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The current lack of efficient methods for high throughput field phenotyping is a constraint

on the goal of increasing durum wheat yields. This study illustrates a comprehensive

methodology for phenotyping this crop’s water use through the use of the two-source

energy balance (TSEB) model employing very high resolution imagery. An unmanned

aerial vehicle (UAV) equipped with multispectral and thermal cameras was used to

phenotype 19 durum wheat cultivars grown under three contrasting irrigation treatments

matching crop evapotranspiration levels (ETc): 100%ETc treatment meeting all crop water

requirements (450mm), 50%ETc treatment meeting half of them (285mm), and a rainfed

treatment (122mm). Yield reductions of 18.3 and 48.0% were recorded in the 50%ETc

and rainfed treatments, respectively, in comparison with the 100%ETc treatment. UAV

flights were carried out during jointing (April 4th), anthesis (April 30th), and grain-filling

(May 22nd). Remotely-sensed data were used to estimate: (1) plant height from a digital

surface model (H, R2 = 0.95, RMSE = 0.18m), (2) leaf area index from multispectral

vegetation indices (LAI, R2 = 0.78, RMSE = 0.63), and (3) actual evapotranspiration

(ETa) and transpiration (T) through the TSEB model (R2 = 0.50, RMSE = 0.24 mm/h).

Compared with ground measurements, the four traits estimated at grain-filling provided

a good prediction of days from sowing to heading (DH, r = 0.58–0.86), to anthesis (DA, r

= 0.59–0.85) and to maturity (r = 0.67–0.95), grain-filling duration (GFD, r = 0.54–0.74),

plant height (r = 0.62–0.69), number of grains per spike (NGS, r = 0.41–0.64), and

thousand kernel weight (TKW, r = 0.37–0.42). The best trait to estimate yield, DH, DA,

and GFD was ETa at anthesis or during grain filling. Better forecasts for yield-related traits

were recorded in the irrigated treatments than in the rainfed one. These results show a

promising perspective in the use of energy balance models for the phenotyping of large

numbers of durum wheat genotypes under Mediterranean conditions.
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INTRODUCTION

Wheat is a staple food for humans, providing 18% of the
daily human intake of calories and 20% of protein (http://www.
fao.org/faostat/). Durum wheat (Triticum turgidum L. subsp.
durum [Desf.] Husn) represents about 6% of a global wheat
production of about 740 million tons per year (FAO, 2017).
Wheat production per unit area needs to double by 2050 to meet
the projected food demand of a global population forecast to be
9.22 billion. Achieving this objective is a significant challenge
that will require increasing the current global yield increase
rate of 1.3–2.4% y−1 (Ray et al., 2013), whilst at the same
time minimizing the use of resources and the environmental
impact (Tilman et al., 2011; Lal, 2016). Besides, in the current
scenario of global climate change, the success of sustainable
agriculture in many regions of the world is totally reliant on
water availability. The Mediterranean region –the largest durum
wheat producing area worldwide, the largest consumer of durum
wheat products and the most important import market–, is
one of the most sensitive to the effects of climate change, with
projections forecasting a precipitation decrease of 4–27% during
the cropping season (Flato et al., 2013). The development of high-
yielding cultivars adapted to water-limited conditions is therefore
critical to guarantee food security.

There is a general agreement that yield increases can only
be achieved by improving the efficiency of large-scale breeding
programs, particularly for suboptimal environments (Moshelion
and Altman, 2015). One of the major challenges facing breeding
programs centered on drought-prone areas is to develop tools
capable of quantifying the actual water use of plants under
different water regimes. The development of wheat varieties with
improved water use efficiency (WUE, yield as a function of
water used in transpiration) is seen as a way to increase yield
in rainfed environments (Condon, 2004; Condon and Maxwell,
2014). The major challenge for fast genetic progress is to connect
genetic variants (genotype) to their expression in observable
traits (phenotype), and to predict plant phenotypes from genetic
information (Cobb et al., 2013). The enormous advances in the
genome sequencing of plants are providing massive genomic
datasets, but the lack of efficient methods to rapidly collect large
volumes of high quality phenotypic data has become a bottleneck
in genomics-assisted breeding (White et al., 2012). Until now,
given the complexity of measuring actual transpiration or water
status in a large number of plots under field conditions, the
difficulty of measuring the phenotypic response of plants to water
use constraints has limited the goal of higher yields in breeding
programs. Given this difficulty, evaluations of plant transpiration
have relied mostly on surrogate traits, although this has most
likely resulted in over-dependence on the surrogates (Vadez
et al., 2014). Moreover, traditional phenotyping in germplasm

Abbreviations: ET, evapotranspiration; T, transpiration; H, predicted plant height;
PH, observed plant height; DH, days from sowing to heading; DA, days from
sowing to anthesis; DM, days from sowing to maturity; DAS, days after sowing;
GFD, grain filling duration; NSm2, number of spikes/m2; NGS, number of
grains/spike; TKW, thousand kernel weight; GFR, grain filling rate; GFD, grain
filling duration.

evaluation activities under field conditions requires substantial
investments in time, labor, and cost.

There is growing scientific interest in the application of remote
sensing for high throughput phenotyping (HTP), particularly
in breeding and germplasm evaluation activities (Furbank and
Tester, 2011, Fiorani and Schurr, 2013; Walter et al., 2015).
HTP through remote sensing allows the assessment of plant
phenotypes on a scale and with a level of precision and speed that
are unattainable with traditional methods (Dhondt et al., 2013).
Numerous studies have used either RGB, fluorescent, thermal,
hyperspectral, or 3D imaging to estimate morphological traits,
biomass, plant growth, yield, water status, canopy temperature,
or disease symptoms in many breeding programs and crops
(Deery et al., 2014; Haghighattalab et al., 2016; Watanabe et al.,
2017; Yang et al., 2017, 2020; Sagan et al., 2019). In addition,
crop growth rates and spatial mapping of crop height variations
have been obtained in wheat at field scale, as well as in individual
plots, from images obtained with an RGB camera mounted on
an unmanned aerial vehicle (UAV) (Holman et al., 2016). Madec
et al. (2017) obtained a reliable assessment of the height of wheat
plants with a digital camera with a 6,000–4,000 pixel sensor
mounted on a hexacopter. Shi et al. (2016) developed empirical
models to estimate the leaf area index (LAI) and percent canopy
cover of winter wheat. Bendig et al. (2014) estimated fresh and
dry above-ground biomass in barley from RGB images captured
from a small UAV. Chapman et al. (2014) estimated crop lodging
in wheat plots of a breeding program from images taken by
cameras mounted on a customized robotic helicopter. Detailed
reviews on remote sensing tools and platforms available for HTP
in a plant breeding context can be found in Araus and Cairns
(2014) and Araus et al. (2018).

Water status has been assessed in different crops by HTP
thermography (Costa et al., 2013; Leroux et al., 2016; Perich
et al., 2019). In many studies, different approaches have been
used to calculate the so-called crop water stress index (CWSI)
(Jackson et al., 1981; Jones, 1999; Gonzalez-Dugo et al., 2015).
However, when the CWSI is calculated either empirically through
non-water stress baselines or with reference panels, comparison
between cultivars can only be achieved in a relative way. This is
because the CWSI depends, among other factors, on the stomatal
response to the vapor pressure deficit (VPD), which varies
between cultivars and crop developmental stages. Therefore, it
is too complex to determine this response for large collections
of cultivars. Surface energy balance (SEB) models have also been
widely used for assessing the actual evapotranspiration and water
status of many crops at different scales, mostly using satellite
imagery (Bastiaanssen et al., 1998; Allen et al., 2007; McShane
et al., 2017). Among the different SEB models, the two-source
energy balance (TSEB) modeling scheme allows the estimation of
transpiration and evaporation separately (Norman et al., 1995).
However, if very high resolution thermal imagery is available, in
which case it is possible to directly retrieve soil (Tsoil) and canopy
(Tc) surface temperatures, the model can also be used, obtaining
in some cases higher accuracies (Nieto et al., 2018; Bellvert et al.,
2020). As far as we are aware, only Bellvert et al. (2021) have used
this model to date for field-based phenotyping (of a collection
of almond rootstocks in their work), but this present work is
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FIGURE 1 | (A) Study site location; (B) Layout of the field experiment showing the three irrigation treatments: 100%ETc (blue), 50%ETc (yellow), and rainfed (red).

the first to evaluate the feasibility of TSEB in a set of durum
wheat cultivars.

