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Peanut (Arachis hypogaea L.) is an important crop for United States agriculture and
worldwide. Low soil moisture is a major constraint for production in all peanut growing
regions with negative effects on yield quantity and quality. Leaf wilting is a visual
symptom of low moisture stress used in breeding to improve stress tolerance, but visual
rating is slow when thousands of breeding lines are evaluated and can be subject to
personnel scoring bias. Photogrammetry might be used instead. The objective of this
article is to determine if color space indices derived from red-green-blue (RGB) images
can accurately estimate leaf wilting for breeding selection and irrigation triggering in
peanut production. RGB images were collected with a digital camera proximally and
aerially by a unmanned aerial vehicle during 2018 and 2019. Visual rating was performed
on the same days as image collection. Vegetation indices were intensity, hue, saturation,
lightness, a∗, b∗, u∗, v∗, green area (GA), greener area (GGA), and crop senescence
index (CSI). In particular, hue, a∗, u∗, GA, GGA, and CSI were significantly (p ≤ 0.0001)
associated with leaf wilting. These indices were further used to train an ordinal logistic
regression model for wilting estimation. This model had 90% accuracy when images
were taken aerially and 99% when images were taken proximally. This article reports on
a simple yet key aspect of peanut screening for tolerance to low soil moisture stress
and uses novel, fast, cost-effective, and accurate RGB-derived models to estimate
leaf wilting.

Keywords: peanut leaf wilting, RGB color space indices, logistic regression, machine learning, high-throughput
phenotyping

INTRODUCTION

Peanut is an important oil and food crop grown on 28 million hectares (ha) worldwide (FAO STAT,
2020). In the United States, peanut provides relatively high net returns for growers; it is grown
annually on approximately 619,000 ha in 11 states with an average production of 4400 kg ha−1

(US Department of Agriculture-National Agricultural Statistics Service, 2019). Biotic and abiotic
stresses are major constraints to peanut production in all peanut growing regions. For example,

Abbreviations: AIC, Akaike Information Criterion; AUC, area under the curve; CSI, crop senescence index; CV, cross
validation; GA, green area; GGA, greener area; RGB, red-green-blue; ROC, receiver operating characteristic; SC, Schwarz
Criterion.
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in a subhumid region, such as Virginia and the Carolinas,
the summer (May through October) precipitation is regularly
between 500 and 1000 mm. Peanut grows on sandy soils, and
in southeast Virginia, where peanut is grown, available water
capacity in the first 25 cm of the soil profile varies from 0.10
to 0.15 cm/cm. From May to June, precipitation is intense, and
consequently, biomass grows fast. July and August are the hottest
months, and peanut is at the beginning flowering stage in early
July when a combination of abundant biomass, intense water
evaporation from sandy soils, and absence of precipitation can
induce drought and wilting in 10 days. Under these conditions,
moderate drought can reduce economic return by 20% and
severe drought by 60% (Balota et al., 2020). In this environment,
drought usually occurs in midseason, i.e., abundant flowering,
pegging, and pod growth (July and August), not at terminal
growth (September and October). It also happens fast, and
plants do not translocate from older to younger leaves like
cereals do. This is why peanut does not senesce under drought,
likely severely wilts, ceases growth, and recovers at the first
rain as in Figure 1. At the same time, high relative humidity
and abundant morning dew are important water sources for
peanut during water stress time as suggested in other sandy
ecosystems (Liu et al., 2020). Low soil moisture stress during
the flowering and pegging growth stages causes severe reduction
of pod yield (Stansell et al., 1976; Pahalwan and Tripathi, 1984;
Naveen et al., 1992; Smartt, 1994; Rucker et al., 1995; Prasad
et al., 1999; Reddy et al., 2003; Shao et al., 2008). Drought stress
during the pod and seed filling growth stages results in small
and immature seeds with reduced germination, vigor, embryo
membrane integrity, and embryo RNA content (Reddy et al.,
2003). Calcium, usually applied at the beginning of pegging in
early July, is a critical nutrient for peanut seed development; it
needs to be dissolved in soil solution for absorption by pods and
seeds in the ground. Low soil moisture during pod development
results in calcium deficiency causing undeveloped seeds (or
“pops”) and embryo damage (Skelton and Shear, 1971; Wright
et al., 1991). Low soil moisture during seed maturation results
in a decreased oleic to linoleic fatty acid ratio, which reduces
the storage shelf life and nutritional qualities of peanuts (Hashim
et al., 1993). Low moisture is responsible for reduced nodulation
and nitrate reductase activity affecting N fixation and uptake and
biomass and yield production (Lenka and Mishra, 1973; Kulkarni
et al., 1988; Devries et al., 1989). Low moisture stressed peanuts
are prone to Aspergillus flavus mold contamination, known
to produce the carcinogenic aflatoxin (Wilson and Stansell,
1983; Sanders et al., 1993; Luis et al., 2020). When available,
supplemental irrigation can ameliorate low moisture stress, but
this increases input costs. For example, contacts with growers in
Virginia estimate an irrigation cost of $1.24/ha and mm water
(Balota, personal communication). From planting to harvest,
peanut requires weekly amounts of 25–50 mm of water (Rowland
et al., 2012; Putnam et al., 2014). This suggests a weekly irrigation
cost of $62 per ha. In 2020, numerous peanuts fields in southeast
Virginia needed irrigation every week in July to ensure adequate
water supply for the crop (Balota, personal communication).

