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Once thought to be a minor disease, foliar blast disease of pearl millet, caused by
Magnaporthe grisea, has recently emerged as an important biotic constraint for pearl
millet production in India. The presence of a wider host range as well as high pathogenic
heterogeneity complicates host–pathogen dynamics. Furthermore, environmental
factors play a significant role in exacerbating the disease severity. An attempt was made
to unravel the genotype-by-environment interactions for identification and validation of
stable resistant genotypes against foliar blast disease through multi-environment testing.
A diversity panel consisting of 250 accessions collected from over 20 different countries
was screened under natural epiphytotic conditions in five environments. A total of 43
resistant genotypes were found to have high and stable resistance. Interestingly, most
of the resistant lines were late maturing. Combined ANOVA of these 250 genotypes
exhibited significant genotype-by-environment interaction and indicated the involvement
of crossover interaction with a consistent genotypic response. This justifies the necessity
of multi-year and multi-location testing. The first two principal components (PCs)
accounted for 44.85 and 29.22% of the total variance in the environment-centered
blast scoring results. Heritability-adjusted genotype plus genotype × environment
interaction (HA-GGE) biplot aptly identified “IP 11353” and “IP 22423, IP 7910 and
IP 7941” as “ideal” and “desirable” genotypes, respectively, having stable resistance
and genetic buffering capacity against this disease. Bootstrapping at a 95% confidence
interval validated the recommendations of genotypes. Therefore, these genotypes can
be used in future resistance breeding programs in pearl millet. Mega-environment
delineation and desirability index suggested Jaipur as the ideal environment for precise
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testing of material against the disease and will increase proper resource optimization in
future breeding programs. Information obtained in current study will be further used for
genome-wide association mapping of foliar blast disease in pearl millet.

Keywords: pearl millet, Magnaporthe, blast disease, genotype-environment interaction, heritability, GGE biplots,
mega-environments, mixed-model analysis

INTRODUCTION

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a major
climate resilient cereal crop that is cultivated extensively on
resource-poor marginal lands of arid and semiarid regions
of Asia and sub-Saharan Africa (Anuradha et al., 2017). It
forms a source of food and fodder and ensures food and
nutritional security to the inhabitants who are practicing low-
input agriculture (Pankaj et al., 2020). Being a “Nutri-cereal” and
thriving well in any cropping system, it shows a crucial role in
defeating malnutrition and improving the socioeconomic status
of resource-poor farmers (Govindaraj et al., 2020). Foliar blast
(FB) disease of pearl millet caused by the fungus Pyricularia
grisea (Cooke) Sacc. [Teleomorph: Magnaporthe grisea (Herbert)
Barr], a disease of negligible importance in past years, has
become a severe menace to successful pearl millet cultivation
worldwide (Sharma et al., 2018). It is widespread in the different
pearl millet-growing ecologies of India but became a very
serious threat in both A1 (includes rainfed areas of western
Rajasthan, as well as parts of Gujarat and Haryana, where annual
precipitation is anticipated to be < 400 mm and pearl millet
productivity is supposed to be less than 100 kg/ha) and A zones
(includes North Indian regions excluding regions covered in A1
zones with an annual rainfall of more than 400 mm), where
early- to medium-maturing cultivars are preferred (AICPMIP,
2020). In fact, the disease has reached a critical stage that
necessitates a multifaceted approach to its effective management
(Sharma et al., 2020).

The disease starts out as a small speck or lesion that grows
larger and necrotic, causing widespread chlorosis and premature
death of young leaves (Figure 1). Lesions can appear as diamond-
shaped white to gray or reddish-brown lesions near the leaf
tips or margins, or both with reddish to brown borders that
extend down and may enlarge, coalesce, and kill entire leaves.
During humid weather, particularly with dense plant stands, this
disease becomes more severe. M. grisea is a seed-borne fungus
that often survives in the soil/leaf debris as chlamydospores
or free saprophytic mycelium, providing a source of primary
inoculums. Repeated infection in a single crop season happens
through the dissemination of asexual spore called conidia. FB
on pearl millet was observed to be inversely related to days to
maturity, green and dry fodder yield, seed yield per plant, and
digestive dry matter, influencing crop productivity and quality
(Nayaka et al., 2017).

Foliar blast in pearl millet is a multi-cycle disease, and
usually crop is grown by resource-poor farmers. Thus, chemical
control with repeated sprays in one crop season is not practically
feasible. The development of FB-resistant cultivars is a major
thrust area for the pearl millet research and development sector

worldwide, as it offers an economic and eco-friendly option for
managing the disease. However, due to a limited knowledge
of its inheritance (Gupta et al., 2012 and Singh et al., 2018),
race specificity (Sharma et al., 2021), and the rapid shift in
pathogenicity of the blast fungus, as well as a scarcity of
stable resistance in exotic or adapted germplasm (Sharma et al.,
2020), progress in transmitting stable resistance to commercial
cultivars has been slow. Another most important challenge is
poor repeatability in field-plot and greenhouse ratings due to
genotype-by-environment interactions (GEIs) (Prakash et al.,
2016). The role of genotype × environment (G × E) interaction
is also crucial for the eventual appraisal of sources of durable
resistance (Singh et al., 2020). Thus, an identification of resistance
source against FB in pearl millet, followed by an appraisal of the
durability of resistance and its utilization in resistance breeding
programs, is necessary.

Delineation of target testing environment that has good
discrimination power, representativeness, and high desirability
index is also indispensable for facilitating proper selection
of resistance sources as well as curtailing the use of non-
informative testing locations, thus reducing the cost of multi-
location trials (MLTs). Previous reports have stated that genotype
and identification of a testing location would be meaningful
within a mega-environment (ME) (Yan et al., 2007). Data
collected over years are crucial for defining an ME and improving
breeding efficiency (Yan and Holland, 2010). Several statistical
tools are available for establishing the role of GEI in the
identification of desirable genotypes with specific and broad-
spectrum adaptability over different locations (Yan and Kang,
2003). The GGE (genotype plus GEI) biplot methodology usually
applies the concept of indirect selection, removes the main
effect of the environment, considers only the genotypic main
effect with the GEI effect in MLT datasets, and represents
the result in graphical mode (Yan et al., 2000). Based on
different scaling methods, various forms of GGE biplot have
been developed. Among these, the heritability-adjusted GGE
(HA-GGE) biplot is the most logical and precise method
for the identification of genotypes and test environments
(Yan and Holland, 2010).