The primary objective of this research was to determine
the suitability of using the TSEB model for the assessment of
actual evapotranspiration and its components in a collection of
spring durum wheat cultivars grown under contrasting water
regimes in a Mediterranean environment. The specific objectives
were: (1) to quantify the yield penalty caused by a reduction
of water availability, (2) to determine the crop growing stage
most suitable for assessing important agronomic traits through
remote sensing images, and (3) to identify the agronomic traits
that can be reliably assessed by remote sensing images and the
best performing indicators for them.

MATERIALS AND METHODS

Experimental Setup
The field experiment was conducted at Sucs, Spain (41◦41′49′′N,
0◦25′46′′E, 285m elevation) during the 2018–2019 growing
season. The site has a typical Mediterranean climate, with
a rainfall and reference evapotranspiration (ET0) of 177 and
603mm, respectively, during the growing season. Soil has a fine-
loamy texture with a field capacity of 27% and wilting point
of 13% as calculated from the Saxton’s soil hydraulic calculator
(Saxton et al., 1986). Fourteen durum wheat (Triticum turgidum
ssp. durum) commercial varieties (Anvergur, Athoris, Burgos,
Calero, Carpio, Claudio, Don Ricardo, Don Sebastián, Eunoble,
Euroduro, Grador, Iberus, Sculptur, and Tussur) and five inbred
lines from the IRTA durum wheat breeding program (05D278,
07D057, 08D010, 09D066, 09D069) were evaluated under three
contrasting irrigation treatments. Irrigation treatments were
as follows: (i) 100%ETc, irrigated 100% of the seasonal crop
evapotranspiration (ETc), (ii) 50%ETc, irrigated 50% of seasonal

ETc, and (iii) Rainfed, which was not irrigated (Figure 1). In
each irrigation treatment, genotypes were planted following
an incomplete block design with four replications and plots
of 9.6 m2 (eight rows 8m long and 0.15m apart). Sowing
was carried out on December 4th 2018 at a density of 450
seeds/m2. Due to the low precipitation received from December
to February (29mm) all plots were evenly irrigated on March
1st with 20mm to guarantee the plants’ survival. Irrigation
was scheduled on a weekly basis and water was applied during
2–3 days of the week. Sprinklers were installed in a grid of
18 × 18m and water flow discharge was 7.8 l/h/m2 for the
100%ETc and 3.9 l/h/m2 for the 50%ETc treatments. Weekly
irrigation was scheduled following a water balance model (Allen
et al., 1998). ETc was calculated as a product of the Penman-
Monteith ET0 (Allen et al., 1998) and crop coefficients (Kc).
The used crop coefficients were derived from FAO-56 (Allen
et al., 1998), and started from 0.7 at the vegetative growth stage
to 1.07 at the beginning of the mid-season stage. During the
late season (from June 11th), the Kc decreased and reached
a value of 0.6. In addition, 0.8 was used as a coefficient of
efficiency of the sprinkler irrigation system (Savva et al., 2001).
Meteorological data was gathered from an automated weather
station belonging to Catalonia’s official network ofmeteorological
stations (SMC, www.ruralcat.net/web/guest/agrometeo), which
is located around 3 km from the study site. The amount of water
applied through irrigation in each treatment during the entire
growing season was also measured with digital water meters
(CZ2000-3M, Contazara, Zaragoza, Spain). Before sowing, the
field was fertilized with 162 u P2O5 and 360 u K2O ha−1 and
top dressed twice with ammonium nitro-sulfate at rates of 118 kg
N/ha at the end of tillering and 50 kg N/ha at mid-jointing.
The field was maintained free of weeds, diseases and pests by
chemical treatments.
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FIGURE 2 | Unmanned aerial vehicle (UAV) and cameras used in the study. (A)

UAV, (B) Multispectral Micasense Rededge, and (C) Thermal Flir Vue Pro

cameras.

Image Acquisition Campaign
Images were acquired with the Cóndor UAV hexacopter
(Dronetools, https://www.dronetools.es/) (Figure 2) on April 4th
(121DAS, days after sowing), April 30th (147DAS), and May
22nd (169DAS) in 2019, coinciding with the crop developmental
stages of mid-jointing, around anthesis and grain filling,
respectively (Figure 3). The vapor pressure deficit (VPD) and
air temperature (Ta) at the moment of image acquisition were
respectively, 5.5 KPa and 9.9◦C for 121DAS, 12.0 KPa and 18.8◦C
for 147DAS, and 11.0 KPa and 19.7◦C for 169DAS. Flights were
always conducted in sunny conditions and with a wind speed
below 12 m/s. The UAV was equipped with a multispectral and
a thermal camera. The former was a Micasense RedEdge-M
(Micasense, 1300N NorthlakeWay, Seattle, USA), which has five
spectral bands located at the wavelengths 475 ± 20 nm (blue),
560 ± 20 nm (green), 668 ± 10 nm (red), 717 ± 10 nm (red
edge), and 840 ± 40 nm (near infrared), and a field of view
(FOV) of 47.2◦. The thermal camera was a FLIR Vue PRO
(FLIR Systems, Wilsonville, OR, USA) with a resolution of 336
× 256 pixels and a 6.8mm focal length, with a FOV of 45 ×
35◦. The spectral response was in the range of 7.5–13.5µm. All
flights were conducted at ∼12:00 h solar time. The UAV flew
over at a height of 50m agl (above ground level), capturing
images with a resolution of 0.02 and 0.10m per pixel for the
multispectral and thermal cameras, respectively. Flight planning
had 80/60 frontal and side overlap, respectively. During image
acquisition, in situ measurements were conducted for different
targets in order to correct the atmospheric contribution to the
signal. Temperature measurements were continuously recorded
for hot and cold targets (black and white panels, bare soil, and
vegetation) with a fixed IR-temperature sensor (Calex PC151LT-
O, Pyrocouple series, Calex Electronics Limited, Bedfordshire,
UK). The radiometric calibration of the multispectral sensor
was conducted through an external incident light sensor that
measured the irradiance levels of light at the same bands as the
camera. In addition, in situ spectral measurements for ground
calibration targets were performed using a Jaz spectrometer
(OceanOptics, Inc., Dunedin, FL, USA). The Jaz has a wavelength

response from 200 to 1,100 nm and an optical resolution
of 0.3 to 10.0 nm. During spectral collection, spectrometer
calibration measurements were taken with a reference panel
(white color SpectralonTM) and dark current before and after
taking readings from radiometric calibration targets. Geometrical
correction was conducted using five ground control points
(GCP), and measuring the position in each with a handheld
global positioning system (GPS) (Geo7x, Trimble GeoExplorer
series, Sunnyvale, CA, USA). All images were mosaicked
using the Agisoft Photoscan Professional version 1.6.2 (Agisoft
LLC., St. Petersburg, Russia) software and geometrically and
radiometrically terrain corrected with QGIS 3.4 (QGIS 3.4.15).