Under drought conditions, cultivars with tolerance to low
moisture stress are required. Previous studies suggest that

breeding selection using physiological characteristics is a better
option than being selection for yield alone (Kiniry et al., 2005;
Nigam et al., 2005; Nigam and Aruna, 2007; Arunyanark et al.,
2008). The use of remote sensing for phenotyping is also reported
(Raju et al., 2016; Reynolds and Langridge, 2016; Sreeman et al.,
2018). Studies suggest that traditional breeding methods are slow,
and use of remote sensing is required for faster and more accurate
phenotyping (Zaman-Allah et al., 2015; Reynolds and Langridge,
2016; Sreeman et al., 2018). Aerially derived plant wilting from
low-cost cameras and RGB indices could be used to select
breeding lines with drought tolerance. If directly associated with
yield, aerially derived wilting could be used to trigger irrigation
in peanut production, similar to how remotely sensed canopy
temperature has been used to trigger irrigation in Texas (Evett
et al., 1996). This ensures economical water use as suggested in
similar applications in Georgia (Rowland et al., 2012).

Tolerance to low soil moisture is associated with deep rooting
patterns of peanut plants. Deep roots uptake water from a
lower soil horizon during drought stress (Fukai and Cooper,
1995; Henry et al., 2011; Comas et al., 2013). Accurately
measuring rooting depth is difficult and labor intensive with
current methods (Courtois et al., 2013; Krišāns et al., 2020). Leaf
wilting, however, is easily visible and represents the phenotypic
expression of plants when roots cannot replenish the water lost
through transpiration. Water-deficient cells have low cellular
turgor pressure, causing the leaf to lose structural integrity. This
causes the leaves to either fold, roll, or droop down (Blum, 2011).
These symptoms constitute visual expression of wilting and can
be used as a proxy for low moisture stress in plants. Studies show
that reduced leaf water potential due to low moisture stress is
directly related to wilting severity (Engelbrecht et al., 2007). As
illustrated in Figures 1A,B, non-wilted plants have leaves facing
upward with no stems or bare ground visible compared with
wilted plants with folded leaves. Because, in peanut, wilting is a
clear visual symptom of low moisture stress, quantifying wilting
is recommended as an important step toward development of
cultivars with tolerance to low soil moisture (Luis et al., 2016).
Visual rating is an important tool to quantify leaf wilting in plants
(Engelbrecht et al., 2007; Hamidou et al., 2012; Luis et al., 2016;
Balota and Oakes, 2017; Zhou et al., 2020). Visual rating is based
on morphological changes of leaves when cells become less turgid
(Figure 1). However, rating thousands of plots is time-consuming
and subject to human error (Milberg et al., 2008; Borra-Serrano
et al., 2018). Fast and accurate methods are required to intensify
phenotyping for drought tolerance in breeding programs.

Remote sensing can be used to quantify wilting based on
the changes in the leaf physiology and morphology. Red, near
infrared, and infrared imagery helped with development of
an abundance of vegetation indices, e.g., normalized difference
vegetation index (NDVI), green based NDVI (g-NDVI), red–
green ratio index (RGRI), normalized green-red difference
index (NGRDI), and normalized sunlit shaded index (NSSI).
They were used to estimate low soil moisture stress in
several agronomic and horticultural crops, including wheat
(Triticum aestivum L.) (Oakes et al., 2020), sorghum [Sorghum
bicolor (L.) Moench] (Sadeghpour et al., 2017), maize (Zea
mays L.) (Wenting et al., 2014), barley (Hordeum vulgare L.)
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FIGURE 1 | (A) Close up picture of a healthy plant, which has greener, front-facing leaves and no bare ground visible as compared with (B) a wilted plant with lighter
green leaves and bare ground visible. This visual difference can be exploited and used to quantify wilting using pictures.