However, information on the identification of durable FB
resistance sources based on multi-environment data is scanty.
Therefore, in the present study, we employed the HA-GGE biplot
method to evaluate the effects of genotype, environment, and
GEI for FB resistance by deploying multi-location and multi-year
datasets for detecting ideal genotypes with durable resistance.
The recommendation of genotypes for a specific environment
was corroborated by bootstrapping at the 95% confidence limit
(CL). Additionally, test environments were evaluated in terms of
discrimination power, representativeness, and desirability index,
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FIGURE 1 | Symptoms of foliar blast on infected pearl millet plants. (A) Infected leaves. (B) Sheath and stem infection. (C) Infected plants along with resistant lines.
(D) Conidia of Magnaporthe grisea.

followed by ME detection, to exclude redundant testing locations
and to minimize the cost incurred on future evaluation programs.

MATERIALS AND METHODS

Plant Material and Multi-Environment
Field Trials
The experimental materials include a set of diversity panel,
which is a subset of PMiGAP (Pearl Millet inbred Germplasm
Association Panel). It is denoted as “G” followed by serial
number. This panel is composed of 250 accessions collected
from over 20 different countries representing the global
genetic diversity of pearl millet. The panel includes inbred
lines, landraces, released cultivars, germplasm accessions, and
advanced breeding lines. These genotypes were evaluated for FB
disease under natural epiphytotic conditions in an alpha lattice
design with two replications. Supplementary Table 1 represents
the list of genotypes along with details such as subspecies,
botanical variety, market type, origin, and pedigree. The panel
was evaluated at IARI-New Delhi (28◦70′N, 76◦58′E, 266.0 MSL)
for three seasons (Kharif-2017, Kharif-2018, and Kharif-2019), at
CCS-HAU, Bawal (28◦07′N, 77◦10′E, 288.0 MSL) and at RARI,
Jaipur (26◦50′N, 75◦47′E, 390.0 MSL) for a single season (Kharif-
2019). Weather parameters from each environment during
tillering to hard dough stage of plant [30–60 days after sowing
(DAS)] are presented in Table 1. All climatic parameters except
rainfall are presented as means over the crop-critical growing
period 30–60 DAS. Rainfall is measured as cumulative rainfall

received in mm and the cumulative number of rainy days.
A canonical correspondence analysis (CCA) was performed to
assess the impact of various environmental factors on FB score.
The climatic determinants used for CCA includes the following:
maximum and minimum, temperature (Max. Temp and Min.
Temp), percentage maximum and minimum, relative humidity
(Max. RH and Min. RH), and cumulative rainfall and rainy
days (cumulative no. of days when daily rainfall measure above
2.5 mm). Weather data for the present analysis were obtained
from the Division of Agricultural Physics, ICAR-IARI, New
Delhi, India, and AICRP on Agro-meteorology, Hyderabad. The
analysis was carried out in R package-“vegan”.

Agronomic Practices, Disease
Screening, and Data Recording in
Multi-Environment Field Trials
Each genotype was sown in a plot of two rows each of 2-m
length having 65-cm row spacing and a 12-cm plant-to-plant
spread. The sites for the research were carefully chosen based
on the prevalence of Magnaporthe grisea. Spreader rows of FB-
susceptible check (ICMB 95444) were planted after every 10th
treatment of the test populations, and five rows of the spreader
row of the susceptible check were planted on all the sides of
the experimental area for maintaining sufficient disease pressure
under natural condition. For a normal and healthy crop, standard
cultivation practices recommended for pearl millet were regularly
followed. FB scores were recorded from five randomly selected
representative plants of all the genotypes in each replication,
while days to 50% flowering (DFF) were recorded on a plot basis.
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TABLE 1 | Geographical identity and climate variables at test environment in respect of temperature, relative humidity (RH), total rainfall, and rainy days along with mean
foliar blast (FB) score during the critical period of pearl millet crop growth.

Environment Latitude Longitude Altitude Max. temp. (◦C) Min. Temp. (◦C) Rainfall (mm) Max. RH (%) Min. RH (%) Rainy days Mean blast score

New Delhi-17 28.7 76.6 266 33.9 25.2 164.2 92.5 71.5 9.0 4.57

New Delhi-18 28.7 76.6 266 32.0 21.8 188.0 89.4 64.8 11.0 4.30

New Delhi-19 28.7 76.6 266 33.8 25.2 9.0 87.7 62.3 2.0 4.51

Jaipur-19 26.5 75.5 390 32.8 23.2 105.0 82.2 58.4 6.0 4.45

Bawal-19 28.1 77.1 288 33.0 23.6 28.0 90.0 55.4 1.0 4.48

Standard statistical methods were followed for data analysis. The
disease was assessed following the 0–9 scale of Prakash et al.
(2016) and Nayaka et al. (2017) as described earlier. The GE
table of FB mean scores is transformed by subtracting each mean
score from 9. Thus, the new score obtained as a consequence
of this transformation adopted the same general interpretability
principles as yield and other related traits, in which high values
are preferred. The genotypes screened were categorized into five
groups based on disease scoring: highly resistant (9), resistant
(6–8), moderately resistant/susceptible (4–5), susceptible (2–3),
and highly susceptible (0–1).

