
fpls-12-657963 May 29, 2021 Time: 18:10 # 1

ORIGINAL RESEARCH
published: 04 June 2021

doi: 10.3389/fpls.2021.657963

Edited by:
Qingguo Xie,

Huazhong University of Science
and Technology, China

Reviewed by:
Ali Parsaeimehr,

Delaware State University,
United States

Muthusamy Ramakrishnan,
Nanjing Forestry University, China

*Correspondence:
Dmitry Kurouski

dkurouski@tamu.edu
Muthukumar Bagavathiannan

muthu@tamu.edu

†These authors have contributed
equally to this work

‡‡‡Present address:
Vijay Singh,

Eastern Shore Agricultural Research
and Extension Center, Painter, VA,

United States

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 09 February 2021
Accepted: 26 April 2021

Published: 04 June 2021

Citation:
Singh V, Dou T, Krimmer M,

Singh S, Humpal D, Payne WZ,
Sanchez L, Voronine DV, Prosvirin A,

Scully M, Kurouski D and
Bagavathiannan M (2021) Raman

Spectroscopy Can Distinguish
Glyphosate-Susceptible

and -Resistant Palmer Amaranth
(Amaranthus palmeri).

Front. Plant Sci. 12:657963.
doi: 10.3389/fpls.2021.657963

Raman Spectroscopy Can
Distinguish Glyphosate-Susceptible
and -Resistant Palmer Amaranth
(Amaranthus palmeri)
Vijay Singh1†‡, Tianyi Dou2†, Mark Krimmer2, Shilpa Singh1, Dillon Humpal2,
William Z. Payne2, Lee Sanchez2, Dmitri V. Voronine3, Andrey Prosvirin3, Marlan Scully3,
Dmitry Kurouski2* and Muthukumar Bagavathiannan1*

1 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States, 2 Department
of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States, 3 Department of Physics
and Astronomy, Texas A&M University, College Station, TX, United States

The non-judicious use of herbicides has led to a widespread evolution of herbicide
resistance in various weed species including Palmer amaranth, one of the most
aggressive and troublesome weeds in the United States. Early detection of herbicide
resistance in weed populations may help growers devise alternative management
strategies before resistance spreads throughout the field. In this study, Raman
spectroscopy was utilized as a rapid, non-destructive diagnostic tool to distinguish
between three different glyphosate-resistant and four -susceptible Palmer amaranth
populations. The glyphosate-resistant populations used in this study were 11-,
32-, and 36-fold more resistant compared to the susceptible standard. The 5-
enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy number for these
resistant populations ranged from 86 to 116. We found that Raman spectroscopy
could be used to differentiate herbicide-treated and non-treated susceptible populations
based on changes in the intensity of vibrational bands at 1156, 1186, and 1525 cm−1

that originate from carotenoids. The partial least squares discriminant analysis (PLS-
DA) model indicated that within 1 day of glyphosate treatment (D1), the average
accuracy of detecting herbicide-treated and non-treated susceptible populations was
90 and 73.3%, respectively. We also found that glyphosate-resistant and -susceptible
populations of Palmer amaranth can be easily detected with an accuracy of 84.7 and
71.9%, respectively, as early as D1. There were relative differences in the concentration
of carotenoids in plants with different resistance levels, but these changes were not
significant. The results of the study illustrate the utility of Raman spectra for evaluation
of herbicide resistance and stress response in plants under field conditions.

Keywords: herbicide resistance diagnostics, plant stress, field scouting, precision weed management, remote
sensing, vibrational spectrum

INTRODUCTION

Weeds compete with crop plants for critical resources and cause severe yield losses, if not managed
adequately (Oerke, 2006). Herbicides are the most commonly used tool for weed control in
modern agriculture; however, repeated use of few herbicide modes of action (MOA) has led to
a widespread evolution of herbicide-resistant weeds in cropping systems. Currently, 263 weed
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species have evolved resistance to 167 herbicides used globally
(Heap, 2020). In the United States cropping systems, weeds
resistant to glyphosate (the active ingredient in the herbicide
Roundup R©) have become a major production challenge (Garetson
et al., 2019). Glyphosate inhibits the 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS) enzyme in plants and leads to
the depletion of the aromatic amino acids tryptophan, tyrosine,
and phenylalanine. The first case of glyphosate resistance in
Palmer amaranth (Amaranthus palmeri S. Wats.), the most
troublesome weed in the United States cropping systems (Van
Wychen, 2017), was confirmed in 2004 in Georgia (Culpepper
et al., 2006). Currently, 30 states in the United States have
reported the occurrence of glyphosate-resistant Palmer amaranth
(Heap, 2020).