Measurements of Agronomic Traits
Crop development was monitored on three replications per
treatment on a twice-weekly basis from booting to record the
following growth stages (Zadoks et al., 1974): GS55 (heading),
GS65 (anthesis), and GS87 (physiological maturity). A plot
was considered to have reached a given developmental stage
when ∼50% of the plants exhibited the stage-specific phenotypic
characteristics. For each UAV flight date, on-ground key crop
biophysical parameters were measured as follows. Plant height
(PH, cm) was measured in three plants per plot of one replication
for each irrigation treatment. PH was also measured at GS87 in
three main stems per plot in three replications from the tillering
node to the top of the spike, excluding the awns. The LAI was
obtained on the same days and in the same plots using a portable
linear ceptometer (AccuPAR model LP-80, Decagon Devices
Inc., Pullman, WA, USA). Measurements were conducted from
12:00 to 15:00 h (local time) in one replicate of each irrigation
treatment. In total, 63 plots were measured for each flight event.
Photosynthetically active radiation (PAR) below the wheat was
measured placing the ceptometer in a horizontal position at
ground level and recording five PAR readings in each plot. A
fixed tripod connected to the sensor allowed collection of the
incident radiation above the plants. Then, the LAI calculator
provided by AccuPAR-L80 (LAI-calculator, METER Group) was
used to estimate LAI. Concomitant to image acquisition, in three
leaves per plot of one replication in each irrigation treatment,
leaf transpiration was also measured with an infrared gas
analyzer (IRGA) (LI-7500, LI-COR Inc., Lincoln, NE). Plots were
harvested mechanically at ripening and yield (kg/ha) expressed
as dry weight. From a random sample of the plants contained
in a 0.5-m-long stretch from a central row of each plot of three
replications at ripening, the number of spikes/m2 (NSm2) and the
number of grains/spike (NGS) were assessed. Thousand kernel
weight (TKW) was estimated as the mean weight of three sets
of 100 grains per plot. Grain filling rate (GFR, mg/day) was
obtained as the quotient between grain dry weight and grain-
filling duration (GFD) considered to be the number of days
between anthesis and physiological maturity.

Remotely-Sensed Estimates of Biophysical
Traits
The three-dimensional plant height (H) was estimated from
the photogrammetric point cloud of multispectral images. The
digital surface model (DSM) and the digital terrain model
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FIGURE 3 | Pictures of each irrigation treatment for the different dates of image acquisition (April 4th, April 30th, and May 22nd).

(DTM, bare soil surface devoid of plants) were both obtained
through automatic aerial triangulation, bundle block adjustment,
and camera calibration methods using the Agisoft PhotoScan
version 1.6.2 (Agisoft, 2020; St. Petersburg, Russia) software. A
classification of bare ground pixels was used to obtain the DTM
of the field. Then, a raster corresponding to heights was obtained
by subtracting the DTM from the DSM using the band math tool
of the QGIS software (Figure 4). LAI was estimated from spectral
vegetation indices. In particular, this study used the improved
modified triangular vegetation index (MTVI2) (Yao et al., 2017),
which was calculated as:

MTVI2 =
1.5 [1.2 (R840 − R560) − 2.5 (R717 − R560)]
√

(2R840 + 1)2 −
(

6R840 − 5
√
R717

)

− 0.5
(1)

The fractional vegetation cover (fc) of each plot was also
calculated by adapting the equation proposed by Gutman and
Ignatov (1998). Instead of the normalized difference vegetation
index (NDVI), we used the MTVI2 due to its low saturation at
high LAI values:

fc =
MTVI2i −MTVI2soil
MTVI2veg −MTVI2soil

(2)

where
MTVI2i corresponds to the value on the target plot;
MTVI2soil corresponds to the value of bare soil; and
MTVI2veg corresponds to the value of pure vegetation.

FIGURE 4 | Schematic workflow used to estimate crop height. Digital terrain

model (DTM) and digital surface model (DSM) obtained through automatic

aerial triangulation. Plant height (H) estimated above ground surface.

Remotely-Sensed Estimates of
Evapotranspiration
Actual crop evapotranspiration (ETa) and its partition
components were retrieved from the two-source energy balance
(TSEB) model (Norman et al., 1995; Kustas and Anderson,
2009). Two-source models partition the surface energy fluxes
and the radiometric temperature (Trad) between nominal soil
and canopy sources. The approach is therefore able to estimate
canopy transpiration (T) and soil evaporation (E) separately.
However, because direct measurements of canopy (Tc) and soil
(Tsoil) temperatures are rarely available with satellite imagery, in
most applications these component temperatures are estimated
in an iterative process in which it is first assumed that green
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FIGURE 5 | Amount of water applied, rainfall, and reference evapotranspiration (ET0) corresponding to the different irrigation treatments (100%ETc, 50%ETc, and

rainfed) from March 2019 (87 DAS, days after sowing) to May 2020 (177 DAS).

canopy (expressed as the function of LAI that is green) transpires
at a potential rate based on the Priestley-Taylor formulation
(Priestley and Taylor, 1972). On the other hand, if very high
resolution thermal imagery is available, it is possible to obtain Ts

and Tc directly, without the need to compute an initial canopy
transpiration (Nieto et al., 2018; Bellvert et al., 2021). In this
study, Tsoil and Tc were individually obtained for each plot
from the thermal imagery. The model also requires other inputs
such as plant height, LAI and fc, the retrieval of which has been
described above. Meteorological inputs were obtained from
Catalonia’s official network of meteorological stations. For more
information, the full python script is available online (https://
github.com/hectornieto/pyTSEB, last accessed 20.08.2020)
and additional details of the TSEB model are provided by
Norman et al. (1995), Kustas and Norman (1999), and
Nieto et al. (2018).

Statistical Analyses
Analyses of variance (ANOVAs) were conducted following
a split-plot design. Means were compared with a Tukey
test at P < 0.05. Linear regression equations and Pearson
correlation coefficients were used to analyze the relationship
between variables.

RESULTS

Effect of Irrigation Treatments on the
Agronomic Performance of Durum Wheat
The amount of irrigation water applied throughout the growing
season in the 100%ETc and 50%ETc treatments was 340

and 180mm, respectively (Figure 5). When also considering
the rainfall from sowing to physiological maturity, the total
amount of water received was 450, 285, and 122mm for
the 100%ETc, 50%ETc, and rainfed treatments, respectively.
The ANOVAs showed statistically significant differences among
irrigation treatments for all of the evaluated agronomic traits
(Table 1). Yield ranged between 7,274 and 10,446 kg/ha in
the 100%ETc, between 5,910 and 8,469 kg/ha in the 50%ETc
and between 3,905 and 5,972 kg/ha in the rainfed treatments
(Table 1 and Supplementary Table 1). The effect of the total
amount of water applied on yield was huge, as the 50%ETc
and rainfed treatments reduced yield on average by 18.3 and
48.0%, respectively, in comparison to the treatment meeting all
crop water requirements. While the 50%ETc treatment did not
diminish the NSm2, it did decrease the NGS and TKW. The
absence of irrigation resulted in larger reductions in NGS than
in NSm2 and TKW. The grain filling rate increased steadily as
consequence of water shortage. Plant height was reduced 6.5
and 11.9% in the 50%ETc and rainfed treatments in comparison
with 100%ETc.

Reductions in the amount of water applied also significantly
shortened the crop cycle (Table 1). In comparison with
100%ETc, the 50%ETc treatment resulted in decreases
of 3 (2.2%), 4 (2.8%), and 6 (3.3%) days in the length
of the periods from sowing to heading, anthesis, and
maturity, respectively. The rainfed treatment additionally
shortened between 4 and 7 days the periods needed
to reach each of these growth stages. In consequence,
a significant drop was observed in the duration of the
grain-filling period.
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TABLE 1 | Mean values ± SE and ranges (between brackets) for yield and yield-related traits of the 19 durum wheat genotypes included in the study.

Trait Irrigation treatment

100% ETc 50% ETc Rainfed

Grain yield (kg/ha) 9219 ± 184a (7,274–10,446) 7534 ± 184b (5,910–8,469) 4793 ± 120c (3,905–5,972)

Number of spikes/m2 (NSm2) 501 ± 26.1a (289–742) 523 ± 16.0a (387–627) 452 ± 13.6b (356–591)

Number of grains/spike (NGS) 42.1 ± 1.53a (34.3–60.3) 35.8 ± 1.56b (23.6–53.9) 27.9 ± 1.32c (15.3–38.8)

Thousand kernel weight (TKW, g) 55.8 ± 0.69a (45.5–64.8) 53.7 ± 1.01b (44.9–61.3) 51.5 ± 0.78c (45.1–58.4)

Grain filling rate (GFR, mg/day) 1.39 ± 0.04c (1.08–1.64) 1.42 ± 0.03b (1.11–1.67) 1.47 ± 0.03a (1.24–1.68)

Plant height (PH, cm) 92 ± 1.44a (80–102) 86 ± 1.29b (73–95) 81 ± 1.01c (72–92)

Days to heading (DH) 135 ± 0.55a (130–138) 132 ± 0.52b (127–136) 128 ± 0.43c (124–130)

Days to anthesis (DA) 143 ± 0.66a (138–147) 139 ± 0.54b (135–143) 135 ± 0.28c (133–137)

Days to maturity (DM) 183 ± 0.39a (180–186) 177 ± 0.35b (174–143) 170 ± 0.45c (167–174)

Grain filling duration (GFD, days) 40 ± 0.41a (37–43) 38 ± 0.41b (35–40) 35 ± 0.38c (32–38)

Means within rows with different letters are significantly different for a Tukey test at P < 0.05.