Statistical Analysis
Variance Components and Estimation of
Broad-Sense Heritability
Individual and combined analyses of variance (ANOVAs) were
conducted on replicated data obtained in different environments
(a combination of locations and years). The restricted
maximum likelihood (REML) analysis was carried out for
each environment, with replications as a fixed effect and
genotypes and blocks within replication as random effects,
while environments and replications within environments were
considered as fixed effects whereas genotypes and genotype

FIGURE 2 | Canonical correspondence analysis (CCA) biplot based on the correlation of several climatic parameters with foliar blast score recorded from a set of a
diversity panel of 250 pearl millet accessions studied in five environments (ND-17, New Delhi-2017; ND-18, New Delhi-2018; ND-19, New Delhi-2019; BWL-19,
Bawal-2019; JPR-19, Jaipur-2019). The climatic determinants were recorded during the critical crop growing period 30–60 days after sowing (DAS) period, as
follows: Max. Temp, maximum temperature (◦C); Min. Temp, minimum temperatures (◦C); Max. RH, maximum relative humidity (%); Min. RH, minimum relative
humidity (%); Rainfall, cumulative rainfall (mm); RD, cumulative number of days on which received daily rainfall > 2.5 mm; BlSc, foliar blast score.
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FIGURE 3 | (A) Frequency distribution for foliar blast (FB) scores in five different environments along with overall distribution indicating FB scores across the
environment. (B) Heatmap visualization of genotypic FB scores observed in individual environments. Environments are depicted in the x-axis, whereas the genotypes
are depicted in the y-axis containing the corresponding mean FB score recorded. (C) Scatter plot representing the association of FB disease scores (0–9 scale) with
corresponding days to 50% flowering (in days) of 250 genotypes observed across environments. Days to 50% flowering of genotypes are depicted in the x-axis,
whereas the transformed FB scores of genotypes are depicted by the y-axis. The regression line (with 95% confidence level) is indicated by brick red lines with gray
shadows. The color of the dots indicates the resistant category to which the genotypes belong.

interactions with environments were considered as random
effects in the REML model for combined environment analysis.
The error variances of individual environments (a combination
of locations and years) were accounted for combined analysis
using the mixed model methodology. Error variance modeling
using mixed model analysis takes care of heterogeneous
error variances of the individual environment during pooled

analysis. The REML (Patterson and Thompson, 1971) estimation
technique was used to estimate three variance components (σ2

g,
σ2

ge, and σ2
e) for transformed FB score and DFF using the

lmer function of the lme4 R-package (Bates et al., 2015). The
rand function of the lmerTest package used the likelihood ratio
test (LRT) at 5% probability to confirm the significance of the
random effects (Kuznetsova et al., 2015).
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TABLE 2 | List of genotypes outperforming resistant checks for foliar blast resistance across environments.

