also enhance the nitrogen uptake
and utilization of plants (Hawkins et al., 2000) and improve their
resistance to external biotic and abiotic stresses (Jung et al., 2012;
Frew and Price, 2019), we hypothesize that they can be used to
alleviate the problems of Bt toxin protein decline under eCO2,
and reduce the risk of Bt crops under future climate change. In
order to test this hypothesis, we inoculated Bt maize with AMF
(Funneliformis caledonium) under elevated CO2 concentration to
explore the interaction between eCO2 and AM fungal inoculation
on plant growth and secondary defense metabolites of Bt maize,
and the effects on the growth and development and food
utilization of the main maize pest armyworm from 2017 to 2018.
We further hypothesize that F. caledonium inoculation under
eCO2 could (a) increase the biomass and yield of maize; (b)
promote the expression of endogenous (JA, SA) and exogenous
(Bt toxin) secondary defense substances in Bt maize leaves; and
(c) decrease indices of growth, development, and reproduction
ofM. separata.

MATERIALS AND METHODS

CO2 Setting
A 2-year experiment (2017–2018) was conducted in six open-
top chambers (OTCs) in Ningjin County, Shandong Province
of China (37.64◦ N, 116.8◦ E). OTCs are 2.5m in height ×

3.2m in diameter. Two concentration levels of CO2 are applied
successively, namely, the ambient level (aCO2, 375 µl/l) and
the elevated level (eCO2, 750 µl/l). Each CO2 treatment uses
three OTCs. During the experiment, OTCs were continuously
filled with CO2. The average CO2 concentration is shown in
Supplementary Table 1.

Arbuscular Mycorrhizal Fungi and Bt Maize
Funneliformis caledonium (strain number 90036, referred to as
FC, synonyms: Glomus caledonium) was provided by the State
Key Laboratory of Soil & Sustainable Agriculture, Institute of
Soil Science, the Chinese Academy of Sciences. The inoculum
consisted of spores, mycelium, maize root fragments, and soil
(storage: under normal temperature, keep in dry, cool place). The
Bt maize cultivar (line IE09S034 with Cry1Ie, namely, Bt) and
the parental line of non-transgenic Bt maize (cv. Xianyu 335,
namely, Xy) were provided by The Institute of Crop Sciences of
the Chinese Academy of Agricultural Science. Bt maize and non-
Bt maize were planted in plastic barrels (the height of 45 cm and
the diameter of 30 cm) filled with 20 kg soils and 10 g compound
fertilizer (N: P: K = 18: 15: 12), respectively. Soil pH was 7.2,
organic carbon 11.7 g/kg, total nitrogen 2.27 g/kg, and total
phosphorus 0.56 g/kg. On June 10 of each sampling year, 100 g
inoculum of F. caledonium (namely, FC in figure) and 100 g
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sterilized strain (namely, CK in figure) were evenly spread at 4 cm
under maize seed as control; three maize seeds were sown in each
barrel with a sowing depth of 2 cm, and two maize were reserved
after emergence. Maize were irrigated every two to three days to
ensure the water demand for maize growth.

There were eight treatments [two CO2 concentration (aCO2

and eCO2), two maize treatments (Bt and Xy), and two AMF
inoculations (F. caledonium and CK)]. Each treatment included
three OTCs; each OTC included four planting patterns (Bt +
AMF, Bt + CK, Xy+ AMF, and Xy+ CK); each planting pattern
included five repeats; that is, each treatment contained a total of
15 repeats.

Arbuscular Mycorrhizal Fungi Colonization
and AMF Phospholipid Fatty Acid (PLFA)
Content
In two sampling years, AMF colonization was determined
on heading stage (BBCH-59), and it was determined by the
method of trypan blue staining and grid counting (Phillips
and Hayman, 1970). The fresh plant roots were washed with
distilled water and then blotted dry with absorbent paper.
One hundred one centimeter roots were randomly cut and
placed in a 10% KOH solution at 30◦C for 30min, and then,
the KOH was discarded and rinsed with distilled water. After
acidification in 2% HCl for 60min, the HCl was discarded,
rinsed with distilled water, and stained in 5% trypan blue dye
solution (w/v, lactic acid: glycerol: water = 1: 1: 1). Then, the
dye solution was discarded, and the roots were rinsed with
distilled water and transferred to a square with a grid at the
bottom.We observed the number of infected and uninfected root
segments under the microscope. Colonization (%) = number
of infected root segments/total root segments (Mcgonigle et al.,
1990). The improved Bligh-Dyer method was used to extract
microbial PLFA from soil (Bossio and Scow, 1998; Ruess and
Chamberlain, 2010). About 8.0 g of the freeze-dried soil sample
was weighed into a Teflon tube, and the lipids from soil were
extracted by multiple oscillation centrifugation with a Bligh-
Dyer mixed extract prepared in a ratio of 1: 2: 0.8 with
chloroform: methanol: citrate buffer. The aqueous phase and
the organic phase were separated by keeping away from light
overnight, and the lower organic-phase supernatant containing
the phospholipid was taken up and then dried with nitrogen
in a water bath. The sample was dissolved and dried with a
small amount of chloroform and acetone several times and
passed through a SPE silica gel column to remove neutral lipids
and glycolipids from the sample, followed by separation and
purification with methanol to collect PLFA, and dried with
nitrogen again. The separated PLFA is methylated by a liquid
(methanol: toluene 1:1 mixture) and a liquid of KOH–methanol
solution, and then the reaction was terminated with acetic acid.
Finally, it was extracted with n-hexane and dried with nitrogen to
obtain PLFA methyl ester. With C19: 0 as the internal standard,
the content of methyl ester of characteristic fatty acids was
analyzed by MIDI identification system, and the soil PLFA
content was expressed in nmol/g through peak area and internal
standard curve.