(Romer et al., 2012), soybean [Glycine max (L.) Merr.] (Zhou
et al., 2020), potato (Solanum tuberosum L.) (Zakaluk and Ranjan,
2008), and spinach (Spinacia oleracea L.) (Raza et al., 2014).
In these studies, multispectral and hyperspectral sensing from
proximal and unmanned aerial vehicle (UAV) images were used.
These expensive technologies require a high level of technical
knowledge (Moshou et al., 2004).

Alternative methods derived from relatively low-cost RGB
digital cameras were also developed for high-throughput
phenotyping (HTP) of important agronomic crops but not for
peanut (Diéguez-Uribeondo et al., 2003; Reyniers et al., 2004;
Graeff et al., 2006; Mirik et al., 2006; Su et al., 2020; Zhou et al.,
2020). Low-cost technology coupled with open-source computer
software seem to offer advantages to more complex technologies
when deriving vegetation indices capable of assessing the effect of
abiotic stress on crop canopy (Casadesús et al., 2007; Casadesus
and Villegas, 2014). Vegetation indices can be derived from RGB
color space indices, which represent international standards for
color perception by the human eye and were adopted by the
Commission Internationale de l’Eclairage (CIE) in 1976 (Yam and
Papadakis, 2004; Trussell et al., 2005; Casadesús et al., 2007; Liu
et al., 2011; Kipp et al., 2014; Zhou et al., 2015). Several studies
show that RGB color space indices, such as hue, a∗, u∗, and other
derived indices, such as green area (GA) and the normalized
difference CIELab index (NDlab), outperformed spectral indices
such as NGRDI, NDVI, and gNDVI, in predicting yield of
wheat and maize more accurately and had higher broad sense
heritability for drought tolerance in forage grasses (Kefauver
et al., 2015; Vergara-Díaz et al., 2015, 2016; Zhou et al., 2015;
Gracia-Romero et al., 2017, 2018; Buchaillot et al., 2018, 2019;
Fernandez-Gallego et al., 2019; De Swaef et al., 2021).

Our preliminary research suggests that RGB color space
indices and derived vegetation indices may be suitable for
estimation of leaf wilting, plant population, and pod yield
of peanut (Balota and Oakes, 2016, 2017; Oakes and Balota,
2017). This study represents an in-depth analysis of the

visual differences among healthy and wilted peanut plants and
provides accurate machine learning models for estimation of
peanut leaf wilting.

MATERIALS AND METHODS

Experimental Design
The experiment was performed at the Virginia Tech Tidewater
Agricultural Research and Extension Center (TAREC) in Suffolk,
VA, United States (latitude 36.66 N, longitude 76.73 W).
Twenty-eight peanut genotypes with diverse morphological and
physiological characteristics from the United States mini-core
collection were selected for this study (Holbrook et al., 1993).
They were planted on May 17, 2018, and April 30, 2019, in
double row plots, 2.13 m long and 1.83 m wide, with a 14
seed m−2 seeding rate. A randomized complete block design
(RCBD) with six blocks/replications was used. Each block was
21.3 m long by 7.3 m wide with five peanut border rows in
between, spaced at 0.9 m (4.75 m total in between the blocks)
(Figure 2A). The land was tilled and seed beds were uniformly
raised to 15 cm height before planting. Cultural practices were
performed as recommended by the Virginia Peanut Production
Guide (Balota et al., 2020). The plots were rainfed until 8 weeks
after planting (WAP). During this time, a cumulative rainfall
amount of 210 mm in 2018 and 260 mm in 2019 was available to
the plants. Rain-exclusion shelters were placed over three blocks
(one rain-exclusion shelter over each block or replication) on
July 16, 2018, and July 7, 2019, to obstruct rain and induce low
soil moisture conditions. Water was kept out of the plots for 6–
7 weeks before removing the rain-out shelters on August 30, 2018,
and August 29, 2019.