Sl.no. Entry Code DFF FB scores at individual environments Overall
mean

Stability
index

(ASV)**

Frequency in top
10 resistant line

group

ND-17 ND-18 ND-19 BWL-19 JPR-19

1 IP 11353 G-62 59 8.2 8.6 8.8 8.5 8.8 8.8 0.05 5/5

2 IP 22423 G-39 74 7.4 8.1 7.8 7.6 7.9 7.8 0.08 5/5

3 IP 7941 G-220 70 7.4 8.1 7.7 7.6 7.7 7.7 0.09 5/5

4 IP 7910 G-123 75 7.3 7.5 7.8 7.6 7.5 7.5 0.07 3/5

5 IP 8280 G-86 62 7.6 6.9 7.8 7.2 7.4 7.4 0.20 3/5

6 IP 12322 G-87 71 6.9 7.2 7.3 7.6 7.8 7.4 0.16 2/5

7 IP 11275 G-178 68 7.5 7.7 7.7 6.7 7.1 7.3 0.24 3/5

8 IP 16082 G-15 66 7.0 7.4 7.5 7.6 6.9 7.3 0.07 1/5

9 IP 12364 G-235 72 7.4 6.8 7.5 7.1 7.1 7.2 0.21 1/5

10 IP 15857 G-233 67 6.5 6.8 8.1 7.1 7.7 7.2 0.27 2/5

11 IP 21169 G-156 69 7.2 8.1 6.8 6.7 6.9 7.1 0.38 1/5

12 IP 5438 G-240 68 6.6 6.8 7.7 NG 7.3 7.1 0.18 2/5

13 IP 8182 G-221 64 6.5 7.2 7.3 7.2 6.8 7.0 0.08 0/5

14 IP 7953 G-159 52 6.2 7.0 7.2 7.1 7.5 7.0 0.22 1/5

15 IP 3122 G-102 59 6.8 7.6 6.7 6.6 6.8 6.9 0.25 1/5

16 IP 9969 G-182 57 7 6.0 7.7 6.7 7.0 6.9 0.33 0/5

17 IP 3106 G-236 62 6.3 7.0 6.5 7.6 7.2 6.9 0.27 1/5

18 IP 9710 G-100 62 6.5 7.6 7.9 4.9 7.0 6.8 0.48 2/5

19 IP 14439 G-174 75 7.2 7.4 6.9 6.9 5.4 6.8 0.28 0/5

20 IP 18293 G-210 70 7.3 4.1 7.8 7.6 7.4 6.8 1.04 3/5

21 IP 10543 G-181 68 7.5 8.1 6.0 5.8 6.3 6.7 0.68 2/5

22 SOSAT-C88 G-179 55 7.4 6.7 7.3 6.7 5.5 6.7 0.30 1/5

23 IP 11584 G-135 60 6.5 7.2 6.3 6.7 6.9 6.7 0.12 0/5

24 IP 6882 G-183 57 6.7 7.2 6.3 6.7 6.6 6.7 0.14 0/5

25 IP 12020 G-241 55 6.1 5.9 7 7.6 7.1 6.7 0.51 1/5

26 IP 3471 G-126 65 6.2 6.3 6.8 6.8 6.8 6.6 0.18 0/5

27 IP 17632 G-26 53 7.0 7.4 7.2 4.5 6.4 6.5 0.69 0/5

28 IP 22419 G-151 66 6.1 7.0 7.2 5.8 6.6 6.5 0.17 0/5

29 IP 10820 G-67 59 6.2 7.2 6.9 5.8 6.2 6.5 0.26 0/5

30 IP 13840 G-226 74 6.6 6.4 6.8 6.5 6.1 6.5 0.13 0/5

31 IP 6098 G-237 69 6.2 7 6.4 6.4 6.5 6.5 0.11 0/5

32 ICMR 11009
(Res. check)

G-248 55 5.7 6.0 6.3 7.5 7.1 6.5 0.49 1/5

33 IP 10761 G-177 63 6.0 6.3 5.8 7.0 7.1 6.4 0.20 0/5

34 IP 11961 G-219 64 5.7 7.2 6.7 5.2 6.5 6.3 0.36 0/5

35 IP 7952 G-130 71 6.0 5.0 7.3 6.1 6.7 6.2 0.48 0/5

36 WC-C75 G-168 61 5.7 5.9 7.0 6.0 6.5 6.2 0.18 0/5

37 IP 7886 G-138 53 4.0 6.2 6.8 7.2 6.8 6.2 0.75 0/5

38 IPC 804 G-122 53 5.6 4.5 7.1 6.9 6.8 6.2 0.73 0/5

39 IP 8074 G-155 60 7.3 6.7 5.4 5.3 6.2 6.2 0.58 0/5

40 ICMR 11003
(Res. check)

G-247 54 5.8 6.0 5.9 6.7 6.5 6.2 0.25 0/5

41 IP 19405 G-204 62 5.9 6.7 6.3 5.8 6.1 6.2 0.16 0/5

42 IP 5931 G-227 63 6.6 6.3 5.8 5.9 5.8 6.1 0.24 0/5

43 IP 17493 G-212 65 7.5 6.7 5.4 5.4 5.1 6.0 0.66 1/5

ICMR 11019
(Res. check)

G-249 53 6.2 6.3 5.9 5.3 5.8 5.9 0.26 0/5

ICMB 95444
(Sus. check)

G-251 54 0.0 0.0 0.0 0.0 0.0 0.0 - 0/5

Environmental mean 59 4.6 4.3 4.5 4.5 4.5 4.5 - -

(Continued)
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TABLE 2 | Continued

Sl.no. Entry Code DFF FB scores at individual environments Overall
mean

Stability
index

(ASV)**

Frequency in top
10 resistant line

group

ND-17 ND-18 ND-19 BWL-19 JPR-19

CV% 2.7 23.8 19.1 21.6 10.7 12.7 18.5 - -

LSD 3.5 2.2 1.8 1.9 1.0 1.2 1.1 - -

*Yellow color represents genotypes whose foliar blast score is above qualifying check. *Blue color represents qualifying checks under each environment. **Stability index
worked out as described by Purchase et al. (2000); ASV = AMMI stability value (stable genotypes will have lower values). CV, coefficient of variation; LSD, least square
difference; DFF, days to 50% flowering; NG, seeds not germinated; ND-17, New Delhi-2017; ND-18, New Delhi-2018; ND-19, New Delhi-2019; BWL-19, Bawal-2019;
JPR-19, Jaipur-2019.

The phenotypic observations Yijkm on genotypes m in
replicate j of block k of environment i was modeled as follows:

Yijkm = µ+ ei+ rij+ bijk+ gm+ (ge)im+ (eg)jm+ εijkm
where µ is the grand mean; ei is the fixed effect of environment
i; gm is the random effect of genotype m and is ∼NID (0, σg

2);
rij is the fixed effect of replication in the environment i; bijk
is the random effect of block k nested with replication j in
the environment i and is ∼NID (0, σb

2); (ge)im is the random
effect of the interaction between genotype m and environment
i and is ∼NID (0, σge

2); εijkm is the random effect of the
error variances.

Broad-sense heritability (H2) for the traits in each
environment and over combined environments was estimated
from the variance components. For each environment,
H2 was calculated as H2 = σg

2/ (σg
2
+ σe

2/r); and for
combined environments, H2 was used as a measure of the
trial’s reliability in genotype evaluation in this study, with
H2 = 0 indicating that variations in genotypic mean in the
trial are entirely attributable to random error and H2 = 1
indicating that differences are entirely due to genetic effects
(Yan and Holland, 2010).

The REML model also produced the best linear unbiased
predictors (BLUPs) of each genotype, thereby adjusting the
influence of the neighboring rows. These BLUPs were used for
downstream analysis.

Heritability-Adjusted Genotype Plus
Genotype × Environment Interaction Biplot Analysis
Best linear unbiased predictors values of the transformed
disease mean score were stored in a 250 genotypes × five
environments matrix M. The matrix was checked for
missing data arising due to non-germination of seed in
the individual environment and was corrected through
imputation using the expectation–maximization algorithm
implemented by R package, bbplot/R Bilinear as suggested
by Gauch and Zobel (1990). Furthermore, heritability-
adjusted scaling (Yan and Holland, 2010) was performed
in R. The entries that were identified as resistant were
further highlighted in GGE biplot construction for
better visualization.

The GGE biplot was constructed by estimating each element
of the matrix using the following formula, based on the first
two principal components (PCs) resulting from singular value

decomposition (SVD) (Yan et al., 2000; Yan and Kang, 2003):

Yij = µ + ej+
N∑

n=1

λnγinδjn + εij.

Where,
Yij = mean response of ith genotype (i = 1, . . ., i) in the jth

environment (j = 1, . . ., j);
µ = grand mean;
ej = environment deviations from the grand mean;
λn = the eigenvalue of PC analysis axis;
γin and δjn = genotype and environment PC scores for axis n;
N = number of PCs retained in the model;
εij = residual effect∼ N(0, σ2

e).

An “average environment coordination” (AEC) view of the
GGE biplot was used to appraise genotypic response and
stability. It facilitated genotype comparisons based on disease
score mean and stability across environments within a “mega-
environment” (Yan, 2001, 2002). The axis of the “AEC abscissa,”
denoted by a single arrowed line, indicated higher mean
performance of genotypes in terms of higher FB resistance,
whereas the “AEC ordinate,” denoted by a line perpendicular
to the AEC abscissa and passing through the origin of the
biplot, represented genotype stability. Stability is represented by
projections on the AEC abscissa connecting individual genotypes
(Yan and Falk, 2002). Similarly, the “discriminating power vs.
representativeness” view of the GGE biplot was constructed
for the evaluation of test environments, where the “ideal” test
environment should be both discriminating with respect to
genotypes and representative of the “mega-environment” (Yan
et al., 2007). In addition, a “desirability index” of the test
locations has been compiled taking into account the relationship
between the test environments and distance from the ideal
genotype (Yan and Holland, 2010). Angles between the various
environment vectors were used to judge the correlation among
the environments in order to determine the relationship between
test locations (Yan and Kang, 2003). Furthermore, a “which-
won-where” view of the GGE biplot has been prepared to
determine the superiority of the genotypes in different test
environments as well as grouping of test environments into
different “mega-environments” (Yan and Rajcan, 2002). Finally,
bootstrapping (re-sampling process is repeated 10,000 times to
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obtain 10,000 bootstrap samples) is used to assess the validity
of GGE biplot. These bootstrap samples were later used to
construct CL at the 95% level for individual genotype and
environment PC scores as suggested by Hu and Yang (2013).
The raw data with columns representing the environments
(p = 5) and rows representing the genotypes (n = 43) were later
average-centered for each environment, resulting in a mean of
zero for each of the p dimensions of raw data. The data were
subjected to bidirectional bootstrapping and procrustes rotation
in the R package “bbplot/R,” and the confidence regions were
computed using a distribution-free approach implemented in
the R package “distfree.cr/R” based on the empirical distribution
of the aligned genotypic or environmental scores from all
bootstrap samples.