Glyphosate-resistant weeds have been managed with
alternative herbicides of different MOA. However, early

FIGURE 1 | Growth stage (8- to 10-cm seedlings) of the Palmer amaranth
plants when treated with glyphosate (1 × = 868 g ae ha−1). An 830-nm
continuous-wave (CW) laser was targeted on the leaf blade, and the leaf area
near the veins was avoided for uniformity.

FIGURE 2 | Dose–response to glyphosate of the resistant (R) and susceptible
(S) populations based on injury ratings (%) at 21 days after treatment. Injury
data were recorded on a scale of 0–100% (0% = no injury and 100% = plant
death). Dose–response curves were plotted on mean values of plant injuries
(%) and error bars represent standard error (SE) of means.

detection of resistance is critical in order to implement measures
in a timely manner. The common approach of confirming
resistance by collecting mature seeds from putative resistant
plants and then testing the seedlings with the herbicide is time
consuming (Beckie et al., 2000), and by the time the diagnosis
results are available, it is often too late to implement effective
field management strategies. Sometimes, farmers attempt to
apply a different herbicide immediately after observing weed
control failure. However, glyphosate applications require a
waiting period of about 10–14 days before plant response can
be determined; given the rapid growth rate of Palmer amaranth
(Horak and Loughin, 2000), the resistant plants can grow to
large sizes before subsequent herbicide applications can be
made, rendering such applications largely ineffective. There is a
critical need for novel technologies that can facilitate early stage
detection of herbicide resistance in weed populations.

Raman spectroscopy (RS) has emerged as an analytical tool for
rapid and non-destructive diagnostics of abiotic (Altangerel et al.,
2017) and biotic stresses in plants (Egging et al., 2018; Farber and
Kurouski, 2018; Farber et al., 2019b; Sanchez et al., 2019a,b,c). RS
measures the vibrational spectrum of the analyzed sample that
allows for determining its structure (Thomas, 1999; Petry et al.,
2003). Thus, RS is considered as a molecular “fingerprinting”
technique, owing to its ability to identify substances and their
chemical compositions (McCreery, 2005; Schulz and Baranska,
2007). In plants, Raman spectra contain vibrational bands that
can be assigned to carbohydrates, carotenoids, proteins, and
phenylpropanoids (Sene et al., 1994; Schulz and Baranska, 2007).
Measurements using the traditional confocal RS units are carried
out under controlled conditions. However, the improvements
with handheld Raman spectrometers (Hager et al., 2018; Sanchez
et al., 2020a) over the past decade have allowed for on-site
diagnosis of biotic and abiotic stresses in plants (Farber et al.,
2019a). For instance, fungal diseases in corn can be detected
with 100% accuracy using RS (Farber and Kurouski, 2018).
It has been demonstrated that RS is capable of diagnosing
ergot, black tip, and mold on wheat and sorghum (Egging
et al., 2018). Additionally, RS has been shown effective in
detecting the presence of insects inside intact cowpea seeds
with high statistical accuracy (Sanchez et al., 2019a). RS could
be used to distinguish between healthy, Huanglongbing (early
and late stage)-infected citrus trees and those suffering from
nutrient deficiencies (Sanchez et al., 2019b,c). Based on this
knowledge, we hypothesized that RS can be used for detection
of herbicide resistance in weeds. In the present study, we
investigated the accuracy of RS in differentiating between
several different glyphosate-susceptible and -resistant Palmer
amaranth populations.