Foliar Bt Toxin Content and Bt Gene
Expression in the Leaves of Bt Maize
During the heading stage (BBCH-59) of maize, the foliar content
of Bt toxin protein was measured by using plant Bt-Cry1Ie
protein ELISA Kit (mlbio, China). Moreover, the real-time
quantitative reverse transcription PCR was performed on a 7500
real-time PCR system (Applied Biosystems Inc.) for Bt gene
expression analysis. Total RNA was extracted from the leaf
tissues by using TRIzol R© reagent (Invitrogen). The concentration
and quality of samples were determined by NanoDropTM

spectrophotometer (Thermo Scientific) and 1.5% agarose gel
electrophoresis. The cDNA synthesis was carried out with 100
ng of total RNA by using PrimeScriptTM RT reagent Kit with
gDNA Eraser (Takara, Japan). Reverse transcriptase reactions
were performed in a reaction volume of 20 µl. Quantitative real-
time PCR was performed with a 7500 real-time PCR detection
system (Applied Biosystems) using 1× SYBR R© Premix Ex TaqTM

(TaKaRa, Japan), 2 µl cDNA products (diluted from 20 to 200 µl
with RNase-free water), and 0.2µM primers in a final volume of
20µl. Reaction conditions are 95◦C, 30 s pre-denaturation; 95◦C,
5 s, 60◦C, 34 s, 40 cycles. The cDNA was amplified by PCR using
the primers shown in Supplementary Table 2. Quantification of
the transcript levels of target genes was conducted by following
the 2−11Ct normalization method. The relative expression
level was represented as the fold change by comparing three
treatments (aCO2 + AMF, aCO2 +CK, and eCO2 +AMF)
and the treatment of eCO2 + CK, respectively. Three technical
replicates were performed on each sample of cDNA.

Jasmonic Acid and Salicylic Acid Contents
in Maize Leaves
During the heading stage (BBCH-59) of maize, the foliar contents
of JA and SA were measured in our laboratory by using plant JA
ELISA Kit (YaJi Biological, China) and plant SA ELISA Kit (YaJi
Biological, China).

Insect Development and Food Utilization
The colony of armyworm, M. separata, was collected in maize
fields in Kangbao County, Hebei (China), and continuously
reared on artificial diet for more than 15 generations in growth
chamber (GDN-400D-4; Ningbo Southeast Instrument CO.,
LTD, Ningbo, China) (Song et al., 2020). The third-instar larvae
with uniform size were randomly selected and were individually
fed on fresh maize leaves, which were selected from each
treatment at the heading stage (BBCH-59). The feeding trials
were conducted in a plastic dish (6 cm in diameter) in 2017 and
2018. Each treatment consisted of five replicates (a total of 20
larvae per replicate).

The initial weights of third-instar larvae were individually
measured with an electronic balance (AL104; METTLER-
TOLEDO, Greifensee). Larvae feces, pupal weight, and the
remaining parts of leaves were also carefully weighed. At the same
time, dry weight of larvae and maize leaves was calculated during
the experiment. Moreover, the food utilization indices, including
relative consumption rate (RCR), relative growth rate (RGR),
efficiency of conversion of digested food (ECD), and efficiency
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of conversion of ingested food (ECI), were measured (Chen et al.,
2005b).

RCR = I/(B*T); RGR = G/(B*T);

ECD (%) = G/(I-F)*100%; ECI (%) =G/I*100%

where I is the feeding amount (the weight of maize leaves before
feeding minus the weight of maize leaves before feeding and after
feeding); B is the average larval weight during the experiment
(the average larval weight before feeding and after feeding); T is
the experiment time (d); G is the added larval weight (the larval
weight after feeding minus the larval weight before feeding); and
F is the weight of total feces.

The larval lifespan, pupation rate/duration, and emergence of
M. separata fed on leaves of Bt and non-Btmaize inoculated with
and without F. caledonium were recorded every 12 h. Pairs of
novel moths, including female: male ratio of 1: 1, were transferred
to metal screen cages for oviposition and fed on 10% honey. The
survivorship and fecundity of M. separata were observed every
day until death.

Data Analysis
Data were analyzed using IBM-SPSS v.20.0 software (IBM,
Armonk, NY). Three-way ANOVAs were used to test the effects
of sampling years (2017 vs. 2018), CO2 levels (elevated vs.
ambient), AMF inoculation (F. caledonium vs. CK), transgenic
treatment (Bt maize vs. non-Bt maize), and their interactions
on the indices of Bt toxin and Bt gene expression in the leaves
of Bt maize. Four-way ANOVAs were used to test the effects of
sampling years (2017 vs. 2018), CO2 levels (elevated vs. ambient),
AMF inoculation (F. caledonium vs. CK), transgenic treatment
(Btmaize vs. non-Btmaize), and their interactions on the indices
of AMF colonization and AMF-PLFA content, foliar contents of
JA and SA, and growth, development, and reproduction of M.
separata. Significant differences between or among treatments
were analyzed by Tukey’s test at P < 0.05.