RESULTS

The diversity panel of 250 accessions along with checks was
subjected to phenotyping for FB incidence and DFF at five
different environments. Phenotypic data collected from the
population at three different locations during the rainfed seasons
of 2017, 2018, and 2019 were statistically analyzed to determine
variance components. Hereafter, the five environments are
denoted as ND-17 (New Delhi-17), ND-18 (New Delhi-
18), ND-19 (New Delhi-19), BWL-19 (Bawal-19), and JPR-
19 (Jaipur-19).

Identification of Climatic Factors
Influencing Foliar Blast Infection
Weather parameters observed in each environment during
tillering to hard dough stage of plant growth (30–60 DAS)
are presented in Table 1, and their influence over FB
score is elucidated in the CCA diagram (Figure 2). CCA
biplot explained 80.77% of the total variation between
the site weather parameters and the FB score. The
first CCA axis explained 48.08%, and the second CCA
axis explained 32.69% of the total variation. Maximum
temperature (Max. Temp), minimum temperature (Min.
Temp), and maximum humidity (Max.RH) were the main
determinants and were positively associated with the
increase of FB score during the critical growth period of
the crop. Cumulative rainfall recorded during the critical
period of growth of the crop was not associated with FB
score. Based on spatial angular proximity of identified
climatic determinants (Max. Temp, Min. Temp, and Max.
RH), JPR-19 was found to be conducive for FB disease
in pearl millet.

Mean Performance of Genotypes and
Analysis of Variance
The experiment was executed systematically in all the five
environments. Susceptible check, ICMB 95444, included in the
experiment exhibited uniform FB-susceptible reaction indicating
the availability of sufficient inoculums for disease screening. The
mean value, standard deviations, and the frequency distribution
for FB scores within and across years and locations indicate
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TABLE 4 | Combined analysis of variance for foliar blast resistance and days to 50% flowering in pearl millet.

Traits Effects Source of variance DF Variance SE F valuea and
LRT valueb

p values H2

Foliar blast
score

Fixed Environments 4 6.017 <0.0001

Environments (Replication) 5 0.191 0.966

Random Genotype 249 2.792 1.671 1,106.751 <0.0001 0.887

Genotype × Environments 996 0.474 0.689 192.564 < 0.0001

Environments
(Replication × Block)

240 0.015 0.124 2.057 0.151

Residuals 1,245 0.709 0.842

Days to 50%
flowering

Fixed Environments 4 179.725 <0.0001

Environments (Replication) 5 0.256 0.937

Random Genotype 249 38.105 6.173 811.343 <0.0001 0.968

Genotype × Environments 996 16.438 4.054 1,610.839 <0.0001

Environments
(Replication × Block)

240 0.093 0.305 3.160 0.075

Residuals 1,245 2.521 1.588

DF, degree of freedom; SE, standard error; H2, heritability. aConcerning the fixed effect components. bConcerning random effect components.

that the lines exhibited similar levels of disease severity in
all five environments (Figure 3A) although slight differences
in distribution are evident from the histogram for ND-
17. The average FB score in ND-17 was marginally higher
than the average scores, but the distribution pattern was
flatter, indicating a higher level of variability (SD = 1.7).
ND-18 showed the highest variability (SD = 1.88), yet the
distribution was slightly skewed toward the resistant side,
with FB score considerably lower than the remaining four
environments. Moreover, there was a presence of crossover
G × E interaction among genotypes for FB scores, which
were evident from the heatmap visualization of the GE
interaction (Figure 3B). From the pooled data, out of 250
genotypes, none of the genotypes showed a highly resistant
reaction (score = 9) to FB. However, at the hard dough

stage, 43 genotypes were reported as resistant (R), 118 as
moderately resistant/susceptible (MR/MS), 70 as susceptible
(S), and 19 as highly susceptible (HS) to FB (Figure 3C).
Out of 43 resistant lines, five were late in flowering (51–
54 days), whereas 38 lines flowered very late (>54 days).
Among 43 resistant lines, 26 genotypes exhibited a resistance
reaction above the qualifying check, ICMR 11009 (score = 6.5),
across environments (Table 2). Also, five more genotypes
have an FB score that is at par with the qualifying check.
Genotypes IP 11353, IP 22423, IP 7941, IP 7910, IP 12322,
and IP 3106 were consistently showing higher resistance and
outperformed the corresponding qualifying checks identified
for each environment (indicated in blue color). Considering
the frequency of appearance in the top 10 lines based on
FB scores, only three genotypes, namely, IP 11353 (G-62), IP

FIGURE 4 | Normal Q-Q plots showing the distribution of random effects associated with block within replication (BLUPbre), genotype (BLUPg), total phenotypic
effects (BLUPg + ge + bre), and GEI (BLUPge) depicting 95% confidence level for adjustment to normality recorded across environments.
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FIGURE 5 | Mean vs stability view of the GGE biplot of 43 resistant genotypes across five testing environments. There was heritability-adjusted scaling of data where
the environment standardized data were multiplied by the heritability in each environment (transform = HA), and data were centered by means of the environments
(centering = 2). The biplot was based on “row metric preserving” [singular value partition (SVP) = 1], which means that the singular values were partitioned into the
genotype eigenvectors for visualizing the correlation among genotypes. Numbers correspond to genotypes as listed in Supplementary Table 1. Environment:
ND-17, New Delhi-2017; ND-18, New Delhi-2018; ND-19, New Delhi-2019; BWL-19, Bawal-2019; JPR-19, Jaipur-2019.