MATERIALS AND METHODS

Plant Material Characterization
Three previously confirmed glyphosate-resistant (TX15-10,
TX15-12-2, TX15-14-1) and four glyphosate-susceptible (TX15-
2, TX15-13-2, TX15-29, TX16-10) populations were used
(Garetson et al., 2019). Although these populations were known
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to be resistant or susceptible to glyphosate, the extent of
sensitivity to this herbicide as well as the mechanism of resistance
(EPSPS gene copy numbers) is yet to be determined, which will
help make a more informed interpretation of the findings. For
this purpose, a herbicide dose–response assay and a gene copy
number analysis were conducted.

Glyphosate Dose–Response
Seeds of glyphosate-resistant and -susceptible Palmer amaranth
populations were planted in six-cell trays (Figure 1) filled with

TABLE 1 | Vibrational band assignments for Palmer amaranth leaf spectra.

Band Vibration mode Assignment

747 γ(C–O–H) of COOH Pectin (Farber et al., 2019b)

915 ν(C–O–C) in plane, symmetric Cellulose, phenylpropanoids (Farber
et al., 2019b)

1001 In-plane CH3 rocking Carotenoid (Farber et al., 2019b)

1047 ν(C–O) + ν(C–C) + δ(C–O–H) Cellulose, phenylpropanoids (Farber
et al., 2019b)

1085 ν(C–O–H) next to aromatic
ring + δ(CH)

Carbohydrate (Sanchez et al.,
2020b)

1156 C–C stretching; ν(C–O–C),
ν(C–C) in glycosidic linkages,
asymmetric ring breathing

Carotenoid (Farber et al., 2019b)

1186 ν(C–O–H) next to aromatic
ring + δ(CH)

Carotenoids (Ruban et al., 2001)

1213 δ(C–C–H) Carotenoids (Ruban et al., 2001)

1268 Guaiacyl ring breathing, C–O
stretching (aromatic)

Phenylpropanoids (Farber et al.,
2019b)

1285 δ(C–C–H) Aliphatics (Farber et al., 2019b)

1326 δCH2 bending Aliphatics, cellulose, lignin (Farber
et al., 2019b)

1387 δCH2 bending Aliphatics (Farber et al., 2019b)

1438 δ(CH2) + δ(CH3) Aliphatics (Farber et al., 2019b)

1525 −C = C-(in plane) Carotenoid (Farber et al., 2019b)

1607 ν(C–C) aromatic ring + δ(CH) Phenylpropanoids (Farber et al.,
2019b)

1690 ν(C = O) Carboxyl groups (Sanchez et al.,
2020b)

TABLE 2 | GR50
a values and resistance levels to glyphosate in the Palmer

amaranth (Amaranthus palmeri) populations used in the study.

Populationb RMSE R2 GR50 (g ae ha−1) R/Sc

TX15-10 (R) 15.05 0.65 537 11.0

TX15-12-2 (R) 16.43 0.71 1780 36.3

TX15-14-1 (R) 16.82 0.72 1578 32.2

TX15-2 (S) 7.08 0.80 47 –

TX16-10 (S) 8.76 0.86 35 –

TX15-13-2 (S) 6.53 0.79 39 –

TX16-10 (S) 9.41 0.87 75 –

aGR50 is the herbicide concentration that reduced plant growth by 50% based on
visible injury measured at 21 days after treatment with glyphosate.
bPopulations denoted with R in parenthesis indicate glyphosate-resistant
populations and those with S indicate susceptible populations.
cR/S ratio was obtained by dividing the GR50 of the R population by the average
GR50 of the four S populations.

FIGURE 3 | Variability in relative EPSPS:ALS gene copy numbers among the
Palmer amaranth populations resistant (TX15-10, TX15-12-2, and TX15-14-1)
or susceptible (TX15-2, TX15-13-2, TX15-29, and TX16-10) to glyphosate.
Each population had four biological replicates (samples) and three technical
replicates (n = 12). These susceptible populations were known standards, and
resistant populations were selected based on the previous study (Garetson
et al., 2019). Data were plotted on mean values and error bars indicate
standard error (SE) of means. Means represented with different letters are
significantly different (Tukey’s honest significance test; HSD, α = 0.05).