Ground Truth Data
Leaf wilting was scored visually using a 0–5 rating scale in both
years. A score of 0 describes a potentially healthy plant with no
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FIGURE 2 | (A) Aerial view of the whole study area with red boxes showing three reps of the moisture-stressed plots and blue boxes showing the well-watered plots.
A total of 168 (2 water regimes × 3 replications × 28 genotypes) experimental plots were used in this study. The image was taken at 14 weeks after planting. (B) The
wilting scale used for wilting rating for peanut. The scale ranges from 0 to 5, 0 – potentially healthy plant with no wilting or leaf drooping symptoms; 1 – some
terminal and newer leaf fold-up, but overall the plant looks healthy; 2 – almost all leaves fold up and show signs of wilting, lower and older leaves start to fold; 3 –
wilting and drooping shows up on all leaves of the plant, low-moisture effect on older leaves is more prominent, bare ground starts to show up under the plant as
leaves wilt; 4 – all leaves are wilted, and some leaves start to change color due to chlorophyll degradation, bare ground is prominently visible, some leaves have dried
and crisped up; 5 – all leaves have severely wilted and color of all leaves is light green to yellow, bare ground is fully visible, more than 50% of leaves are crisp and
dry, the plant is almost physiologically dead.

wilting or leaf drooping symptoms; 1 describes some terminal
and newer leaf fold up, but overall the plant looks healthy; 2
describes plants with almost all leaves folded up and showing
signs of wilting, lower and older leaves start to fold; 3 describes
wilting and drooping on all leaves of the plant, low-moisture
effect on older leaves is more prominent, bare ground starts to
show up under the plant as leaves wilt; 4 describes plants with
all leaves wilted and some leaves starting to change color due
to chlorophyll degradation, bare ground is prominently visible,
some leaves have dried and crisped up; 5 describes plants with
all leaves severely wilted and color of all leaves becoming light
green to yellow, bare ground is fully visible, more than 50% of
leaves are crisp and dry, the plants are almost physiologically dead
(Figure 2B; Luis et al., 2016). Wilting was scored biweekly, from 4
until 20 WAP. In addition, the 0–5 rating scale of wilting was also
converted to a binary scale of “turgid” and “wilted.” The binary
rating of wilting involved classification of 0 and 1 wilting scores
as turgid and scores 2–5 as wilted.

Soil moisture at 10, 20, 30, and 40 cm depth was monitored
under each shelter in the plots where the “Wynne” check cultivar
was grown. Every other week starting at 4 WAP, soil moisture
data was extracted using a Delta-T HH2 moisture meter (Delta-T
Devices Ltd., Cambridge, United Kingdom). At harvest maturity,
pod yield was measured and adjusted to 7% seed moisture for
individual plots. For this study, soil moisture and pod yield

were collected in 2018 only because data from 2019 was for
validation of models.

Image Data
Images were collected around the same day as the leaf wilting
score. Proximal RGB images were collected twice within the
6 weeks of induced low moisture stress, on August 2 and 15,
2018. Aerial images were collected immediately after retracting
the rain-out shelters and before a rain event on August 30,
2018. Proximal images of individual rows within each plot were
taken twice, August 3 and 15, 2018, during shelter coverage
from a height of 1.2 m using a Samsung NX300 digital camera
(20.3 megapixel, autofocus mode, no zoom) (Figure 3A and
Table 1). In 2019, images were taken proximally on August 27 and
aerially on August 29 for validation of the 2018 models. Aerial
images were taken with a Sony R© α6000 camera (24.3-megapixel,
autofocus mode, no zoom) mounted on an octocopter UAV
platform (model AscTec R© Falcon 8; Ascending Technologies,
Germany). Proximal images were collected from 1100 to 1300 h
on sunny days, and the aerial images were collected at noon
within 6 min on sunny days as described by Sarkar et al. (2020).
The flight campaign was based on waypoint navigation. The UAV
was flown on autopilot at 20 m altitude with image overlap of
75% forward and 90% sideways. Flight campaign was created
in AscTec R© Navigator 3.4.5 software (Ascending Technologies,
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FIGURE 3 | (A) A peanut row used for proximal RGB color and vegetation indices extraction; the picture was taken at a height of 1.2 m. (B) The same row after
green area (GA) (pixels in 60◦–120◦ hue angle in CIE-Lab) extraction. (C) The same row after greener area (GGA) (pixels in 80◦–120◦ hue angle in CIE-Lab)
extraction. (D) Aerial image of a single row of peanut plot taken from a height of 20 m. The row was cropped from the orthomosaic for RGB color indices extraction.
(E) The same row as in picture ‘D’ after rotation, (F) extraction of GA, and (G) GGA. Figures (A–C) are 1.52 m in length and 0.91 m in width, and figures (D–G) are
2.13 m in length and 0.91 m in width.