RESULTS

Arbuscular Mycorrhizal Fungi Colonization
and AMF-PLFA Content of Bt and Non-Bt
Maize Influenced by CO2 Levels and F.

caledonium Inoculation
Four-way ANOVAs showed that AMF inoculation, CO2 level,
and sampling years, and the interactions between AMF
inoculation and CO2 level (F ≥ 4.47, P ≤ 0.042 < 0.05)
significantly affected the AMF colonization on Bt and non-Bt
maize (Supplementary Table 3). Compared with control, AMF
inoculation significantly increased the AMF colonization of Bt
and non-Bt maize in two sample years no matter under aCO2 or
eCO2 (Figures 1A,C). Compared with aCO2, eCO2 significantly
increased the AMF colonization of non-Btmaize inoculated with
F. caledonium in 2017 and 2018, that of Bt maize inoculated with
F. caledonium in 2017, and that of Bt maize not inoculated in
2018 (P < 0.05; Figures 1A,C).

Moreover, four-way ANOVAs also showed that AMF
inoculation (F = 3385.14, P < 0.001), CO2 level (F = 52.68,
P < 0.001), and sampling years (F = 17.27, P < 0.001)
significantly affected the AMF-PLFA content of Bt and non-Bt
maize (Supplementary Table 3). Compared with control, AMF
inoculation significantly increased the AMF-PLFA content of Bt
and non-Bt maize in two sample years no matter under aCO2 or
eCO2 (Figures 1B,D). Compared with aCO2, eCO2 significantly
increased the AMF-PLFA content of Bt maize inoculated with F.
caledonium in 2017 and 2018, and also significantly increased
the AMF-PLFA content of non-Bt maize inoculated with F.
caledonium in 2018 and non-Bt maize not inoculated in 2017
(P < 0.05; Figures 1B,D).

Foliar Bt Protein Content and Bt Gene
Relative Expression Level in Leaves of Bt
Maize Influenced by CO2 Levels and F.

caledonium Inoculation
Three-way ANOVAs showed that AMF inoculation (F ≥ 275.07,
P < 0.001), CO2 level (F ≥ 5.89, P ≤ 0.027), and their interaction
(F ≥ 18.88, P < 0.001) significantly affected the foliar Bt protein
content and Bt gene relative expression level in the leaves of Bt
maize (Supplementary Table 4).

For the foliar Bt protein content, compared with aCO2, eCO2

significantly decreased the foliar Bt protein content of Bt maize
without F. caledonium inoculation, but significantly increased
the foliar Bt protein content of Bt maize inoculated with
F. caledonium (Figures 2A,C). Compared with control, AMF
inoculation significantly increased the foliar Bt protein content
of Bt maize under aCO2 and eCO2 (P < 0.05; Figures 2A,C).

For the Bt gene relative expression level, compared with aCO2,
eCO2 significantly decreased the Bt gene relative expression level
in the leaves of Bt maize without F. caledonium inoculation
(Figures 2B,D). Compared with control, AMF inoculation
significantly increased the Bt gene relative expression level of Bt
maize under aCO2 and eCO2 (P < 0.05; Figures 2B,D).

Foliar JA and SA Contents in Leaves of Bt
and Non-Bt Maize Influenced by CO2

Levels and F. caledonium Inoculation
Four-way ANOVAs showed that AMF inoculation (F ≥ 216.16,
P < 0.001) and CO2 level (F ≥ 99.02, P < 0.001) significantly
affected the foliar JA and SA contents of Bt and non-Bt maize
(Supplementary Table 4).

For the foliar JA content, compared with control, AMF
inoculation significantly increased the foliar JA content of
Bt and non-Bt maize in two sample years no matter under
aCO2 or eCO2 (Figures 3A,C). Compared with aCO2, eCO2

significantly increased the foliar JA content of Bt and non-Bt
maize without F. caledonium inoculation in 2017 and 2018, and
Btmaize inoculated with F. caledonium in 2017 and non-Btmaize
inoculated with F. caledonium in 2018 (P < 0.05; Figures 3A,C).

For the foliar SA content, compared with control, AMF
inoculation significantly increased the foliar SA content of Bt
and non-Bt maize in two sample years no matter under aCO2 or
eCO2 (Figures 3B,D). Compared with aCO2, eCO2 significantly
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FIGURE 1 | Effects of the inoculation with arbuscular mycorrhizal fungi (AMF), F. caledonium, on the AMF colonization and AMF-PLFA content of Bt maize (Bt) and its

parental line of non-Bt maize (Xy) under ambient CO2 (aCO2) and elevated CO2 (eCO2) at the heading stage (BBCH-59) in 2017 (A,B) and 2018 (C,D). (FC, F.

caledonium inoculation; CK, the control without F. caledonium inoculation; aCO2-Bt, Bt maize under aCO2; aCO2-Xy, non-Bt maize under aCO2; eCO2-Bt, Bt maize

under eCO2; eCO2-Xy, non-Bt maize under eCO2; different uppercase, lowercase letters, and * indicate significant difference between Bt maize and non-Bt maize,

between F. caledonium inoculation and non-inoculation of F. caledonium, and between aCO2 and eCO2 under the same other conditions as revealed by Tukey’s test)

(P < 0.05; n = 15).

increased the foliar SA content of Bt and non-Bt maize in two
sample years regardless of F. caledonium inoculation or not
(Figures 3B,D).