potting soil mix (LC1 Potting Mix, Sun Gro Horticulture Inc.,
Agawam, MA, United States) in a greenhouse at Texas A&M
University, College Station, TX, United States, during Fall 2019.
Resistant and susceptible populations were treated with eight
different doses of glyphosate: 0, 217, 434, 868, 1736, 3472, 6944,
and 13888 g ae ha−1 for the resistant population and 0, 54.3,
108.5, 217, 434, 868, 1736, and 3472 g ae ha−1 for the susceptible
population. Glyphosate was applied at 1× the recommended
label rate (868 g ae ha−1) at the 8–10-cm-tall seedling stage
(Figure 1), using a spray chamber fitted with a flat fan nozzle
(TeeJet XR110015) calibrated to deliver 140 L ha−1 of spray
volume, operating at 4.8 kmph. The greenhouse was maintained
at a day/night temperature regime of 30/26◦C and a photoperiod
of 14 h. The experiment was conducted in a randomized
complete block design with four replications. Percent survival
and injury were evaluated at 21 days after treatment (DAT). Data
were analyzed using SigmaPlot v.13 (Systat Software, Inc., San
Jose, CA, United States). A three-parameter logistic regression
equation (1) provided the best fit for the herbicide injury data.

Y = c/[1 + e{−a(x−b)}] (1)

where Y is the injury (%), a is the slope of the curve, b
is the inflection point, c is the lower asymptote, and x is
the herbicide dose.

The regression equations were used to calculate the amount of
herbicide that caused 50% injury/growth reduction (GR50). The
GR50 value of the resistant population divided by the averaged
GR50 of the susceptible standard provided the resistance ratio
(R/S) values for each resistant population.

EPSPS Gene Copy Number
The leaf samples of non-treated susceptible populations and
confirmed resistant populations (treated) were collected at 21
DAT. DNA was extracted from leaf tissues, according to the
protocol provided by Takara DNA isolation kit (Takara Bio
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Inc., Mountain View, CA, United States, Cat # 9194), with
the exception that the dry pellets were resuspended in 20 µl
distilled, deionized water instead of the TE buffer. The DNA
concentration was quantified using NanoDrop 2000 (Thermo
Fisher Scientific, Wilmington, DE, United States), and DNA
was diluted according to the requirement. The EPSPS gene
copy number in each of the populations was determined in
comparison to the acetolactate synthase (ALS) gene (a positive
control) using a qPCR. The forward and reverse primers
used for the EPSPS and ALS genes are as follows: EPSF1
(5′ATGTTGGACGCTCTCAGAACTCTTGGT3′) × EPSR8
(5′TGAATTTCCTCCAGCAACGGCAA3′) and ALSF2
(5′GCTGCTGAAGGCTACGCT3′) × ALSR2 (5′GCG
GGACTGAGTCAAGAAGTG3′) (Gaines et al., 2010). A 25-µl
reaction mix was prepared using SYBR Green Supermix (12.5 µl)
(Bio-Rad, Hercules, CA, United States), forward and reverse
primers (10 µM), and gDNA (1 ng). The qPCR was run at 95◦C
for 15 min followed by 40 cycles of 95◦C for 30 s and 60◦C for
60 s. A negative control (no DNA template) was also used. Data
were analyzed using a method to calculate genomic copy number
of EPSPS relative to ALS, as 1Ct = (Ct ALS - Ct EPSPS). An
increase in genomic EPSPS copy number was expressed as 21Ct

(Gaines et al., 2011).

Raman Spectroscopy
Raman spectra were determined with a handheld Resolve
Agilent spectrometer (Agilent, Santa Clara, CA, United States)
equipped with an 830-nm laser source. The spectra were
collected with 1-s acquisition time and 495-mW power.
Four spectra were collected from each leaf from four
quadrants on the adaxial side of the leaf of each resistant
and susceptible plant before herbicide treatment (D0) and
after 1 day (D1) and 2 days (D2) of herbicide application.
For each of the treatment groups (resistant and susceptible)

at each time point, 30 spectra were collected, resulting in
a total of 1584 spectra. Following this, the spectra were
baselined using the handheld instrument software. Initially,
spectra were collected from one herbicide-resistant (TX15-
14-1) and one susceptible (TX15-13-2) population only
for standardization of the instrument. Later, about 600
Raman spectra from leaves of three herbicide-resistant
(TX15-14-1, TX15-10, and TX15-12-2) and four herbicide-
susceptible (TX16-10, TX15-2, TX15-29, and TX-13-2)
populations (Figure 2) were collected and normalized to
the 1438-cm−1 band, representing CH2 and CH3 vibration
(Table 1; Farber et al., 2019b). This chemical group is
present in nearly all biological molecules, which makes the
normalization unbiased to any specific chemical component
of the weed leaf.