Germany). The UAV used its built-in GPS (accuracy within
20 cm) to navigate, acquire nadir images, and coordinate
recording of individual images. Images were processed into an
orthomosaic using Pix4Dmapper Version 4.2.26 software (Prilly,
Switzerland) to create an RGB field map. The orthomosaic was
rotated to have the peanut rows perpendicular to the plane. Each
individual row was cropped automatically using a precreated
fishnet in the ArcMap (version 10.6) tool of the ArcGIS (ESRI,
Redlands, CA, United States) (Figure 3D). The cropped rows
were saved in.jpeg format, for further use in the Breedpix software
(see section “Extraction of RGB Color Indices”).

Extraction of RGB Color Indices
Proximal and aerial RGB images were used to extract 11 RGB
color indices (Table 2) using the Breedpix 0.2 option from the
CIMMYT maize scanner 1.16 plugin1 (Copyright 2015 Shawn
Carlisle Kefauver, University of Barcelona; produced as part of

1http://github.com/george-haddad/CIMMYTopensoftware

Image J/Fiji (open source software2) (Schindelin et al., 2012;
Rueden et al., 2017). The indices extracted were intensity, hue,
saturation, lightness, a∗, b∗, u∗, v∗, GA, GGA, and CSI. The
pixel selection for GA and GGA extraction is exemplified in

2http://fiji.sc/Fiji

TABLE 1 | Date of proximal and aerial RGB and wilting data collection for the
study.

Image acquisition
date

Type Height N Wilting rating
date

Model training August 3, 2018 Proximal 1.2 m 84 August 1, 2018

August 15, 2018 Proximal 1.2 m 84 August 14, 2018

August 30, 2018 Aerial 20 m 168 August 27, 2018

Model validation August 27, 2019 Proximal 1.2 m 168 August 30, 2019

August 29, 2019 Aerial 20 m 168 August 30, 2019

The ground truth date is the date of manual wilting rating for the plots. N = number
of experimental plots used for measurement.
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Figures 3B,C for proximal images and Figures 3F,G for aerial
images. These indices were selected because they were developed
for breeding selection and successfully used in wheat and corn
to predict plant biomass, leaf area index, and nitrogen content
(Casadesús et al., 2007; Casadesus and Villegas, 2014; Kefauver
et al., 2015).

Rotation of Aerial RGB Images
Because the plots were north aligned (hence, not perpendicular
to the plane), initially the cropped aerial images were surrounded
by a black hallow (Figure 3D). To remove the hallow, the
orthomosaic was rotated perpendicular to the plane in ArcGIS
before rows were cropped as shown in Figure 3E. If using
an unrotated orthomosaic, the black hallows around each .jpeg
extracted image introduced error to the data. For example, the
mean values of intensity, hue, saturation, lightness, a∗, b∗, u∗,
v∗, GA, GGA, and CSI changed from 0.15, 67.24, 0.24, 16.93,
−6.36, 19.80, −0.47, 9.75, 0.29, 0.08, and 75.98, respectively, for
the oblique images to 0.37, 67.20, 0.24, 43.87,−9.30, 23.99,−1.46,
27.17, 0.68, 0.18, and 78.30 on the rotated perpendicular images.

Statistical Analysis
Correlation
The association between plant wilting and the RGB color indices
was assessed from the Pearson’s correlation matrix using Proc
CORR in Statistical Analysis Software (SAS) 9.4 (SAS Institute
Inc., Cary, NC, United States). ANOVA from Proc GLM in SAS

TABLE 2 | RGB color indices derived from proximal and aerial images using
Breedpix 2.0 software.

RGB color indices Basis of derivation

Intensity Measures intensity or grayness in 0 (black) to 1 (white)
scale in Hue Saturation Intensity (HSI) color space1.