TABLE 2 | P-values of the ANOVAs for the traits estimated through remote

sensing.

Source of variation D.F. ETa T H LAI

Flight date 2 <0.0001 <0.0001 <0.0001 <0.0001

Irrigation treatment 2 <0.0001 <0.0001 <0.0001 <0.0001

Error a 6

Flight date* Irrigation treatment 4 <0.0001 <0.0001 <0.0001 <0.0001

Error b 12

Genotype 18 <0.0001 <0.0001 <0.0001 <0.0001

Flight date × Genotype 36 ns 0.0127 ns 0.0453

Irrigation treatment × Genotype 36 0.0005 0.0479 0.0124 0.0018

Residual 396

Total 512

ETa, actual evapotranspiration; T, actual transpiration; H, estimated plant height.

Remotely-Sensed Estimates of the
Biophysical Parameters and
Evapotranspiration Components
The ANOVA showed statistically significant differences between
flights, irrigation treatments and their interaction (Table 2). This
interaction was of a cross-over nature due to the opposite
trend observed in the first flight compared with the second and
third ones, as shown in Table 3. Genotypes also differed for all
remotely-sensed traits. The interactions of genotype with flight
date and irrigation treatment were significant with the exception
of the flight date× genotype interaction for H and ETa (Table 2).

The MTVI2 vegetation index (VI) was linearly related with
LAI when aggregating data from the three flight dates (R2 =
0.78, P < 0.001, Figure 6A). Also, this regression was significant
for each specific date, with R2 values of 0.20, 0.77, and 0.87 for
April 4th, April 30th, and May 22nd, respectively. The one-to-
one relationship between observed and estimated LAI showed an
RMSE of 0.63 (Figure 6B). Average remotely-sensed estimated
LAI values significantly increased from April 4th to April 30th,

but slightly decreased at the third acquisition date (May 22nd)
(Table 3). Differences in LAI between irrigation treatments were
also significant for all image acquisition dates (P < 0.001). In
contrast with the values observed for flights conducted at anthesis
(April 30th) and grain-filling (May 22nd), the LAI values of
the rainfed treatment at the jointing stage (April 4th) were the
highest. Estimates of plant height through remote sensing were
significant, with R2 of 0.95 and RMSE of 0.18mwhen aggregating
data from the three dates (Figure 6C). Averaged observed values
of PH ranged from 0.40 to 0.96m, respectively, for the first
(April 4th) and last (May 22nd) flights. In all dates, the remotely-
sensed assessments underestimated the actual PH. Estimates of
canopy transpiration (T) obtained through the TSEB model were
compared against those measured at leaf level. The regression
obtained aggregating data from the three dates was significant
(R2 = 0.50, P < 0.001) with an RMSE of 0.24 mm/h (Figure 6D).
Differences in ETa and T between irrigation treatments were also
significant for all dates (Table 3). Similarly to LAI, the highest
and lowest values of ETa and T were respectively identified in
the 100%ETc and rainfed treatments, with the partial exception
of the flight conducted on April 4th (jointing stage), when the
values were inverted.

Relationships Between Agronomic and
Remotely-Sensed Traits
Regression analyses were carried out using the aggregated yield
of the three irrigation treatments as dependent variable and each
of the four traits assessed by remote sensing in each flight event as
explanatory ones (Figure 7). The results show that LAI, estimated
at jointing, could not predict yield. However, the relationships
between yield and H, ETa, and T were negative and statistically
significant in this first flight (Figure 7A). Significant and positive
relationships were obtained between yield and remotely-sensed
estimated traits on the other two image acquisition dates. With
the exception of H, R2 tended to be slightly higher on the last
date (May 22nd), accounting for between 82 and 90% of yield
variability (Figure 7C). ETa was the parameter which showed the
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TABLE 3 | Mean values ± SE for LAI, daily evapotranspiration (ETa), and daily transpiration (T) assessed by remote sensing imagery for each flight date and for each

water input treatment.

Irrigation treatment April 4th April 30th May 22nd

Mean Range Mean Range Mean Range

LAI

100%ETc 1.66 ± 0.03c 1.24–2.18 3.87 ± 0.05a 2.46–5.11 3.80 ± 0.07a 2.10–5.29

50%ETc 1.84 ± 0.02b 1.47–2.37 3.23 ± 0.05b 2.48–4.21 2.66 ± 0.06b 1.72–3.73

Rainfed 2.03 ± 0.04a 1.11–2.61 2.05 ± 0.04c 1.33–2.98 1.01 ± 0.03b 0.51–1.72

ETa (mm/day)

100%ETc 4.88 ± 0.04c 4.11–5.77 6.80 ± 0.03a 6.00–7.22 7.15 ± 0.07a 4.79–7.66

50%ETc 5.41 ± 0.03b 4.72–6.04 6.41 ± 0.04a 5.43–7.03 5.53 ± 0.09b 3.49–7.15

Rainfed 5.66 ± 0.06a 4.63–6.95 4.74 ± 0.08b 3.05–5.85 3.78 ± 0.03c 3.15–4.69

T (mm/day)

100%ETc 2.45 ± 0.02c 2.06–2.89 4.45 ± 0.03a 3.98–5.01 5.47 ± 0.06a 3.90–6.68

50%ETc 2.56 ± 0.02b 2.23–2.92 4.49 ± 0.03a 3.93–5.03 4.55 ± 0.08b 3.38–6.30

Rainfed 2.67 ± 0.03a 1.86–3.03 3.73 ± 0.06b 2.68–4.89 2.06 ± 0.05c 1.01–3.30

Means within columns and trait with different letters are significantly different for a Tukey test at P < 0.05.

highest R2 with yield for the last two image acquisition dates.
Although the R2 of the yield vs. T regressions were also high,
the values were slightly lower in comparison with those obtained
between yield and ETa.

For a deeper analysis, the same relationships were examined
for each irrigation treatment separately. Significant associations
(P < 0.05) between remotely-sensed traits and yield were only
found for the 100%ETc treatment (Figure 8). The non-significant
relationships of other irrigation treatments were probably due to
the lower range of yield values obtained in them, as shown in
Table 1. In addition, the relationships between H and yield in the
100%ETc treatment were also not significant (data not shown).
The accuracy of fitting yield to LAI, ETa, and T varied between
dates (Figure 8). The only trait significantly related with yield
in the three dates was ETa, which at anthesis and grain filling
accounted for 68% of yield variations (Figures 8B,C). On the
other hand, the relationship between T and yield was also slightly
lower in comparison with ETa.

Most of the relationships between traits estimated through
remote sensing (ETa, T, H, and LAI) and the agronomic
traits other than yield were statistically significant when the
data of the three irrigation treatments were aggregated for
the analyses (Table 4). The second and third flights led to
the largest number of significant and positive correlation
coefficients, in contrast with the negative associations obtained
in the first flight, as observed previously for the relationships
with yield. The largest Pearson correlation coefficients (r >

0.80, P < 0.001) corresponded to the relationships between
ETa, T, and LAI with DH, DA, and DM, particularly during
the third image acquisition data (grain filling) (Table 4).
Correlation coefficients between the four remotely-sensed
traits and PH were also positive and significant in the two
later flights. For the yield components, the largest correlation
coefficients appeared for the relationships between ETa,
T, and LAI with NGS, and between H and both PH and
TKW. Traits assessed from remote sensing could not

properly estimate GFR when data of the three irrigation
treatments were analyzed at once. Strong relationships
were observed between remotely-sensed and phenological
traits (Table 4).