TABLE 3 | PLS-DA confusion matrix for treated and non-treated susceptible
population TX15-2.

Members True
prediction

rate (TPR%)

Predicted
as non-
treated

Predicted
as treated

One day after treatment (D1)

Non-treated 30 90 27 3

Treated 15 73.3 4 11

Matthew’s correlation coefficient (D1) = 0.640

Two days after treatment (D2)

Non-treated 32 96.9 31 1

Treated 11 90.9 1 10

Matthew’s correlation coefficient (D2)a = 0.878

aMatthew’s correlation coefficient is generated by MATLAB R2019a add-on
PLS_Toolbox 8.6.2 (Eigenvector Research Inc.) for the binary classification model.
The score of MCC is based on four confusion matrix categories: true positive, false
negative, true negative, and false positive to reflect the quality of prediction model.

FIGURE 4 | Raman spectra of (A) resistant (TX15-14-1) and (B) susceptible (TX15-2) populations of Palmer amaranth collected at D0 (non-treated), D1 and D2.
Here, D1 and D2 indicate observations conducted at 1 and 2 days after herbicide treatment, respectively. Raman spectra collected from leaves of plants with no
herbicide applied (blue curves) were measured at the same time points with those that were sprayed with the herbicide (red). Most of the spectra with no herbicide
(blue) was masked by that of herbicide treated (red). The Raman spectra were normalized to total spectral area.
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FIGURE 5 | Area-normalized Raman spectra of all resistant (blue) and susceptible (red) populations of Palmer amaranth collected at D1 (A) and D2 (B). Here, D1
and D2 indicate observations conducted at 1 and 2 days after herbicide treatment, respectively.

FIGURE 6 | Mean (circles) and 95% confidence intervals for the intensities of weed spectra collected from D1 and D2, normalized to the total spectra area at
carotenoid bands 1186 cm−1 and 1213 cm−1, generated following the ANOVA test. Blue: resistant population, red: susceptible population. D1 = 1 day after
treatment and D2 = 2 days after treatment of glyphosate.

Statistical Analysis
The Raman spectra data were imported into the MATLAB
R2019a add-on PLS_Toolbox 8.6.2 (Eigenvector Research Inc.)
for statistical analyses. The preprocessing of the spectra included
mean centering and area normalization for partial least square

discriminant analysis (PLS-DA), which is a suitable analysis
method for spectral data (Lee et al., 2018). Analysis of
variance (ANOVA) was also performed in MATLAB R2019a
add-on PLS_Toolbox 8.6.2 to compare carotenoid bands (at
1186 cm−1 and 1213 cm−1) between the herbicide-resistant
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and -susceptible plants after treating with glyphosate. Matthew’s
correlation coefficient is generated by MATLAB R2019a add-on
PLS_Toolbox 8.6.2 (Eigenvector Research Inc.) for the binary
classification model. The score of MCC is based on four
confusion matrix categories: true positive, false negative, true
negative, and false positive to reflect the quality of prediction
model (Chicco and Jurman, 2020).

RESULTS AND DISCUSSION

Herbicide Resistance Characterization
The estimated GR50 values for TX15-10, TX15-12-2, and TX15-
14-1 were 537, 1780, and 1568 g ae ha−1, respectively (Table 2 and
Figure 2). The resistance ratios have indicated that the resistant
populations TX15-10, TX15-12-2, and TX15-14 were 11-, 36-,
and 32-fold more resistant to glyphosate, respectively, compared
to the susceptible standard (average GR50 = 40.3) (Table 2 and
Figure 2). The variation (low and high) in resistance levels of
the tested resistant populations in the current study presented an
appropriate case for differentiation through RS.