Hue Color judgment based on position in HSI color space
[0◦–360◦ (0◦-red; 60◦-yellow; 120◦-green; 240◦-blue)]1

Saturation Measures dilution of pure color (hue) with white light in
HSI color space (ranges from 0 to 1)1

Lightness Light reflected by a non-luminous body [0 (black) to 100
(white) scale]2

a Measures color shift from green (−a) to red (+a) in
CIE-Lab † color space2

b Measures color shift from blue (−b) to yellow (+b) in
CIE-Lab color space2

u Measures color shift from green (−a) to red (+a) in
CIE-Luv† color space2

v Measures color shift from blue (−b) to yellow (+b) in
CIE-Luv color space2

Green area (GA) Percentage of pixels in 60◦–120◦ hue angle in CIE-Lab3

Greener area (GGA) Percentage of pixels in 80◦–120◦ hue angle in CIE-Lab3

Crop senescence index 100 × (GA-GGA)/GA4

1Welch et al., 1991
2Schanda, 2007
3Casadesús et al., 2007
4Kefauver et al., 2017
†L represents Lightness in both CIE-Lab and CIE-Luv, and a* and u* represent
the red-green spectrum of chromaticity and b* and v* represent yellow-blue color
spectrum (Schanda, 2007).

9.4 was used to evaluate the effect of plant wilting on pod yield,
and yield means corresponding to the wilting scores 0–5 were
separated using Fisher’ s least significant difference (LSD) at
5% probability.

Training Logistic Models
Logistic regression was used for model training because the
wilting scores were discrete data. Proc LOGISTIC was used to
train four models for plant wilting estimation: model 1 from
proximal, model 2 from aerial indices using ordinal regression,
model 3 from proximal, and model 4 from aerial indices using
binary regression (Allison, 2012; Hosmer et al., 2013). Data from
the 2018 study were used for model training. Models 1 and 3
included both the proximal imagery data sets. Ordinal logistic
regression was used for 0–5 wilting scores because the scores
were ordered from 0 to 5, whereas binary logistic regression
was used for the turgid/wilted wilting score because the scores
were in binary form of either turgid or wilted (Harrell, 2015a,b).
Stepwise selection was used to select the best predictors, i.e.,
color space and vegetation indices, for the models. The Akaike
information criterion (AIC) and Schwarz criterion (SC) were
used to select the models with best fit in-sample, i.e., indices
with the lowest AIC and SC. The AIC and SC of the model
with selected predictors (selected model) were compared with a
model with the coefficient of all predictors as zero (null model)
and another model with all possible predictors (full model). This
shows that the selected model is better at wilting estimation even
when all the predictors are present in the model. The C-statistic
was used to calculate model predictability based on the area under
the receiver operating characteristics (ROC) curve (Huang and
Ling, 2005). Option PREDPROBS computed wilting scores from
the trained models using maximum likelihood estimation. The
wilting scores with first highest probability were retained as the
model-derived wilting scores. If the model-derived classification
matched the visually rated scores, it was assumed to be a correct
classification. This classification was used to create a classification
accuracy matrix based on the following equation:

Accuracy =
No of samples classified correctly

total samples in the set
× 100 (A)

Second Probability and Nearest Score Classification
for Ordinal Wilting Scores
For each visually rated wilting score, the corresponding model-
derived wilting scores were estimated: one with the highest
and another with second highest probability. The visually
rated scores were then matched with both of the model-
estimated wilting scores. If either of the two scores matched
with the visually rated scores, it was assumed to be a
correct classification. This classification was called the second
probability method and was used to create a classification
accuracy matrix using Eq. (A). Another method used to improve
classification accuracy was the nearest score method. Along
with matching the visually rated score with the corresponding
model-derived score, two of the nearest values (the preceding
and succeeding values) of the visually rated score were also
matched. If any of the values (the actual value or the
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FIGURE 4 | Progression of leaf wilting and soil volumetric water content (average of 0–30 cm depth) throughout the growing season. The x-axis represents weeks
after planting (WAP); planting was done on May 17, 2018. The y-axis on the left represents soil moisture measured using a Delta-T HH2 moisture meter, and the right
side is leaf wilting scored by visual estimation. The moisture meter was placed in one check plot per replication having genotype “Wynne,” and the soil moisture
values are an average of all three replications. The wilting values are an average of all genotypes over three replications. Low soil moisture stress was artificially
induced from 8 to 14 WAP. The gray shaded area represents the plots being covered by rainout shelters. Wilting scores above 2 (2 inclusive) were used as threshold
for binary wilting score (turgid/wilted).

succeeding and preceding values) matched with the model-
derived score, it was assumed to be a correct classification. This
classification was further used to create a classification accuracy
matrix using Eq. (A).