22423 (G-39), and IP 7941 (G-220), were found to be more
consistent with the lowest stability index below 0.1 in all the five
test environment.

Analysis of Variance and Estimation of
Heritability
Analyses of variance of individual environment indicated
significant genotypic differences (p < 0.001) for DFF and
FB disease score at the hard dough stage. FB disease
score has shown the highest genotypic variance at ND-
18, and DFF has shown the highest variance at BWL-
19 (Table 3). Combined ANOVA also revealed significant
genotypic differences along with significant environment and
GEI effects (p < 0.001) for DFF and FB disease score at
the hard dough stage. The contribution of genotypic variance

toward total phenotypic variance was higher for FB disease
score, whereas the contribution of GEI variances was higher
compared with genotypic variance for DFF (Tables 3, 4).
The contribution of environment variance was very low
for both DFF and FB disease scores. Probability plots of
residuals versus expected values indicated no discernible trend,
implying that the assumptions of independence and equal
variance were fulfilled.

In the current analysis, both traits were strongly heritable
(>0.60) in individual environments, as per the Robinson
et al. (1966) scale of heritability (Table 3). Compared with
FB disease score, DFF was found to be more heritable.
Broad-sense heritability for both the traits was also higher
(>0.60) across five environments (Table 4). However,
when assessed on the basis of pooled environment, a
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FIGURE 6 | Genotype ranking plot view of the GGE biplot of 43 resistant genotypes across five testing environments. There was heritability-adjusted scaling of data
where the environment standardized data were multiplied by the heritability in each environment (transform = HA), and data were centered using the environments
(centering = 2). The biplot was based on “row metric preserving” (SVP = 1), which means the singular values were partitioned into the genotype eigenvectors for
visualizing the correlation among genotypes. Numbers correspond to genotypes as listed in Supplementary Table 1. Environment: ND-17, New Delhi-2017;
ND-18, New Delhi-2018; ND-19, New Delhi-2019; BWL-19, Bawal-2019; JPR-19, Jaipur-2019.

partitioning of GEI component lowered heritability for
both the traits across environments. For foliar disease
score, broad-sense heritability ranged from 0.83 (ND-17) to
0.96 (JPR-19); and in the pooled environment analysis, it
was 0.89. Similarly, for DFF, it ranged from 0.94 (ND-18)
to 0.99 (BWL-19) in case of the individual environment,
while in case of pooled data, heritability estimate was 0.97.
High heritability for both the traits indicated that the
genotypic differences observed are mainly due to genetic
effects. Also, there was a moderate, significant positive
correlation between FB disease score (transformed data)
and DFF (r = 0.503, p < 0.0001), indicating that FB

disease resistance in pearl millet is associated with very late
flowering (Figure 3C).

Estimation of Best Linear Unbiased
Predictor Values and Imputation of
Missing Data
Predicted genetic values (BLUP) were estimated to guide
the inferences based on a multi-environment GGE model
with reduced biases arising from uncontrollable factors
(Figure 4). It was useful for recommending genotypes with
the minimum likelihood of error while recommending
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FIGURE 7 | The fitted principal components (PCs) versus genotype based on foliar blast disease score along with upper and lower limit values, produced by
bootstrap analysis over 10,000 times at 95% bias-corrected and accelerated bootstrap (BCa) confidence limits (CLs). (A) Principal component analysis (PCA) score
values on PC1 versus genotype. (B) PCA score values on PC2 versus genotype.
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them for a specific environment. For the individual
environments, the predicted FB score ranged from 0.81
to 8.21 in ND-17, from 0.48 to 8.56 in ND-18, from 0.19
to 8.79 in ND-19, from 0.61 to 8.50 in BWL-19, and
from 0.29 to 8.84 in JPR-19. Under all the environments,
genotype G-13 (IP 4020) had the lowest resistance score,
and genotype G-62 (IP 11353) had the highest level of
FB resistance. Similarly, across the environment, the
estimate of genotype (random effect) for FB score ranged
from 0.28 (G-13) to 8.77 (G-62). Prior to heritability
scaling, the genotype–environment BLUP matrix (M) was
analyzed for missing data. It was observed that around
1% of missing data were solved by imputation by the
expectation–maximization algorithm.

Detection of Ideal Genotype Based on
Mean Versus Stability
The HA-GGE biplot is the most precise way to detect ideal
genotypes. An ideal genotype should have both the highest mean
performance and the lowest interactions with the environment.
The mean vs stability biplot view of the HA-GGE biplot was
generated based on the principle of genotype-focused singular
value partition (SVP) (SVP = 1) as suggested by Yan (2002).
This biplot view portrays the ranking of genotypes based on
their average FB score across environments (Figure 5). PC 1
and PC 2 explained 44.85 and 29.22%, respectively, of the total
variation of the environment scoring. The single arrowhead
line passing through the origin, the AEC abscissa, indicated
a highly resistant genotype with a lower FB score. Therefore,
genotypes positioned downstream of the arrow are considered
promising for FB resistance reaction. IP 11353 (G-62), IP 22423
(G-39), IP 7910 (G-123), and IP 7941 (G-220) were positioned
downstream of the biplot origin and, therefore, experienced
less FB score. Moreover, the stability of the genotype could be
accessed through the length of the projection in both directions
from the AEC abscissa, that is, the AEC ordinate. Thus, if
the genotype had greater projection from the AEC abscissa,
it would be less stable. Considering both mean performance
and stability, IP 11353 (G-62) was the ideal genotype, having
less disease score and high stability (Figure 6). Since the
distance between two genotypes should always be estimated
by Euclidian distance, genotypes that are closer to the ideal
genotype are considered to be desirable (Yan and Tinker, 2006).
Therefore, IP 22423 (G-39), IP 7910 (G-123), and IP 7941
(G-220) were identified as desirable genotypes with lesser FB
scores and almost consistent performance. Furthermore, using
the CL at the 95% level for individual genotypic scores on
FB as well as environmental scores corresponding to PC 1
and PC 2 (Supplementary Table 2), bootstrapping revealed
that PC 1 contributed more to the significant differences
among genotypes, as seen on the biplot (Figure 7). In terms
of FB scores, it was established that the ideal genotype IP
11353 (G-62) was statistically different from the three desirable
genotypes, IP 22423 (G-39), IP 7910 (G-123), and IP 7941,
based on PC 1 scores (lower limit, 2.35; and upper limit,
1.99) (G-220). Three desirable genotypes, on the other hand,

TABLE 5 | Standardized test environment evaluation parameters.