Small spectroscopic changes can be used for confirmatory
differentiation of glyphosate-resistant and -susceptible plant
populations. The PLS-DA analysis of Raman spectra indicates
that glyphosate-treated and non-treated susceptible populations
can be differentiated with an average accuracy of 93.45% and
82.1% at D1 and D2, respectively (Table 3). This is a confirmatory
evidence that Raman system can detect small variations between
healthy and glyphosate-stressed plants within 1 or 2 days of
herbicide application.

EPSPS Gene Copy Number
The susceptible A. palmeri populations used in the current study
had a single copy of EPSPS (Figure 3). However, relative gene
copy numbers in the resistant populations (TX15-10, TX15-12-
2, and TX15-14-1) ranged from 86 to 116. In general, EPSPS
gene amplification is a common resistance mechanism among
glyphosate-resistant Amaranthus spp. (Singh et al., 2018), which

TABLE 4 | PLS-DA confusion matrix of three different resistant and four different
susceptible populations.

Members True
prediction
rate (TPR%)

Predicted as
non-treated

Predicted as
treated

One day after treatment (D1)

Resistant 353 84.7 299 54

Susceptible 128 71.9 36 92

Matthew’s correlation coefficient (D1) = 0.544

Two days after treatment (D2)

Resistant 342 79.8 273 69

Susceptible 104 58.7 43 61

Matthew’s correlation coefficient (D2)a = 0.358

aMatthew’s correlation coefficient is generated by MATLAB R2019a add-on
PLS_Toolbox 8.6.2 (Eigenvector Research Inc.) for the binary classification model.
The score of MCC is based on four confusion matrix categories: true positive, false
negative, true negative, and false positive to reflect the quality of prediction model.

results in increased EPSPS enzyme production, allowing the
resistant populations to overcome the effect of glyphosate (Gaines
et al., 2010). The difference in the number of EPSPS copies
detected among the resistant populations used in the current
study corroborates with the variation in sensitivity of these
populations to glyphosate (11- to 36-fold; Table 2). The variation
in EPSPS gene expression may lead to differential physiological
response in Palmer amaranth populations, which may in turn
influence Raman spectra.

Raman Spectra
First, RS was used to determine structural changes in a
single herbicide-resistant (TX15-14-1) and -susceptible (TX15-2)
Palmer amaranth population before (D0) and after (D1 and D2)
glyphosate application (Figure 4).

Raman spectra of Palmer amaranth leaves exhibited
vibrational bands originating from cellulose, phenylpropanoids,
pectin, proteins, and carotenoids (Figure 4 and Table 1). We also
observed bands that correspond to the CH2 and CH3 vibrations
that could be assigned to aliphatic hydrocarbons such as oils
and waxes (Table 1). No changes have been found in intensities
or positions of these bands in the spectra collected from leaves
of different glyphosate-resistant plants (Figure 4A) compared
with respective non-treated. At the same time, a decrease in the
intensity of carotenoids (1156, 1186, and 1525 cm−1) has been
observed in Raman spectra collected at both D1 and D2 from
leaves of susceptible plants after the application of glyphosate,
compared with non-treated susceptible plants (Figure 4B).

About 600 spectra from leaves of three glyphosate-resistant
(TX15-14-1, TX15-10, and TX15-12-2) and four -susceptible
(TX16-10, TX15-2, TX15-29, and TX15-13-2) populations of
Palmer amaranth indicated spectroscopic differences between the
two groups following glyphosate treatment. A decrease in the
intensities of carotenoid vibrations (1186 and 1213 cm−1) has
been observed in the spectra of susceptible plants after herbicide
application at both D1 and D2 (Figures 5A,B, 6). These results
showed consistent reduction in the intensities of carotenoids
across different susceptible populations of Palmer amaranth. Two
PLS-DA models built for D1 and D2 distinguished the resistant
and susceptible populations (Table 4).

Partial least square discriminant analysis is a classification
method evolved from PLS which is commonly used for linear
regression. PLS-DA is an ideal algorithm for predictive and
descriptive modeling (Lee et al., 2018). PLS-DA has quantitative
explanatory and qualitative response variables. In the current
study, Raman spectra are the quantitative explanatory variables,
which have its own explanatory (Raman Shift) and response
(intensity) variables. The qualitative response variables are the
treatment statuses of the Palmer amaranth.