Cross-Validation
Leave-one-out cross-validation (CV) and k-fold CV were
performed using Proc SURVEYSELECT. For the leave-one-out
CV, each model was trained using N-1 data points (N being
the number of images, 167 proximal and 84 aerial images) and
the model was validated on the left-out data point. The process
was repeated N times by iterating it in the loop function of
SAS macros using each of the data points (the one data point
that was randomly left out in each iteration) for validation
every time. The C-statistic was performed to determine the area
under the curve (AUC) value of each trained model. For k-fold
CV, N data points were divided randomly into 10 sets (10-
fold cross-validation). Each of the 10 sets consisted of 10% data
points for validation and the remaining 90% for training the
model. There was no overlapping among the validation sets. The
C-statistic was performed on each of the 10 sets by iterating the
models in the loop function of the SAS macros to determine
the AUC value for each model (Stone, 1974; Hosmer et al.,
2013).

Model Validation
The ordinal and logistic models derived in 2018 were validated
using 2019 data. The RGB color indices derived from 2019

aerial and proximal images were replaced correspondingly in
the trained models of 2018. Accuracy matrices were created
for all models using the wilting values estimated using aerial
indices of 2019.

FIGURE 5 | Mean peanut pod yield (y-axis) from peanut plots subjected to
various degrees of leaf wilting (x-axis). The wilting scores were from 0 to 5, 0
being the healthy plant and 5 being the most wilted. The bars with same
letters on the top are not significantly different using Fisher’s LSD at α = 0.05.
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RESULTS

Wilting, Soil Moisture, and Pod Yield
As soil moisture decreased, wilting increased (Figure 4).
Before plots were covered, soil moisture slightly decreased
and wilting increased in response to weekly rainfall variation,
temperature increase, and plant growth and water use. Within
15 days from plot coverage, soil moisture at 30 cm depth
dropped from 0.18 to 0.11 m3 m−3, continuing at this
level until rainout shelters were removed and plots were
uncovered. The average plot wilting score was raised from
1.6 to nearly 2 in the 2 weeks after plot coverage and
to nearly 3 after two additional weeks, and it remained
at that level until shelters were removed. Eight days after
shelter removal, soil moisture slightly decreased from 0.12
to 0.10 m3 m−3 although the plants were less wilted, i.e.,
wilting score was 1.6 (Figure 4). On September 8 and 9,
all plots received 3.2 mm of rainfall. From this point on,
wilting was lessened and soil moisture increased so that, on
September 18, at 17 WAP, average score was 1 and soil
moisture was 0.14 m3 m−3 (Figure 4). No more data were
taken as the plots were harvested on September 20. To
evaluate the effect of soil moisture-induced wilting on peanut
yield, plots within similar wilting scores were grouped and
pod yield was averaged by wilting score (Figure 5). Wilting
significantly (p = 0.0002) reduced pod yield from an average
of 2000 kg ha−1 for plants scoring 0 and 1 to 880 kg ha−1

when they were severely wilted (score = 5) (Figure 5). Yield
decreased by 33% when wilting was scored 2 as compared
with 1 or 2 and by 49% when wilted plots from 3 to 5 were
averaged. Wilting score 2 corresponded with 0.10 m3 m−3

volumetric soil water.

RGB Color Indices and Relationships
With Leaf Wilting
The wilting score corresponding to the proximal images
collected on August 3 and 15 ranged from 0 to 3, whereas

TABLE 3 | Pearson correlation coefficients (r-value) of the RGB color indices
measured proximally and aerially with visually rated leaf wilting for peanut
genotypes.

RGB color indices Proximal Aerial

Intensity 0.27* 0.69

Hue −0.67 −0.66

Saturation −0.48 −0.76

Lightness 0.27* 0.48

a* 0.70 0.77

b* −0.55 −0.65

u* 0.70 0.74

v* −0.57 −0.53

Green area −0.61 −0.69

Greener area −0.68 −0.64

Crop senescence index 0.65 0.63

*Values not significant at P < 0.0001.

the scores corresponding to aerial images taken on August
30 ranged from 0 to 5. Overall, wilting was significantly
correlated with all proximally and aerially derived RGB
color indices (Table 3), but the greatest association
(p < 0.0001) was for hue angle (r = −0.67, −0.66), a∗
(r = 0.70, 0.77), u∗ (r = 0.70, 0.74), GA (r = −0.61,
−0.96), GGA (r = −0.68, −0.64), and CSI (r = 0.65,
0.63) (Table 3).