On the other hand, the correlation coefficients calculated
for each irrigation treatment separately showed a completely
different picture. The number of statistically significant
associations between remotely-sensed traits and yield-related
traits was much larger for the 50 and 100%ETc treatments
than for the rainfed treatment (Table 5). The largest r value
obtained for the non-irrigated treatment corresponded to the
relationship between LAI and PH during the flight carried out
on April 4th (r = 0.65, P < 0.01), but this relationship was not
confirmed in the subsequent image acquisition dates. ETa was
negatively and significantly associated with NGS on the first
and second image acquisition dates, but this relationship was
not significant on the third date (Table 5). Moreover, positive
and significant correlation coefficients appeared between ETa
and PH on the first and third dates, but not the second. For
the 50%ETc treatment, significant correlation coefficients were
found for all yield-related traits on at least one image acquisition
event, with the exception of the NSm2 and GFD which were
not associated with any remotely-sensed estimated trait on
any date (Table 5). Predicted plant height (H) was significantly
and negatively correlated with NGS and positively with GFR
on the three image acquisition dates and T was significantly
correlated with DH and DA on the second and third dates.
No significant relationships were found between remotely-
sensed traits assessed at jointing and yield-related traits in the
100%ETc treatment, but H estimated on the second and third
dates was significantly related with NGS, TKW, GFR, and PH
(Table 5). ETa was positively associated with PH, DH, and
DA but negatively with GFD on the second and third dates.
GFD was significantly and negatively correlated with the four
remote sensing traits on the third date, and with ETa and LAI on
the second.
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FIGURE 6 | Relationships between (A) leaf area index (LAI) and the MTVI2 spectral vegetation index, (B) observed and estimated LAI by the MTVI2, (C) observed and

estimated plant height by the photogrammetric 3D point cloud, and (D) observed leaf transpiration with the IRGA device and estimated plant transpiration (T) through

the TSEB model. Different colors indicate different dates of image acquisition (n = 171). RMSE, root mean square error. ***P < 0.001; **P < 0.01; *P < 0.05.

Assessment of Genotypic Differences
Figure 7 shows that the largest difference between genotypes
for the remotely-sensed traits was recorded in the third
flight. The comparison of genotypic values for each trait and
irrigation treatment for that flight event showed that, although
genotypes differed in their yield at each irrigation treatment,
the discrimination power of the remotely-sensed traits varied
depending on the water available for the crop (Table 6).
Genotypic differences were not statistically significant for H
in the rainfed treatment in which significant differences were
obtained for LAI, Eta, and T. Genotypes did not differ in ETa and
T in either of the irrigated treatments and in LAI in the 50%ETc
treatment. In agreement with the positive relationships between

yield and either LAI, Eta, and T (Figure 8), the genotypes that
reached the highest yields in the 100%ETc treatment (Euroduro,
Anvergur, Grador, and others shown in Table 6) tended to have
superior values for these three traits, while the lowest yielding
ones showed low values for them. However, this trend was
not observed for the 50%ETc treatment, where the significant
differences detected for yield between the Sculptur and Claudio
cultivars, which obtained the highest yields, and the Don
Sebastian cultivar, which gave the least yield, were not associated
with specific values of the remotely-sensed traits. Even though the
rainfed treatment had the highest discrimination power between
cultivars, genotypic differences in remotely-sensed traits were
also independent of yield variations.
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FIGURE 7 | Relationships between estimated plant height, LAI, actual evapotranspiration (ETa), and transpiration (T) assessed from remote sensing imagery and yield

for the three irrigation treatments (full circles, 100%ETc; empty circles 50%ETc; +, Rainfed) for each image acquisition event: (A) April 4th (jointing), (B) April 30th

(anthesis), and (C) May 22nd (grain filling). Each point represents the mean value of a genotype across replications (n = 57). ***P < 0.001; **P < 0.01; *P < 0.05.

DISCUSSION

The present study provided a quantifiable assessment of UAV
imagery for the purpose of obtaining an accurate estimation
of the agronomic performance of durum wheat from the
field phenotyping of 19 durum wheat genotypes grown under
three contrasting water regimes. The proposed method employs
the TSEB model to estimate differences between irrigation
treatments and genotypes in actual crop evapotranspiration
(ETa) and transpiration (T). The biophysical parameters of
the vegetation, such as LAI and canopy height (H) were
respectively estimated through spectral vegetation indices and
photogrammetry. The feasibility of using this methodology for
high-throughput field phenotyping has been demonstrated, since
it is robust, repeatable and time, and cost efficient compared with
measurements made at ground level.

Effect of Water Availability on Durum
Wheat Field Performance
The experimental site is representative of the Mediterranean
climate, with a long-term mean temperature of 10.4◦C and
average rainfall of 248mm from November to June. This mean
temperature was recorded for the 2018–2019 growing season,
but rainfall was slightly lower than average. This water scarcity
allowed the testing of three contrasting irrigation treatments.
Results indicate that a water input of 450mm (rainfall +
irrigation), most of which was supplied during the spring, was
enough to cover all the evapotranspiration needs of the durum
wheat crop (Figure 5). A reduction of 36.7% in the water supplied

(285mm) covered half of these needs (50%ETc), while the non-
irrigated treatment (122mm of rainfall) represented 27.1% of the
water needed to meet evapotranspiration needs. The analyses
of the effects of water constraints on grain yield revealed that
supplying 63.3% (50%ETc) or 27.1% (rainfed treatment) of
the water needed to cover the whole crop evapotranspiration
needs, resulted in yields that corresponded to 81.7 and 52.0%,
respectively, of the yield obtained in the full irrigation treatment
(100%ET). Karam et al. (2009) obtained yield decreases between
25 and 28% in rainfed and half-irrigated durum wheat compared
with a full-irrigated treatment. These results suggest that durum
wheat could be an alternative for irrigated areas with low seasonal
water availability, since a reduction of 36.7% in water input
decreased yield by only 18.3%, and a water reduction of 72.9%
diminished yield by 48.0%. In terms of water productivity (WP),
the values were 2.05, 2.64, and 3.93 kg of DM grain/m3 of
water applied in the 100%ETc, 50%ETc, and rainfed treatments,
respectively. These results reflect the efforts made by breeders
to improve drought tolerance of modern durum wheat cultivars
adapted to drought-prone environments (Araus et al., 2003),
where yield differences between drought-tolerant and drought-
sensitive ideotypes are evident (Senapati et al., 2019).

The 18.3% yield reduction observed in the 50%ETc treatment
when compared with the 100%ETc was a consequence of
decreases of 15.0% in NGS and 3.8% in TKW, as the NSm2

was not affected. In addition, the 48.0% yield decrease of the
rainfed treatment in comparison with the fully-irrigated one was
due to a reduction of 33.7% in NGS, 9.8% in NSm2, and 7.7%
in TKW. In this study, the larger LAI values estimated for the
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FIGURE 8 | Relationships between estimated LAI, actual evapotranspiration (ETa), and transpiration (T) assessed from remote sensing images and yield for the

100%ETc treatment for each image acquisition event: (A) April 4th (jointing), (B) April 30th (anthesis), and (C) May 22nd (grain filling). Each point represents the mean

value of a genotype across replications (n = 19). Relationships involving predicted plant height are not shown because P > 0.05 in the three image acquisition dates.

***P < 0.001; **P < 0.01; *P < 0.05.

TABLE 4 | Pearson correlation coefficients (r) for the relationships between traits assessed through remote sensing and agronomic traits other than yield for each image

acquisition event across irrigation treatments (n = 57).