Environment Discriminative Representative Desirability Desirability

-ness index index rank

ND-17 1.257 0.771 0.969 4

ND-18 1.446 0.629 0.910 5

ND-19 1.100 0.932 1.025 2

BWL-19 1.361 0.750 1.021 3

JPR-19 1.187 0.864 1.026 1

showed no significant differences in their PC 1 scores for
both parameters.

Evaluation of Testing Locations Based
on Discrimination Power Versus
Representativeness and Desirability
Index
Three parameters, namely, discrimination power (ability to
segregate the tested genotypes), representativeness (ability to
represent the ME) and desirability index (the joint response of
both discriminating power and representativeness) are crucial
for assessing the test environment in the GGE biplot approach.
In the HA-GGE biplot, the length of the environmental vector,
which is approximately the square root of heritability, represents
discrimination ability. The angle between the environmental
vectors and the AEC abscissa specifies the representativeness
of the testing location. The environment becomes more
representative when the angle among the test environment with
AEC abscissa becomes more acute. In analysis, it was found
that among the test environments, BWL-19 had the longest
environmental vectors, rendering it as the most “discriminating
location” with the ability to discriminate genotypes from other
sites. However, in the case of representativeness, ND-19 showed
a minimum angle with average environment followed by JPR-
19. Hence, the desirability index was worked out to identify the
most ideal testing location accounting for both discrimination
ability and representativeness (Table 5). The Jaipur center having
the highest desirability index (1.026) was identified as an ideal
or a type I testing location for testing of a mini core collection
or advance breeding materials against FB disease. Since ND-19
had also been included in the same sector, therefore, it can be
considered as a supplementary or type II location for testing pearl
millet genotypes against FB (Figure 8).

Relationship Among Environments and
Mega-Environment Delineation
In the current study, “which-won-where” biplot for FB score
created a hexagon with six genotypes, G-62, G-210, G-122, G-
138, G-242, and G-181, at the vertices (Figure 9). The equality
lines divided the polygon into six sectors effectively. Five testing
environments were spread in two sectors within the biplot: three
in one and two in another. This illustrated that the testing
locations could be divided into MEs. The first ME (ME-I) was
represented by ND-19, JPR-19, and BWL-19, with IP 11353 (G-
62) having the highest FB resistance as the winning genotypes.
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FIGURE 8 | Discriminativeness vs representativeness view of test locations based on GGE biplot of 43 resistant genotypes across five testing environments. There
was heritability-adjusted scaling of data where the environment standardized data were multiplied by the heritability in each environment (transform = HA), and data
were centered by means of the environments (centering = 2). The biplot was based on “Column metric preserving.” Numbers correspond to genotypes as listed in
Supplementary Table 1. Environment: ND-17, New Delhi-2017; ND-18, New Delhi-2018; ND-19, New Delhi-2019; BWL-19, Bawal-2019; JPR-19, Jaipur-2019.

The second ME (ME-II) was composed of ND-17 and ND-
18 having IP 10543 (G-181) as the winning genotype. All
environments within the MEs exhibited acute angles, resulting
in a positive association with each other. Genotypes IP 8182 (G-
221), IP 11584 (G-135), IP 6883 (G-183), IP 16082 (G-15), IP
6098 (G-237), and IP 13840 (G-226) were placed near to the
origin depicting consistency in the performance.

DISCUSSION

The FB of pearl millet is a severe menace to successful pearl
millet cultivation in the Indian subcontinent particularly in A1
and A zones, which causes considerable yield losses of both
grain and forage (Adhikari et al., 2020). A few genotypes with
partial resistance to the disease have been identified (Thakur
et al., 2009, 2011; Sharma et al., 2013, 2020; Goud et al., 2016;
Prakash et al., 2016). Since FB is controlled by a few genetic

loci with immense environmental influence, progress through
conventional breeding has been very limited. Moreover, the rapid
emergence of new isolates and the complex nature of host–
pathogen interaction along the confounding environmental effect
have made it difficult to pinpoint the various sources of durable
resistance (Adhikari et al., 2020; Sharma et al., 2020). Therefore,
in this study, the HA-GGE biplot approach was used as an effort
to identify durable FB resistance sources in pearl millet with little
GEI effect and having a genetic buffering capacity to overcome
the pathogenic attack.

In the present study, genotypes showed significant differences
for both DFF and FB incidence in all five environments. Even
though mean FB incidence was almost similar for all the
five environments, ND-17 showed a slightly higher incidence
followed by ND-19 and BWL-19. With respect to environment
variables, it was observed that maximum temperature (Max.
Temp), minimum temperature (Min. Temp), and maximum
relative humidity (Max. RH) were slightly higher at ND-17
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FIGURE 9 | Which-won-where biplot view of 43 genotypic scores and five environmental scores constructed along with the 95% confidence regions using 10,000
rotated bootstrap samples. There was heritability-adjusted scaling of data where the environment standardized data were multiplied by the heritability in each
environment (transform = HA), and data were centered by means of the environments (centering = 2). The biplot was based on “row metric preserving” [singular
value partition (SVP) = 1], which means that the singular values were partitioned into the genotype eigenvectors for visualizing the correlation among genotypes.
Numbers correspond to genotypes as listed in Supplementary Table 1. Environment: ND-17, New Delhi-2017; ND-18, New Delhi-2018; ND-19, New Delhi-2019;
BWL-19, Bawal-2019; JPR-19, Jaipur-2019.

followed by ND-19. These factors might have played a significant
role in determining the emergence of the blast disease as also
reported by Pattanayak and Das (2020).