Food Utilization of M. separata Larvae Fed
on Bt and Non-Bt Maize Influenced by CO2

Levels and F. caledonium Inoculation
Four-way ANOVAs showed that AMF inoculation (F ≥ 4.20,
P ≤ 0.048), CO2 level (F ≥ 4.24, P ≤ 0.047), transgenic
treatment (F ≥ 36.98, P < 0.001), and their interactions (F ≥

12.19, P < 0.0014) significantly affected all the food utilization
indices of M. separata larvae, except for the interaction between
CO2 level and AMF inoculation on RGR (F = 0.72, P =

0.40 > 0.05; Supplementary Table 5). Moreover, the interaction
between CO2 level, AMF inoculation, and transgenic treatment
also significantly affected the ECD (F = 32.63, P < 0.001)
and ECI (F = 9.78, P = 0.004 < 0.01) of M. separata larvae
(Supplementary Table 5).

Compared with non-Bt maize, the ECD of M. separata larvae
fed on Bt maize inoculated with and without F. caledonium

was significantly decreased in two sample years no matter
under aCO2 or eCO2. Compared with control, AMF inoculation
significantly increased the ECD of M. separata larvae fed on
non-Bt maize under eCO2 in 2017 and 2018. Compared with
aCO2, eCO2 significantly decreased the ECD of M. separata
larvae fed on Btmaize inoculated with and without F. caledonium
in two sample years, while significantly increased the ECD of
M. separata larvae fed on non-Bt maize inoculated with F.
caledonium in 2017 and 2018, and significantly decreased the
ECD of M. separata larvae fed on non-Bt maize without F.
caledonium inoculation in 2018 (P < 0.05; Figures 4A,E).

Compared with non-Bt maize, the ECI of M. separata larvae
fed on Bt maize inoculated with and without F. caledonium
was significantly decreased in two sample years no matter
under aCO2 or eCO2. Compared with control, AMF inoculation
significantly increased the ECI ofM. separata larvae fed on non-
Bt maize under aCO2 and eCO2 in two sample years, while
significantly decreased the ECI of M. separata larvae fed on Bt
maize under aCO2 in 2017 and 2018. Compared with aCO2,
eCO2 significantly decreased the ECI ofM. separata larvae fed on
Bt and non-Bt maize without F. caledonium inoculation in 2017

Frontiers in Plant Science | www.frontiersin.org 5 June 2021 | Volume 12 | Article 655060

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. AMF Enhance Insect Resistance Capacity

FIGURE 2 | Effects of the inoculation with arbuscular mycorrhizal fungi (AMF), F. caledonium, on foliar Bt protein content and Bt gene relative expression level in leaves

of Bt maize under ambient CO2 (aCO2) and elevated CO2 (eCO2) at the heading stage (BBCH-59) in 2017 (A,B) and 2018 (C,D). (Note: Different uppercase and

lowercase letters indicate a significant difference between aCO2 and eCO2, and between F. caledonium inoculation and non-inoculation of F. caledonium under the

same other conditions as revealed by Tukey’s test) (P < 0.05; n = 15).

and 2018, while significantly increased the ECI of M. separata
larvae fed on non-Bt maize with F. caledonium inoculation in
2017 and significantly decreased the ECI of M. separata larvae
fed on Btmaize with F. caledonium inoculation in 2018 (P< 0.05;
Figures 4B,F).

Compared with non-Bt maize, the RGR of M. separata larvae
fed on Bt maize inoculated with and without F. caledonium
was significantly decreased in two sample years no matter
under aCO2 or eCO2. Compared with control, AMF inoculation
significantly increased the RGR of M. separata larvae fed on
non-Bt maize under aCO2 and eCO2 in 2017 and 2018, while
significantly decreased the RGR of M. separata larvae fed on Bt
maize under aCO2 and eCO2 in two sample years. Compared
with aCO2, eCO2 significantly decreased the RGR ofM. separata
larvae fed on non-Bt maize without F. caledonium inoculation
in 2017 and 2018, and that of M. separata larvae fed on non-
Bt maize with F. caledonium inoculation in 2017 (P < 0.05;
Figures 4C,G).

Compared with non-Bt maize, the RCR of M. separata larvae
fed on Bt maize inoculated with and without F. caledonium was
significantly decreased under aCO2 in 2017 and 2018, while the
RCR ofM. separata larvae fed on Btmaize without F. caledonium

inoculation significantly increased under eCO2 in two sample
years. Compared with control, AMF inoculation significantly
decreased the RCR of M. separata larvae fed on Bt maize in two
sample years no matter under aCO2 or eCO2, while significantly
increased the RCR of M. separata larvae fed on non-Bt maize
under aCO2 in 2017 and 2018. Compared with aCO2, eCO2

significantly decreased the RCR ofM. separata larvae fed on non-
Bt maize inoculated with F. caledonium in 2017 and 2018, while
significantly increased the RCR of M. separata larvae fed on Bt
maize without F. caledonium inoculation in two sample years (P
< 0.05; Figures 4D,H).