Trait April 4th April 30th May 22nd

ETa T H LAI ETa T H LAI ETa T H LAI

Number of spikes/m2 (NSm2) −0.01 0.08 −0.02 0.25 0.36** 0.38** 0.30* 0.37** 0.28* 0.35** 0.30* 0.35**

Number of grains/spike (NGS) −0.74*** −0.68*** −0.44*** −0.20 0.59*** 0.49*** 0.41** 0.54*** 0.64*** 0.63*** 0.41** 0.55***

Thousand kernel weight (TKW) −0.23 −0.14 0.13 0.11 0.38** 0.27* 0.50*** 0.37** 0.39** 0.37** 0.42** 0.38**

Grain filling rate (GFR) 0.28* 0.28** 0.39** 0.07 −0.19 −0.20 −0.03 −0.16 −0.19 −0.18 −0.04 −0.13

Plant height (PH) −0.40** −0.20 −0.01 0.11 0.66*** 0.55*** 0.64*** 0.64*** 0.69*** 0.67*** 0.62*** 0.65***

Days to heading (DH) 0.65*** −0.48*** −0.24 0.03 0.80*** 0.71*** 0.66*** 0.82*** 0.86*** 0.85*** 0.58*** 0.82***

Days to anthesis (DA) −0.67*** −0.49*** −0.22 −0.02 0.78*** 0.67*** 0.62*** 0.81*** 0.85*** 0.83*** 0.59*** 0.81***

Days to maturity (DM) −0.80*** −0.63*** −0.34 −0.01 0.90*** 0.76*** 0.74*** 0.89*** 0.95*** 0.92*** 0.67*** 0.87***

Grain filling duration (GFD) −0.70*** −0.59*** −0.40* 0.01 0.72*** 0.62*** 0.63*** 0.67*** 0.74*** 0.71*** 0.54*** 0.64***

ETa, actual evapotranspiration; T, actual transpiration; H, estimated plant height.

***P < 0.001; **P < 0.01; *P < 0.05.
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TABLE 5 | Significant (P < 0.05) Pearson correlation coefficients (r) for the relationships between traits assessed through remote sensing and yield, yield-related traits and

crop phenology for each irrigation treatment and each image acquisition event (n = 19).

Trait April 4th April 30th May 22nd

ETa T H LAI ETa T H LAI ETa T H LAI

Irrigation treatment: 100%ETc

Number of spikes/m2 (NSm2) 0.50* 0.48*

Number of grains per spike (NGS) −0.53* −0.69**

Thousand kernel weight (TKW) 0.63** 0.65**

Grain filling rate (GFR) 0.59** 0.71***

Plant height (PH) 0.51* 0.72*** 0.59** 0.79*** 0.57**

Days to heading (DH) 0.57* 0.47* 0.45* 0.56*

Days to anthesis (DA) 0.65** 0.49* 0.48* 0.58**

Grain filling duration (GFD) −0.71*** −0.49* −0.59** −0.64** −0.59** −0.57*

Irrigation treatment: 50%ETc

Number of grains per spike (NGS) −0.50* −0.48* −0.57* −0.67** −0.73*** −0.62**

Thousand kernel weight (TKW) 0.52* 0.48* 0.63**

Grain filling rate (GFR) 0.49* 0.51* 0.59** 0.53*

Plant height (PH) 0.52*

Days to heading (DH) 0.63** 0.48* 0.52* 0.58**

Days to anthesis (DA) 0.58** 0.47* 0.48* 0.58**

Days to maturity (DM) 0.52* 0.70*** 0.55*

Rainfed

Number of spikes/m2 (NSm2) 0.59**

Number of grains per spike (NGS) −0.57* −0.56* −0.46*

Thousand kernel weight (TKW) 0.46*

Plant height (PH) 0.50* 0.65** 0.54* 0.54*

Days to heading (DH) 0.59**

Days to maturity (DM) 0.63**

Grain filling duration (GFD) 0.55*

Traits with nonsignificant r values for any flight have been omitted. ETa, actual evapotranspiration; T, actual transpiration; H, estimated plant height.

***P < 0.001; **P < 0.01 *P < 0.05.

rainfed treatment at the jointing stage suggest that the tiller
number was probably not strongly affected by drought, which is
in agreement with the low reduction of NSm2 observed in the
rainfed treatment. Our results agree with the assumption that
NGS is typically the yield component that is most sensitive to
drought stress due to severe competition for nutrients during
stem elongation (Richards et al., 2001; Kilic and Yagbasanlar,
2010; Liu et al., 2015). Decreases in the NGS from 12.4 to 58.7%
have been found in durum wheat under drought stress compared
to well-irrigated conditions (Vahamidis et al., 2019).

When compared with the fully-irrigated treatment, the cycle
shortening observed in this study ranged between 3 days (2.2%)
for DH in the 50%ETc treatment to 13 days (7.1%) for DM in
the rainfed treatment. Similar reductions have been reported in
the literature (Liu et al., 2015; Varga et al., 2015). The reductions
observed in DA and DM in the 50%ETc and rainfed treatments
suggest that water stress likely accelerated leaf senescence, which
is a common response to water shortage (Ihsan et al., 2016;
Pour-Aboughadareh et al., 2020). In relative terms, the greatest
shortening was observed in GFD (up to 12.5%), which could
not be compensated by the increase of 5.7% in GFR. Decreases

of 14% in the duration of grain filling have been reported
previously in durum wheat subjected to pre-anthesis drought
(Liu et al., 2015). It is well-known that the reduced grain-filling
period directly affects grain number and grain size, which largely
accounts for the decrease in wheat yields (Dolferus et al., 2011).
Plant height decreased 6.5 and 12.0% in the 50%ETc and rainfed
treatments, respectively, which is in agreement with the biomass
reduction caused by drought shown by previous studies (Pour-
Aboughadareh et al., 2020 and references herein).

Predicted vs. Observed Traits
Spectral vegetation indices (VI) assessed from ground level
though field spectrometry have been widely used to estimate
several wheat traits such as growth status, biomass, yield, or
photosynthesis (Aparicio et al., 2000, 2002; Magney et al., 2016).
Moreover, UAV-derived VI [e.g., NDVI, soil adjusted VI (SAVI)
and optimized soil adjusted VI (OSAVI)] have also been used
to estimate the same traits (Yue et al., 2019; Marino and
Alvino, 2020), but with the advantages over field spectrometry
of generating surface maps in real time, higher flexibility and
more convenient operation for estimating plant traits from large
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TABLE 6 | Comparison of estimated plant height (H), leaf area index (LAI), actual evapotranspiration (ETa), actual transpiration (T), and yield in each genotype on May 22nd (grain filling).

100%ETc 50%ETc Rainfed

Genotype H LAI ETa T Yield Genotype H LAI ETa T Yield Genotype H LAI ETa T Yield

(m) (mm/day) (mm/day) (t/ha) (m) (mm/day) (mm/day) (t/ha) (m) (mm/day) (mm/day) (t/ha)

EURODURO 0.94a 4.08abc 7.45 5.63 10.45a CLAUDIO 0.86abc 2.88 6.00 5.01 8.47a SCULPTUR 0.61 1.19ab 3.85ab 2.42ab 5.97a

ANVERGUR 0.83bcde 4.18abc 7.45 5.74 10.01ab SCULPTUR 0.80abc 3.00 5.97 5.25 8.27a CLAUDIO 0.65 1.02ab 3.83ab 2.08ab 5.40ab

GRADOR 0.92ab 3.74abc 7.35 5.45 9.98ab ATHORIS 0.78bc 2.50 5.23 4.26 8.05ab IBERUS 0.59 0.98ab 3.75ab 1.99ab 5.21abc

07D057D4fba 0.84abcde 3.78abc 7.32 5.52 9.95abc 09D066D8cab 0.93a 2.81 5.60 4.63 7.90ab ANVERGUR 0.59 1.06ab 3.68ab 2.19ab 5.19abc

BURGOS 0.87abcd 4.43a 7.46 5.92 9.75abc ANVERGUR 0.81abc 2.77 5.20 4.49 7.87ab CALERO 0.49 0.78b 3.62ab 1.58b 5.13abc

CLAUDIO 0.86abcde 4.14abc 7.41 5.60 9.52abcd EURODURO 0.90ab 2.35 5.43 4.30 7.85ab DON RICARDO 0.70 1.16ab 3.82ab 2.38ab 5.11abc

ATHORIS 0.78def 3.76abc 7.26 5.61 9.45abcd 07D057D4fba 0.86abc 2.64 5.75 4.65 7.79ab BURGOS 0.54 1.07ab 3.91ab 2.16ab 5.08abc

08D010D10cab 0.88abcd 4.07abc 7.13 5.55 9.39abcd GRADOR 0.86abc 2.18 5.40 4.00 7.75ab ATHORIS 0.64 0.96ab 3.72ab 1.98ab 5.03abcd

09D066D8cab 0.91abc 3.91abc 7.38 5.47 9.21abcd CARPIO 0.87abc 2.60 5.33 4.51 7.75ab 08D010D10cab 0.64 1.16ab 4.03ab 2.34ab 4.88bcde