Besides, PLS-DA, there are other methods like Fisher’s
linear discriminant analysis (LDA) and soft independent
modeling of class analogies (SIMCA) to build a classification
model. LDA assumes that the data will fit in a particular
distribution or linear relationships. It is applicable to many
classification problems, but it is limited by the correlation
between variables (Lee et al., 2018). PLS-DA, comparing with
LDA, offers a higher degree of flexibility. Another commonly
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FIGURE 7 | Partial least square discriminant analysis (PLS-DA) model based plot of the first three latent variables (LVs), LV1 (blue), LV2 (orange), and LV3 (yellow) of
D1 (A) and D2 (B) resistant vs. susceptible model. Annotations indicate the centers of the peaks before the first derivative was taken. The dash line in the middle
corresponds to 0 point. D1 = 1 day after treatment, and D2 = 2 days after treatment of glyphosate.

FIGURE 8 | Normalized Raman spectra of resistant (blue) and susceptible (red) populations of Palmer amaranth collected at D0 (non-treated). Spectra of resistant
and susceptible at D0 are overlapping.
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used method “SIMCA” differentiate different classes using
principal component analysis (PCA).

Based on PLS-DA models, the first three latent variables
of the D1 model (Figure 7A) explained 13.7, 14.6, and
5.9% of the variation between the resistant and susceptible
population spectra. The second plot for the latent variables
(which explains the greatest class-to-class variation of 14.6%)
is similar to the general weed leaf spectrum, suggesting that
most of our classifications were made based on the difference
in the intensity of the peaks. The carotenoid bands at 1156
to 1213 cm−1 and 1525 cm−1 expressed greater difference
in intensity. A large absolute value at the 1185-cm−1 band
corresponds to carotenoids. The first three LVs of the D2
model (Figure 7B) explain 30, 3.5, and 5.1% of the variation.
In addition to 1156-, 1186-, and 1525-cm−1 bands, LV2 and
LV3 also express difference at 1285 and 1326 cm−1 bands,
which are attributed to CH2 vibration (Table 1 and Figure 7B).
Our results show that glyphosate-resistant and -susceptible
populations of Palmer amaranth can be detected with an accuracy
of 82.3 and 65.3%, respectively, averaged across D1 and D2.
The resistant populations used in this study were 13- to 44-fold
resistant (Table 1), which could be easily distinguished from the
susceptible populations with consistent accuracies. The relatively
lower prediction accuracy of susceptible populations in a general
model can be explained by small intra-population variations
in their sensitivity to glyphosate. The susceptible populations
were highly sensitive to glyphosate at the recommended label
rate, and even a small variation in sensitivity could lead to
inconsistencies in spectra (Figures 2, 3 and Table 2). Thus,
such populations can show a physiological response that can be
expressed slightly faster or slower at D1 and D2. Nevertheless,
our results show that the prediction accuracy is high enough
for confirmatory identification of glyphosate-resistant and -
susceptible populations of Palmer amaranth at D1 and D2.

Spectroscopic signatures of three glyphosate-resistant
(TX15-14-1, TX15-10, and TX15-12-2) and four -susceptible
(TX15-2, TX15-29, TX15-13-2, and TX16-10) populations
of Palmer amaranth were also compared in the absence of
herbicide treatment (Figure 8). At D0 (non-treated), spectra
from herbicide-resistant populations were not different from
the spectra collected from the susceptible Palmer amaranth
population. The analysis of variance (ANOVA) test performed
at the two carotenoid bands 1186 cm−1 and 1213 cm−1 showed

TABLE 5 | PLS-DA confusion matrix of three non-treated resistant and four
non-treated susceptible populations at D0 (before herbicide application).