Growth, Development, and Reproduction
of M. separata Fed on Bt and Non-Bt
Maize Influenced by CO2 Levels and F.

caledonium Inoculation
Four-way ANOVAs showed that sampling year (F ≥ 7.97,
P ≤ 0.008), CO2 level (F ≥ 24.20, P < 0.001), transgenic
treatment (F ≥ 164.88, P < 0.001), and the interaction between
transgenic treatment and AMF inoculation (F ≥ 4.23, P ≤

0.047) significantly affected all measured indices of M. separata,
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FIGURE 3 | Effects of the inoculation with arbuscular mycorrhizal fungi (AMF), F. caledonium, on the foliar JA and SA contents of Bt maize (Bt) and its parental line of

non-Bt maize (Xy) under ambient CO2 (aCO2) and elevated CO2 (eCO2) at the heading stage (BBCH-59) in 2017 (A,B) and 2018 (C,D). (Note: FC, F. caledonium

inoculation; CK, the control without F. caledonium inoculation; aCO2-Bt, Bt maize under aCO2; aCO2-Xy, non-Bt maize under aCO2; eCO2-Bt, Bt maize under eCO2;

eCO2-Xy, non-Bt maize under eCO2; Different uppercase, lowercase letters and * indicate significant difference between Bt maize and non-Bt maize, between F.

caledonium inoculation and non-inoculation of F. caledonium, and between aCO2 and eCO2 under the same other conditions as revealed by Tukey’s test, the same in

the following figures) (P < 0.05; n = 15).

except the interaction between transgenic treatment and AMF
inoculation on pupation rate of M. separata (F = 0.23, P
= 0.63; Supplementary Table 6). Moreover, AMF inoculation
significantly affected pupal weight and pupal duration of M.
separata (F ≥ 15.07, P < 0.001), the interaction between
CO2 level and transgenic treatment significantly affected
larval lifespan of M. separata (F = 89.64, P < 0.001), and
the interactions between CO2 level and AMF inoculation
affected fecundity of M. separata (F = 12.65, P = 0.001)
(Supplementary Table 6).

Compared with non-Bt maize, the larval lifespan of M.
separata larvae fed on Bt maize inoculated with and without
F. caledonium was significantly extended in two sample years
no matter under aCO2 or eCO2. Compared with control, AMF
inoculation significantly shortened the larval lifespan of M.
separata fed on non-Bt maize under aCO2 and eCO2 in 2017
and 2018, while significantly prolonged the larval lifespan of
M. separata fed on Bt maize under aCO2 and eCO2 in 2017
and 2018. Compared with aCO2, eCO2 significantly extended
the larval lifespan of M. separata larvae fed on Bt maize

inoculated with and without F. caledonium in two sample years
(P < 0.05; Figures 5A,E).

Compared with non-Bt maize, the pupation rate of
M. separata fed on Bt maize inoculated with and without
F. caledonium was significantly decreased under aCO2

in two sample years no matter under aCO2 or eCO2

(P < 0.05; Figures 5B,F).
Compared with non-Bt maize, the pupal weight of M.

separata fed on Bt maize inoculated with and without
F. caledonium was significantly decreased in two sample
years no matter under aCO2 or eCO2. Compared with
control, AMF inoculation significantly increased the pupal
weight of M. separata fed on non-Bt maize under aCO2

and eCO2 in 2017 and 2018, while significantly decreased
the pupal weight of M. separata fed on Bt maize under
aCO2 and eCO2 in two sample years. Compared with
aCO2, eCO2 significantly decreased the pupal weight of M.
separata fed on Bt and non-Bt maize in two sample years
regardless of F. caledonium inoculation or not (P < 0.05;
Figures 5C,G), respectively.
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FIGURE 4 | Effects of the inoculation with arbuscular mycorrhizal fungi (AMF), F. caledonium, on the food utilization of M. separata larvae fed on Bt maize (Bt) and its

parental line of non-Bt maize (Xy) under ambient CO2 (aCO2) and elevated CO2 (eCO2) at the heading stage (BBCH-59) in 2017 (A–D) and 2018 (E–H). (Note: the

same as Figure 3) (P < 0.05; n = 5).
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FIGURE 5 | Effects of the inoculation with arbuscular mycorrhizal fungi (AMF), F. caledonium, on the growth and development of M. separata larvae fed on Bt maize

(Bt) and its parental line of non-Bt maize (Xy) under ambient CO2 (aCO2) and elevated CO2 (eCO2) at the heading stage (BBCH-59) in 2017 (A–D) and 2018 (E–H).

(Note: the same as Figure 3) (P < 0.05; n = 5).
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FIGURE 6 | Effects of the inoculation with arbuscular mycorrhizal fungi (AMF), F. caledonium, on the growth and development of M. separata adults fed on Bt maize

(Bt) and its parental line of non-Bt maize (Xy) under ambient CO2 (aCO2) and elevated CO2 (eCO2) at the heading stage (BBCH-59) in 2017 (A–C) and 2018 (D–F).

(Note: the same as Figure 3) (P < 0.05; n = 5).