CARPIO 0.86abcde 3.78abc 7.28 5.60 9.20abcd IBERUS 0.81abc 2.87 6.18 4.95 7.62ab EURODURO 0.62 0.97ab 3.72ab 1.99ab 4.87bcde

SCULPTUR 0.81cdef 3.99abc 7.06 5.55 9.16abcd 08D010D10cab 0.85abc 2.69 5.33 4.59 7.59ab 07D057D4fba 0.50 0.91b 3.70ab 1.85ab 4.85bcde

09D069D1dcf 0.88abcd 3.73abc 6.70 5.25 9.09abcde 09D069D1dcf 0.86abc 2.79 5.45 4.95 7.59ab GRADOR 0.52 0.77b 3.56ab 1.57b 4.65bcde

DON RICARDO 0.92ab 3.53abc 7.16 5.48 9.02abcde CALERO 0.73c 2.52 5.82 4.47 7.58ab 09D069D1dcf 0.53 1.02ab 3.78ab 2.06ab 4.62bcde

IBERUS 0.79def 4.47a 7.46 5.95 8.97abcde BURGOS 0.84abc 3.12 5.60 4.87 7.54ab 09D066D8cab 0.55 0.92b 3.87ab 1.87ab 4.36bcde

DON SEBASTIAN 0.92ab 4.26ab 7.16 5.58 8.83abcde DON RICARDO 0.89ab 2.57 5.29 4.40 7.51ab EUNOBLE 0.60 1.06ab 3.85ab 2.17ab 4.30cde

EUNOBLE 0.89abcd 3.31abc 6.96 5.24 8.31bcde 05D278D1be 0.88abc 2.28 5.18 4.14 7.01ab CARPIO 0.57 0.98ab 3.70ab 2.01ab 4.29cde

CALERO 0.70f 2.98c 6.48 4.87 8.10cde TUSSUR 0.73c 2.47 5.34 4.18 6.64ab TUSSUR 0.48 0.83b 3.51b 1.71b 4.23cde

05D278D1be 0.83abcde 3.11bc 6.85 4.93 7.82de EUNOBLE 0.86abc 2.24 5.21 3.93 6.48ab 05D278D1be 0.74 0.87b 3.65ab 1.81b 4.00de

TUSSUR 0.76ef 3.01c 6.46 4.91 7.28e DON SEBASTIAN 0.93a 3.21 5.69 4.83 5.91b DON SEBASTIAN 0.61 1.48a 4.24a 2.92a 3.91e

Genotypes ordered by yield. Different letters in the same column mean significant differences between genotypes at p ≤ 0.05 using Tukey’s honest significant difference test.
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numbers of plots at a time (Lelong et al., 2008; Maimaitijiang
et al., 2017). UAV high-resolution VI may detect changes of
plant status, thus helping to improve crop monitoring, nitrogen
management, and crop yield estimation (Cabrera-Bosquet et al.,
2011). However, the relationships between existing VI and
biophysical parameters of the vegetation, such as LAI, usually
generate an error, in part because some of them saturate at
medium-to-high canopy covers, are sensitive to the chlorophyll
content or to internal factors such as canopy geometry, leaf
and soil optical properties (Baret and Guyot, 1990; Zhou et al.,
2017). In this study, the MTVI2 showed a linear relationship
with LAI, with an R2 of 0.78 (Figure 6A). This positive linear
regression could be attributable to the MTVI2 having a center
wavelength located at the red-edge region (717 nm), which is
mainly influenced by the plant’s structural characteristics and
chlorophyll content (Guyot et al., 1992; Yao et al., 2017; He et al.,
2020). This suggests that the MTVI2 is not as sensitive to canopy
structure as other indices which only use bands at the red and
near-infrared regions.

Crop height (H) estimates through photogrammetry were
regularly underestimated by 0.18± 0.05m. According to Lechner
et al. (2009) and Hengl (2006), the image spatial resolution has
to be at least half of the size of the target object to be accurately
discriminated though photogrammetric analysis. Therefore, it
is possible that the low leaf width of durum wheat, similar to
the pixel size (0.02m), provoked this systematic underestimation
(Figure 6C). Probably, increasing the number of images acquired
from different viewing angles, with a higher overlap, could help
to improve H estimates. However, these results are in agreement
with those obtained in previous studies at the same spatial
resolution in wheat (Holman et al., 2016; Demir et al., 2018), and
olive trees (Caruso et al., 2019). Since plant height is one of the
necessary ancillary data of the TSEB model, a precise estimation
of H is essential to assess plant evapotranspiration.

Estimates of canopy transpiration were validated against leaf
transpiration measurements (Figure 6D). Although remotely-
sensed estimates of T were higher than the measured ones, the
relationship had an R2 of 0.50. The higher T rates assessed
through remote sensing were because they were calculated at
plot level, whereas the others were calculated only at leaf level.
Differences could also be attributable to the likelihood that the
partitioning of ET into T and E contains a substantial bias error.

Relationships Between Traits Assessed
From Remote Imagery and Agronomic
Traits
The sign of the correlation coefficients between remotely-sensed
traits and most of the agronomic characteristics were negative
in the first flight and positive in the subsequent ones. This was
due to the high initial vegetative growth of the plots subjected to
the rainfed treatment, as revealed by the LAI, ETa, and T values
shown in Table 3, which likely reflects the effect of soil variations
on the growth of seedlings. It is probable that soil water holding
capacity was higher in the area were the rainfed treatment was
located. As the season evolved, this trend was reversed and the
fully-irrigated treatment showed the highest evapotranspiration

rates which previous studies have associated with higher stomatal
conductance and photosynthetic rates (Fischer et al., 1998). The
highest ETa and T values observed in the 100%ET treatment are
in agreement with high yielding wheat cultivars showing higher
rates of transpiration (Shimshi and Ephrat, 1975; Reynolds et al.,
1994) and with the strong association existing between T and LAI
(Blum, 2011).

When the analyses of the relationships between grain yield
and the four traits assessed from remote sensing images (H,
ETa, T, and LAI) were conducted using the aggregated data
of the three irrigation treatments for each flight event, the
results clearly show that forecasts were much more accurate at
anthesis and grain filling than at jointing (Figure 7). Except for
H, the correlation coefficients were in general slightly higher
in the third flight (May 22nd) than in the second (April 30th),
thus suggesting that yield predictions were more accurate when
images were captured during grain filling than around anthesis.
A lower correlation in LAI was observed at flowering (2nd flight
date, 147DAS) in comparison to grain filling (3rd flight date,
169DAS). This can probably be explained by an early senescence
reached in some of the genotypes (Table 1). Greater variability
may explain an increase in the correlation with respect to the
second flight date. The analyses conducted for the yield-related
traits confirmed that measurements at advanced crop stages were
better, as demonstrated in previous studies (Hassan et al., 2018).
This was an expected result, as only the potential number of
spikes and spikelets per spike are defined at jointing (Simane
et al., 1993), while grain setting, grain weight and final yield are
determined in subsequent developmental stages (Giunta et al.,
1993). NGS, PH, DH, DA, and DM and GFD could be properly
assessed through remotely acquired estimates of ETa, T, H, and
LAI during grain filling (Table 4). The highest R2 to estimate
yield components was observed in ETa rather than with T. It
is crucial for ET partitioning to retrieve reliable estimates of
canopy and soil temperatures, net radiation, and aerodynamic
roughness, with the latter usually obtained from vegetation
structural parameters. Therefore, any bias in those estimates
could be a source of error when attempting to obtain accurate
estimates of T. In addition, the higher range of variability of ETa
values in comparison to T contributed to obtaining the highest
R2 when it was regressed with yield. This is because ETa also uses
the soil temperature (Tsoil) of each individual plot and irrigation
treatment, with important differences in Tsoil between irrigated
and rainfed plots. On the other hand, predicted plant height (H)
was also a good estimator of DH, DA, DM, GFD, PH, and TKW
at anthesis, although the values were slightly lower in comparison
to the evapotranspiration components. While in this study H was
estimated from photogrammetry using multispectral imagery,
the advantages of using H instead of ET estimates include the
need for fewer inputs, and the lower cost and amount of time
needed. Plant height is an essential trait in wheat as it determines
the architecture of the plant canopy and has a strong effect on
grain number, harvest index and final grain yield (Maccaferri
et al., 2008; Liu et al., 2015). The relationships between plant
height and yield are environmentally dependent as positive
associations have been reported under optimal water conditions
and negative associations in water stress environments (Royo
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et al., 2008; Dogan, 2009; Talebi et al., 2010). Plant height has
been proposed as a potential indicator of tolerance to drought
stress under Mediterranean conditions (Liu et al., 2015).