The G, E, and G × E interactions displayed significant
differences as revealed by ANOVA. The presence of a significant
G × E interaction indicated that the FB incidence of tested
genotypes varied across environments, which could be attributed
to different agro-ecologies with varying longitude, latitude, and
elevation. Significant GEI also suggested the need to develop
FB-resistant lines with specific adaptation to target ecology.
Furthermore, genotypic variance contributed more to disease
resistance than the G × E relationship, suggesting that genetic
variation accounted for the most of the variation in disease
reactions. Persaud and Saravanakumar (2018) also reported

greater contribution of genotypic factor over G × E interaction
factor while conducting a multilocation experiment in case of rice
FB in which 76.02% of the total SS was attributed to genotype
(G) effect, 3.10% to environment (E) effects, and 20.88% to GEI
effects. Similar results were also reported by Beyene et al. (2012)
in maize foliar disease resistance, Sharma et al. (2012) in chickpea
wilt incidence, and Sharma et al. (2016) in pigeon pea–Fusarium
udum interaction.

An initial study of 250 genotypes facilitated the selection
of 43 resistant genotypes for HA-GGE biplot analysis. The
complex GEIs were simplified in different PCs and graphically
presented against various PCs in GGE biplot analysis, and
their contribution justified the GGE biplot’s utility in explaining
sources of variation (Yan and Tinker, 2005). In the present
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study, the first two PCs clarified more than 70% of the total
variance, indicating that the variability for FB resistance reaction
is adequately represented. The “mean vs. stability view” of the
biplot for the trait represented differential responses of tested
genotypes to diverse environments due to the existence of
crossover interactions. Genotype ranking in terms of resistance to
blast was observed to change from one environment to another.
The genotypes IP 11353 (G-62), IP 22423 (G-39), IP 7910 (G-
123), and IP 7941 (G-220) were positioned downstream of the
biplot origin and, therefore, experienced less FB score and were
considered resistant. Among these genotypes, IP 11353 (G-62)
was considered to be the ideal genotype owing to its higher
disease resistance and smaller interaction with the environment
in the form of a high projection from the AEC abscissa (Yan
and Falk, 2002). Genotypes that are in proximity with “ideal”
were considered “desirable” due to their high genetic relationship
with the “ideal” genotype (Yan and Tinker, 2005). IP 22423
(G-39), IP 7910 (G-123), and IP 7941 (G-220) were identified
as desirable genotypes owing to their proximity to the ideal
genotypes that differ in their ability to respond to fungal
infection by inducing long-lasting, broad-spectrum, and systemic
resistance. Bootstrapping at 95% CL improved the precision of
the visual observation recorded on promising genotypes. The
ideal genotype revealed a significant statistical difference from
the desirable genotypes. However, all of the desirable genotypes
were overlapping. HA-GGE biplot has successfully detected stable
and resistant genotypes in various crops (Silva et al., 2011; Sillero
et al., 2017; Sánchez-Martín et al., 2017; Parihar et al., 2018;
Singh et al., 2020). Thus, the “ideal” genotypes, along with any
one of the “desirable” genotypes having durable resistance, would
be valuable genetic resources in the upcoming comprehensive
resistance breeding program of pearl millet.

Heritability-adjusted genotype plus genotype × environment
interaction biplot identified the superior testing location,
facilitating complete resource allocation with minimum trial
cost without compromising trial heritability and genetic gain
under selection (Yan, 2001; Yan and Tinker, 2006; Yan and
Holland, 2010). Previous reports also claimed that, assuming
adequate discriminating capacity, “representativeness” is the
most important factor to be considered when deciding how a test
location should be used in genotype evaluation (Yan et al., 2007).
The square root of heritability (

√
H2) of each test environment

based on vector length and the representativeness as its genetic
correlation with other test environments (r) based on the angle
between two test environments can be assessed by HA-GGE
biplots (Allen et al., 1978; Flores et al., 2013). Considering
both the parameters, Jaipur center (JPR-19), with the highest
desirability index, was recognized as the ideal or type I testing
location for testing advanced breeding materials for FB-resistant
progenies during the early breeding stage. The existence of non-
crossover GEI (consistent performance of genotype) suggested
the presence of a close relationship among the test locations.
Thus, HA-GGE biplot is the most precise method for proper
delineation of an ideal testing location.

The only way to accomplish consistent genotype performance
within a given sector is to divide testing locations into distinct
“mega-environments.” “A mega-environment can be described

as a group of analogous locations delivering similar genotypic
responses when sharing the same set of genotypes across the
year” (Yan and Rajcan, 2002). The “mega-environment” can be
effectively depicted using a “which-won-where” view of GGE
biplot methodology (Gauch and Zobel, 1997; Yan and Kang,
2003; Yan et al., 2007). The aim of ME diagnosis is to better
understand the complex GEI pattern that occurs within that
region in order to exploit specific adaptations and maximize
selection responses (Yan, 2011). In the current investigation,
the HA-GGE biplot was able to separate all of the testing
locations into two distinct MEs to aid the restructuring of agro-
ecological zones. Year 2019 was separated as single ME (ME-I) in
which the most desirable environment JPR-19 was also included.
Environmental conditions of the Jaipur location were found to be
more conducive for FB incidence. Hence, Jaipur location owing
to its informative role in the present study can be selected in
future FB testing programs. Bootstrapping at 95% CL improved
the precision of recommendation of a testing location and ME
delineation. However, reported groupings of environments need
to be further reconfirmed using multi-location testing data over
more number of years as also reported by earlier authors (Yan
et al., 2000; Silva et al., 2011; Phuke et al., 2017; Sánchez-Martín
et al., 2017; Das et al., 2020). Also, the performance and stability
of all selected materials advocate additional testing in central
and southern pearl millet-growing regions of the country for the
future development of elite FB-resistant cultivars.

CONCLUSION

In the present study, genotypic effects and GEI exhibited the
greatest effect in comparison with the environment alone for
FB resistance in pearl millet. Based on the HA-GGE biplot, all
of the tested locations could be grouped into two distinct MEs
with winning genotypes. It confirms the presence of crossover-
type GEI and emphasizes breeding for environment-specific
adaptability. More importantly, among the tested genotypes,
IP 11353 was recognized as “ideal,” and IP 22423, IP 7910,
and IP 7941 were recognized as “desirable” genotypes, having
stable resistance against the disease. Salient findings obtained
in the present study were also validated by bootstrapping at
95% CL. This study was also able to reorganize delineated MEs
and advocates precise testing of materials with optimization of
resources in future breeding programs.
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