Members True
prediction
rate (TPR%)

Predicted as
resistant

Predicted as
susceptible

Resistant 405 76.8 307 98

Susceptible 250 64.8 88 162

Matthew’s correlation coefficienta = 0.403.
aMatthew’s correlation coefficient is generated by MATLAB R2019a add-on
PLS_Toolbox 8.6.2 (Eigenvector Research Inc.) for the binary classification model.
The score of MCC is based on four confusion matrix categories: true positive, false
negative, true negative, and false positive to reflect the quality of prediction model.

significant differences at D1 and D2, but not at D0. However,
PLS-DA modeling of these spectra allowed for a prediction
accuracy of 76.8% for the resistant and 64.8% for the susceptible
plants at D0 (Table 5). The PLS-DA analysis may not be
picking up direct plant response and needs further research for
differentiating herbicide-resistant and -susceptible populations
without herbicide applications.

The results of this study indicate that carotenoid content
in plants can be used as a simple measure for monitoring
herbicide-induced stress. In this study, glyphosate was the
specific herbicide tested to compare Raman spectra differences
between glyphosate-resistant and -susceptible Palmer amaranth
populations, and whether this response can be the same for
other herbicides and weed species is yet to be determined.
However, exposure to herbicides constitutes a major abiotic
stress for plants, and it is known that plant stress can
directly influence carotenoid production (Altangerel et al., 2017).
Moreover, it is speculated that general stress response can lead
to changes in several compounds, which may subsequently
alter carotenoid peaks (Dong and Zhao, 2017). Carotenoids
are a large group of polyenes that are directly involved in
plant stress responses. Based on the acquired Raman spectra,
we can conclude that a concentration of carotenoids decreased
in the susceptible plants upon glyphosate-induced stress. This
suggests that carotenoids were metabolized into abscisic acid,
β-ionone, and β-cyclocitrals, molecular analytes that protect
the plant against such an abiotic stress (Nambara and Marion-
Poll, 2005; Havaux, 2014). At the same time, no significant
changes in the concentration of carotenoids in resistant
plants were detected.

The use of additive spray for surface-enhanced Raman
spectra (SERS) has been suggested to increase the sensitivity
of Raman spectra (Yang et al., 2017). In the current study,
the SERS could not be implemented in order to avoid any
interaction of the additive spray solution with the herbicide
molecules. Nevertheless, our experiments were repeated twice
with a new set of seedlings each time, and the differentiation
of carotenoid peaks for glyphosate-resistant and -susceptible
populations was consistent both times, suggesting the robustness
of this approach.

The high accuracy of prediction in the current study indicates
the potential of RS for use in herbicide-related studies. For
example, it can be utilized for detecting herbicide residues in
plants and the extent of herbicide drift in crop fields. Herbicide
drift is an important field issue in recent times leading to several
litigations, and RS may provide an effective means for detecting
drift in large field scales. Among the Raman platforms, handheld
or remote Raman units are expected to provide more flexibility
and convenience for studying plant physiological characteristics
from a distance. Recently, a telescopic pulsed Raman system
has also been developed (Misra et al., 2005), which is capable
of measuring Raman spectra irrespective of light conditions,
from a distance of 10 cm to 120 m. This would extend the
applications of the Raman system to be utilized in manned or
unmanned aerial systems for precision diagnosis of herbicide-
related issues under field conditions, which can inform precision
weed management.
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CONCLUSION

The results of this study suggest that RS holds promise
for early and rapid field diagnosis of glyphosate-resistant
populations and utilization in precision weed management.
Raman spectra could differentiate herbicide-treated and non-
treated susceptible populations with an accuracy of 93.5 and
82.1%, respectively, averaged across D1 and D2. Based on
PLS-DA modeling, the glyphosate-resistant and -susceptible
populations of Palmer amaranth can be easily predicted with an
accuracy of 84.7 and 71.9%, respectively, at D1. The accuracy
of predicting a glyphosate-resistant and -susceptible population
without herbicide treatment was 76.8 and 64.8%, respectively, but
the differences were statistically non-significant. More research
is required to detect subtle differences in Raman spectra to
differentiate herbicide-resistant and -susceptible populations
prior to herbicide application, although it is unclear if such
differences can be case-specific and any generalizations could be
made. Standardization of this can bring revolutionary changes
in herbicide resistance detection and management approaches.
Nevertheless, the availability of hand-held Raman sensors
provides opportunities for rapid detection of herbicide resistance
and stress response under field conditions. More research is
imperative for improving the utility of this technology for
broader applications.
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