Compared with non-Bt maize, the pupal duration of M.
separata fed on Bt maize inoculated with and without F.
caledonium was significantly extended in two sample years no
matter under aCO2 or eCO2. Compared with control, AMF
inoculation significantly shortened the pupal duration of M.
separata fed on non-Bt maize under aCO2 and eCO2 in 2017
and 2018, while significantly extended the pupal duration of M.
separata fed on Bt maize under aCO2 and eCO2 in two sample
years. Compared with aCO2, eCO2 significantly extended the
pupal duration ofM. separata fed on Bt and non-Bt maize in two

sample years regardless of F. caledonium inoculation or not (P <

0.05; Figures 5D,H).
Compared with non-Btmaize, the eclosion rate ofM. separata

fed on Bt maize inoculated with and without F. caledonium was
significantly decreased in two sample years no matter under
aCO2 or eCO2 (P < 0.05; Figures 6A,D).

Compared with non-Bt maize, the fecundity of M. separata
fed on Bt maize inoculated with and without F. caledonium
was significantly decreased in two sample years no matter
under aCO2 or eCO2. Compared with control, AMF inoculation
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significantly increased the fecundity of M. separata fed on non-
Bt maize under aCO2 and eCO2 in 2017 and 2018, while
significantly decreased the fecundity of M. separata fed on Bt
maize under aCO2 and eCO2 in two sample years. Compared
with aCO2, eCO2 significantly decreased the fecundity of M.
separata fed on Bt and non-Bt maize in two sample years
regardless of F. caledonium inoculation or not (P < 0.05;
Figures 6B,E).

Compared with non-Bt maize, the adult longevity of M.
separata fed on Bt maize inoculated with and without F.
caledonium was significantly shortened in two sample years no
matter under aCO2 or eCO2. Compared with control, AMF
inoculation significantly extended the adult longevity of M.
separata fed on non-Bt maize under aCO2 and eCO2 in 2017
and 2018, while significantly shortened the adult longevity of M.
separata fed on Bt maize under aCO2 and eCO2 in two sample
years. Compared with aCO2, eCO2 significantly shortened the
adult longevity ofM. separata fed on Bt and non-Bt maize in two
sample years regardless of F. caledonium inoculation or not (P <

0.05; Figures 6C,F).

Yield of Bt and Non-Bt Maize Influenced by
CO2 Levels and F. caledonium Inoculation
Four-way ANOVAs showed that AMF inoculation significantly
affected all indices of maize yield (F ≥ 10.23, P ≤ 0.003), CO2

level significantly affected ear weight per plant and grain weight
per ear (CO2 level: F ≥ 45.24, P < 0.001), transgenic treatment
significantly affected ear weight per plant (F = 10.89, P = 0.002),
and the interaction between CO2 level and AMF inoculation
significantly affected the grain weight per ear (F= 4.48, P= 0.042
< 0.05) (Supplementary Table 3).

Compared with non-Bt maize, the dry ear weight per plant
of Bt maize without F. caledonium inoculation was significantly
enhanced under eCO2 in 2017, and that with F. caledonium
inoculation was significantly increased under aCO2 in 2018.
Compared with control, AMF inoculation significantly increased
the dry ear weight per plant of Bt and non-Bt maize in
two sample years no matter under aCO2 or eCO2. Compared
with aCO2, eCO2 significantly increased the dry ear weight
per plant of Bt and non-Bt maize in two sample years
regardless of F. caledonium inoculation or not (P < 0.05;
Figures 7A,D).

Compared with control, AMF inoculation significantly
increased the grain weight per ear of Bt and non-Bt maize in two
sample years no matter under aCO2 or eCO2. Compared with
aCO2, eCO2 significantly increased the grain weight per ear of Bt
and non-Bt maize inoculated with F. caledonium in two sample
years, and significantly increased that of Bt maize without F.
caledonium inoculation in 2017 and that of non-Btmaize without
F. caledonium inoculation in 2018 (P < 0.05; Figures 7B,E).
Compared with control, AMF inoculation significantly increased
the 100-grain weight of non-Bt maize under aCO2 in 2017, and
that of Bt and non-Bt maize under eCO2 in 2018 (P < 0.05;
Figures 7C,F).

DISCUSSION

The values of AMF colonization and AMF-PLFA content
indicate the colonization efficiency of AMF on maize. In this
experiment, F. caledonium inoculation significantly increased
the AMF colonization and AMF-PLFA content no matter what
maize variety or CO2 level, and this ensured the validity of the
following research work. Meanwhile, elevated CO2 can increase
photosynthesis of plants, improve plant growth, and promote the
transfer of carbon source substances from host plants to the root-
symbiotic AMF, which is beneficial for AMF colonization and
growth (Diaz et al., 1993; Cheng et al., 2012). The colonization
was increased by ∼10% in Medicago truncatula and by as
much as 50% in Brachypodium distachyon (Jakobsen et al.,
2016). Treseder (2004) also reported that the AMF colonization
reflected an increased colonization speed under eCO2. Alberton
et al. (2005) found that mycorrhizal fungi and mycorrhizal plants
to elevated CO2 were significantly positive, and the response
ratio for AM fungi was 1.21 (an increase of 21%), indicating a
significantly different response, and AM colonization percentage
also had a certain degree of improvement. In this study, the
AMF colonization and the AMF-PLFA content of Bt and non-Bt
maize under eCO2 were generally higher than those under aCO2;
therefore, it is presumed that elevated CO2 did have a positive
facilitation on the colonization of F. caledonium on maize (Diaz
et al., 1993; Drigo et al., 2013; Becklin et al., 2016). Besides, there
were no differences in the AMF colonization and AMF-PLFA
content between Bt maize and its parental line of non-Bt maize;
the results showed that the presence of the cry1Ie protein inmaize
did not affect the colonization of the AMF community, and it is
consistent with the research report of Cheeke et al.; Cheeke et al.
(2014; 2015; Zeng et al., 2018).