Although the R2 of the relationships between the assessed
parameters and NSm2 were significant, the weaker relationships
obtained for this trait suggest that it cannot be considered a yield
component that it is possible to properly estimate through remote
imagery. GFR could not be assessed through any remotely-sensed
trait, even when considering the aggregated data of the three
irrigation treatments (Table 4). However, when the relationships
between remotely-sensed estimated traits and yield-related traits
were analyzed individually for each irrigation treatment, results
showed higher accuracy in the irrigated treatments than in the
rainfed one (Table 5). Although some r values obtained from
the regressions between remotely-sensed estimated traits and
the agronomic ones were significant under rainfed conditions,
they did not show consistency among related traits nor across
image acquisition dates. This suggests that they could be more
casual than causal, and therefore do not demonstrate enough
reliability to be recommended for accurate field assessments.
This was probably related, as discussed previously, with the
wider range of values observed for most traits in the irrigated
treatments when compared with the rainfed treatment, as shown
in Table 1, which increased the predictability of remote sensing
imagery. The comparison of the number of significant correlation
coefficients obtained in each irrigated treatment in the second
and third flights and their values revealed that assessments made
in the 100%ETc treatment showed more significant correlation
coefficients and with higher values than the ones made in the
50%ETc treatment (Table 5). As regards the growth stage most
appropriate for predicting yield-related traits, the number of
significant correlation coefficients indicated that, as in the case
of yield, the second (at anthesis) and third (during grain filling)
image acquisition dates were the most suitable, but a higher
number of positive associations were found for the third flight.

In relation to the agronomic traits that can be properly
assessed by remote sensing imagery, the negative and significant
correlation coefficients between H and NGS in the two irrigated
treatments and the two later flights (r values from −0.53 to
−0.73) suggest a causal and consistent association. Similarly,
H showed a positive and significant association with GFR in
the same four cases, with r values ranging from 0.59 to 0.71,
thus indicating a good predictive value. The analysis of the
relationships between predicted plant height and TKW showed
less consistent results given that the correlation coefficient
obtained for the third flight in the 50%ETc treatment was not
statistically significant. DH and DAwere among the phenological
characteristics that were most consistently related with remotely-
sensed traits, with ETa being the best predictor for them, mostly
during the third flight. GFD was negatively and consistently
related with the four remotely-sensed traits estimated from
images acquired during the grain filling stage in the fully-
irrigated treatment.

Remote sensing imagery has been widely used to assess yield-
related traits under a wide range of phenotypical variations
(Aparicio et al., 2002; Haghighattalab et al., 2016; Caruso et al.,
2019). In the current study, when data of the three irrigation

treatments were analyzed together, the yield ranged between
3,905 and 10,446 kg/ha. Previous studies showed that this
very wide range of variability is exceptional for durum wheat
genotypes grown in the same site where this study was carried
out when subjected to a common agronomic management, under
both irrigated and rainfed conditions (Aparicio et al., 2000). For
this reason, we also decided to assess the suitability of remotely-
sensed estimated traits within each irrigation treatment, given
that such homogeneous environmental conditions are more
representative of real-world cropping systems. In this case, the
results showed that yield could only be properly forecasted in
the 100%ETc treatment (Figure 8). The lack of water restrictions
probably allowed the genotypes to express their potentialities,
thus maximizing phenotypic differences as shown by the wider
range of yields observed in the 100%ETc treatment (3,172
kg/ha) compared with the 50%ETc (2,559 kg/ha) and the rainfed
treatment (2,067 kg/ha). Previous studies have also demonstrated
that the capacity of spectral reflectance indices to forecast durum
wheat grain yield was higher in locations where genotypes
reached potential yields (Royo et al., 2003). Under full irrigation
conditions (100%ETc), the results of this study also indicate
that ETa was the best predictor of yield, particularly when
image acquisition was performed around anthesis or during
grain filling. On both dates, it accounted for about 68% of yield
variations (Figure 8).

Capacity of Remotely-Sensed Traits to
Discriminate Among Genotypes
The analysis of the data for each genotype provided by the
remotely-sensed traits assessed during grain filling gave a wide
range of values for all of them. However, in some cases the
differences were not wide enough to be statistically significant
(Table 6). For LAI, ETa, and T, the highest statistical significance
was obtained in the rainfed treatment. Although the pattern
behind these results was not totally clear, the relatively wider
range of values recorded in the rainfed treatment when compared
with the irrigated ones could partially explain these differences.
Though the absolute values of LAI, ETa, and T were greater in
the irrigated treatments than in the rainfed one, in relative terms
the differences between the values of the genotypes showing the
highest and the lowest value for each trait were largest in the
latter. For instance, in the rainfed treatment, the T value of cv.
Don Sebastian (2.92 mm/day) was 86% superior to that of cv.
Grador, which showed the lowest estimate (1.57 mm/day). This
relative difference, which was superior to that obtained in the
100%ETc (17.9%) and the 50%ETc (33.5%) treatments was large
enough to prove statistically that these two genotypes differed
for this trait. Similarly, the relative wider variations among
the extreme values for ETa and LAI obtained in the rainfed
treatment than in the irrigated ones support the differences
obtained in statistical significances. In the case of H, the lack
of differences between genotypes in the rainfed treatment could
not be attributed to the same reason, as the relative difference
in H values was 54%, larger than that observed in the irrigated
treatments (23.7 and 27.4% in 100 and 50%ETc, respectively)
where statistically significant differences were detected. In this
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case, the reason could likely be the low H values in the rainfed
treatment resulting from the short plants, associated to drought
environments (Madec et al., 2017), and the underestimation of
actual plant height occasioned by the methodology employed
which was in accordance with previous studies (Holman et al.,
2016).

According to other studies that related durum wheat
transpiration and yield (Medina et al., 2019), the genotypes with
the highest yields in the fully-irrigated treatment showed superior
LAI, ETa, and T values. A high LAI in durum wheat genotypes at
the milk-grain growth stage denotes a delay of leaf senescence
after anthesis, a characteristic that has been positively related
with grain yield (Borojevic et al., 1980), thus underlining its
importance as a grain yield determining feature. The high values
for ETa and T in high-yielding genotypes are in agreement with
the positive associations found between T and both leaf area and
biomass in wheat grown in well-watered environments (Blum,
2011).

CONCLUSIONS

This study shows the feasibility of using the two-source
energy balance (TSEB) with very high resolution imagery
to assess differences in the evapotranspiration components
of a durum wheat panel. For this purpose, biophysical
parameters of the vegetation were successfully estimated from
multispectral imagery. Plant height and LAI estimates gave
RMSE values of 0.18m and 0.63, respectively. Significant
differences in durum wheat yield and yield components were
observed between irrigation treatments. The 50%ETc and rainfed
treatments accounted for respective yield reductions of 18.3
and 48.0% in comparison with the treatment that met all crop
water requirements (100%ETc). ETa was the remotely-sensed
parameter that, when estimated either at anthesis or during grain
filling, showed a positive relationship and the highest R2 with
yield, DH, DA, and GFD. When data were analyzed individually
for each irrigation treatment, consistent and positive associations
were found between ETa and yield, DH and DA and negative
associations with GFD in the 100%ETc treatment, but not in the
other treatments. The remotely-sensed traits that were assessed
were able to discriminate among genotypes, but the significance
of the differences depended on the irrigation treatment. As
a conclusion, this study demonstrates that remotely-sensed

estimates of ETa through the TSEBmodel are the best predictor of
yield components. R2 values at the grain filling stage were higher
in comparison with other remotely-sensed trait estimates such as
height, LAI or spectral vegetation indices.
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