Overall, the plant biomass and grain yield increased with the
increasing level (200–400 ppm) of atmospheric CO2 for most
crops (Chen M. et al., 2011; Wang et al., 2018). In this study, the
results showed that eCO2 significantly increasedmaize ear weight
per plant and grain weight per ear, while it did not significantly
affect the 100-grain weight. It is mainly because eCO2 can
enhance photosynthesis and in turn, has a positive effect on
crop biomass and production (Guo et al., 2016; Liu et al., 2019).
Although the maize yield was improved, the comprehensive
nutritional quality of maize grain (100-grain weight) could not be
improved; it may be due to the decreased nitrogen content at high
CO2 levels. Moreover, F. caledonium inoculation significantly
increased all the yield indices (ear weight per plant, grain weight
per ear, and 100-grain weight). The main function of AMF is to
enhance the uptake of nutrient elements (e.g., N, P, K, Ca,Mg, Zn,
and Fe) by host plants, improve the nutrient metabolism capacity
and nutrient level of plant tissues, and then promote the growth
and fruiting of plants (Sharifi et al., 2007; Terrer et al., 2016;
Turrini et al., 2017). In addition, under the combined effects of
eCO2 and F. caledonium inoculation, the ear weight per plant
and grain weight per ear of Bt and non-Btmaize showed a further
significant increase, which benefit from the improvement of AMF
colonization under eCO2.

Insects are sensitive to environmental variations, and
environmental stresses can cause changes in their growth,
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FIGURE 7 | Effects of the inoculation with arbuscular mycorrhizal fungi (AMF), F. caledonium, on the yield of Bt maize (Bt) and its parental line of non-Bt maize (Xy)

under ambient CO2 (aCO2) and elevated CO2 (eCO2) in 2017 (A–C) and 2018 (D–F). (Note: the same as Figure 3) (P < 0.05; n = 15).

development, fecundity, food utilization, and the occurrence
and distribution of populations as a result of metabolic rate
fluctuation (Bloom et al., 2010). Usually, endogenously secondary
defensive chemicals (e.g., JA and SA) and nutrient components
(e.g., C, N, P, and K) are the two main factors that affect
the population fitness of pests; the balance between secondary
defensive chemicals and nutrient components determines the
development trend of pests after feeding. If the pests feed
on transgenic Bt plants, in addition to the above-mentioned
two influencing factors, the Bt toxin protein will also have a
significant adverse effect on the growth and food utilization

of pests and occupy the dominant position among the three.
Prutz and Dettner (2005) reported that the transgenic Bt maize
decreased the growth rate and increased the mortality of Chilo
partellus, which might be attributed to the termination of
larval metamorphosis fed on Bt maize. Most studies showed
adverse effects of Cry proteins on lifetable parameters of different
herbivores (Lawo et al., 2010), which might be due to the
interaction of feeding inhibitors and growth inhibitors. In this
study, we found that Bt maize obviously decreased almost all
measured indices of food utilization (ECD, ECI, and RGR),
and it showed that the ability of food digestion and absorption
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FIGURE 8 | A schematic model that AMF inoculation can enhance the yield of transgenic Bt maize and its control efficiency against M. separata under elevated CO2.

of pests has caused serious damage by Bt toxin. Meanwhile,
lifetable parameters (growth, development, and reproduction of
M. separata larvae; pupation rate, pupal weight, eclosion rate,
and fecundity of M. separata adult) markedly decreased feeding
on Bt maize, and Bt toxin also prolonged the larval lifespan and
shortened the adult longevity of M. separata regardless of the
CO2 level and F. caledonium inoculation or not in 2017 and 2018.
These results showed that Btmaize obviously retarded the growth
and development of M. separata and were similar to those of
previous studies.

Previous studies have examined that in most plants, elevated
CO2 tends to promote plant photosynthesis and also leads to
a decrease in foliar nitrogen content and an increase in C: N
ratio (Johns et al., 2003; Li et al., 2018). Meanwhile, nitrogen
is the main component of exogenous Bt protein in Bt crops.
Plant nitrogen uptake, nitrogen-level status, and C: N ratio could
affect the production of exogenous Bt toxins for Bt crops (Gao
et al., 2009; Jiang et al., 2013). Numerous studies have shown
that eCO2 can significantly reduce the exogenous Bt protein
content of Bt cotton and Bt rice, while increasing their yield
(Coviella et al., 2000, 2002; Chen et al., 2005b;Wu et al., 2011a,b),
and also found the “dilution effect” on exogenous Bt protein
or inhibition on Bt-transgene expression (Chen F. J. et al.,
2011; Jiang et al., 2017; Liu et al., 2019). Moreover, elevated
CO2 also affected the production of primary and secondary

metabolites, and the defense mechanisms of crop plants (e.g.,
JA and SA) (Stiling and Cornelissen, 2007; Sun et al., 2016). In
this study, eCO2 significantly decreased the ECI and RGR of
M. separata larvae fed on non-Bt maize without F. caledonium
inoculation, and was almost adverse to all the measured indices
of growth and development of M. separata; it is mainly due
to the increased secondary defense substances (i.e., JA and SA)
in plants and the declined food nutrient level (e.g., fewer N)
under elevated CO2 (Armstrong et al., 1995; Coviella et al.,
2002; Liu et al., 2019). Many studies found that elevated CO2

had adverse effects on the developmental duration, pupation,
and eclosion of cotton bollworm, H. armigera (Akbar et al.,
2016), and reduced the oviposition number of borers and
semilooper (Stange, 1997; Rao et al., 2013). On the other hand,
elevated CO2 decreased the RGR of the Spodoptera litura and
H. armigera (Hattenschwiler and Schafellner, 2004), and also
significantly reduced the ECD and ECI of H. armigera (Yin
et al., 2010). Meanwhile, eCO2 also significantly reduced the
ECD, ECI, pupal weight, fecundity, and adult longevity, and
significantly extended the development duration of M. separata
fed on Bt maize with and without F. caledonium inoculation.
This shows that despite the decrease in exogenous Bt toxin
content, the increase in secondary defense substances and the
decline in nutrient quality can alsomake a relatively adverse effect
onM. separata.
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The effect of F. caledonium inoculation on M. separata fed
on Bt maize and non-Bt maize was just the opposite; that is,
F. caledonium inoculation significantly reduced the ECI, RGR,
and RCR of M. separata larvae fed on Bt maize under aCO2

and eCO2, while significantly increased the ECI and RGR of M.
separata larvae fed non-Bt maize under aCO2 and eCO2, and
RCR of M. separata larvae fed on non-Bt maize under aCO2,
and ECD ofM. separata larvae fed on non-Bt maize under eCO2.
In addition, F. caledonium inoculation and transgenic treatment
had a significant interaction on the growth, development, and
reproduction of M. separata. Specifically, as fed on Bt maize, F.
caledonium inoculation significantly extended the developmental
duration of larvae and pupae of M. separata under aCO2 and
eCO2, significantly reduced the pupal weight and fecundity, and
significantly shortened the adult longevity of M. separata. On
the contrary, as fed on non-Bt maize, F. caledonium inoculation
significantly shortened the developmental duration of larvae and
pupae of M. separata under aCO2 and eCO2, and significantly
increased the pupal weight of M. separata under aCO2 and
eCO2. Thus, it was observed that F. caledonium inoculation
had diametrically opposite effects on the growth, development,
and food utilization of M. separata fed on Bt maize and non-
Bt maize; that is, F. caledonium inoculation reduced the food
utilization efficiency and had adverse effects on the growth,
development, and reproduction of M. separata fed on Bt maize,
while it improved the food utilization efficiency and had positive
effects on the growth, development, and reproduction of M.
separata fed on non-Bt maize. This is mainly due to the
promotion of the absorption and utilization of soil nutrients
in maize plants by F. caledonium inoculation, thus improving
the nutrient level of maize plant tissues (Sharifi et al., 2007;
Rodriguez and Sanders, 2015). So it is concluded thatM. separata
larvae can get more plant nutrition when fed on non-Bt maize
inoculated with F. caledonium. When fed on Bt maize inoculated
with F. caledonium, M. separata larvae not only obtained more
plant nutrients, but also ingested more doses of exogenous Bt
toxin, which improved the target resistance ability of Bt crops
based on the exogenous Bt toxin, and further reduced the food
utilization efficiency, growth, development, and reproduction
of M. separata, and at the same time, the promotion of AMF
colonization by eCO2 further enhanced the target resistance level
of Bt maize toM. separata.

Overall, our research showed that eCO2 was beneficial for
AMF colonization on roots, and maize yield, but it had negative
effects on the growth, development, reproduction, and food
utilization ofM. separata. F. caledonium inoculation was positive
for maize yield and nutrient quality, and in favor of the
growth, development, reproduction, and food utilization of the
M. separata fed on non-Bt maize. However, F. caledonium

inoculation was unfavorable for the population fitness of M.
separata fed on Bt maize. Namely, regardless of the CO2 level,
inoculation of F. caledonium had a detrimental effect on the
production of non-Bt maize as the result of a high potential
risk of M. separata production hazard, while its effects on Bt
maize were just the opposite; that is, F. caledonium inoculation
had positive effects on the production of Bt maize especially
under eCO2 due to the lower potential risk of population
occurrence of M. separata. Ultimately, the results proved that
all of our hypotheses were confirmed: It showed that the AMF
inoculation of F. caledonium under eCO2 was more effective in
improving the control efficiency of Bt maize on the target insect
pest, M. separata, promoted the expression of endogenous (JA,
SA) and exogenous (Bt toxin) secondary defense substances in
Bt maize leaves, and also increased the biomass and yield of
maize (Figure 8). We have reason to expect this friendly and
effective biological way serving for mitigating the ecological risk
of Bt maize and improving its ecological sustainable utilization
capacity under global climate change.
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