Ordinal Logistic Models to Estimate
Wilting (Ordinal 0–5 Rating)
The color space indices, selected using stepwise selection, were
used as predictors in each model to generate probabilities
for individual wilting scores. The wilting score with the
highest probability and the maximum likelihood was retained
as the image-derived score. The probabilities of wilting
scores (0–5) were denoted as P0, P1, P2, P3, P4, and P5,
respectively, where P0+P1+P2+P3 = 1 for model 1, and
P0+P1+P2+P3+P4+P5 = 1 for model 2. P4 and P5 in model
1 (proximal data) were not generated because wilting scores
4 and 5 were absent on August 3 and 15 when proximal
data were taken.

Probabilities and their formulas for each model are
presented below.

Model 1 for proximal RGB images:

P0 =
e(εa − 11.75)

1+ e(εa − 11.75)

P1 =
e(εa − 7.19)

1+ e(εa− 7.19)
− P0

P2 =
e(εa − 4.28)

1+ e(εa− 4.28)
− P0 − P1

P3 = 1− P0 − P1 − P2

TABLE 4 | Akaike information criterion (AIC) and Schwarz criterion (SC) values of
the selected, full model (model with all available predictors), and null model (model
with coefficient of predictors as 0) trained by ordinal and binary logistic regressions
using color and vegetation indices from proximal and aerial RGB images.

Ordinal logistic Binary logistic

Model Proximal Aerial Proximal Aerial

Selected AIC 286.6 201.0 175.7 110.5

SC 305.3 234.3 185.0 126.1

Full AIC 291.1 208.9 184.3 104.4

SC 344.8 253.2 221.7 141.9

Null AIC 376.4 344.2 232.2 209.9

SC 385.7 358.1 235.3 213.0

A low value of AIC and SC signifies good statistical fit of the model.
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TABLE 5 | Wilting accuracy matrix with the number of manually taken wilting scores (2018) on a visual scale at the left and outside the table and the count of
image-derived wilting scores in the table.

Image-derived wilting score (0–5 scale)

Proximal images

Visual wilting score Number of manually taken wilting scores 0 1 2 3 4 5

0 4 0 4 0 0 • •

1 72 0 52 20 0 • •

2 65 0 20 41 4 • •

3 26 0 0 20 6 • •

4 0 • • • • • •

5 0 • • • • • •

Total 167

Accuracy 59% 0 72% 63% 23% • •

Accuracy (second probability method) 91%

Accuracy (nearest score method) 99%

Aerial images

Visual wilting score Number of manually taken wilting scores 0 1 2 3 4 5

0 87 85 0 2 0 0 0

1 13 0 3 8 1 1 0

2 27 0 2 13 6 2 0

3 20 0 0 7 6 6 0

4 16 0 0 5 3 8 0

5 5 0 0 1 1 2 1

Total 168

Accuracy 69% 98% 23% 48% 31% 50% 20%

Accuracy (second probability method) 81%

Accuracy (nearest score method) 90%

Wilting was on a scale of 0 to 5†. The percentage represents the fraction of wilting values that were estimated correctly using RGB color indices derived from RGB images.
Indices were used to estimate leaf wilting using ordinal logistic regression*. The proximal images were taken 11 and 13 weeks after planting (WAP) whereas the aerial
images were taken 15 WAP. †A score of 0 represents potentially healthy plant with no wilting or leaf drooping symptoms; 1 represents some terminal and newer leaves
fold up but overall, the plant looks healthy; 2 represents almost all leaves fold up and show signs of wilting, lower and older leaves start to fold; 3 represents wilting and
drooping shows up on all leaves of the plant, low-moisture effect.

Model 2 for aerial RGB images:

P0 =
e(εb + 25.93)

1+ e(εb + 25.93)

P1 =
e(εb + 27.54)

1+ e(εb + 27.54)
− P0

P2 =
e(εb + 29.61)

1+ e(εb + 29.61)
− P0 − P1

P3 =
e(εb + 31.04)

1+ e(εb + 31.04)
− P0 − P1 − P2

P4 =
e(εb + 33.07)

1+ e(εb + 33.07)
− P0 − P1 − P2 − P3

P5 = 1− P0 − P1 − P2 − P3 − P4,

where e = 2.718 is the Euler’s number,

εa = 1.70u∗ − 1.77× a∗ − 0.15× CSI, and

εb = 78.45× intensity+ 6.96× saturation− 1.08× lightness

−2.62× a∗ + 1.44× u∗ − 45.09× GGA− 0.34× CSI

Binary Logistic Model to Estimate Wilting
(Turgid vs. Wilted Rating)
Stepwise selected predictors with the first highest probability
and maximum likelihood were used in models 3 and 4 to
generate probabilities for binary wilting rating, i.e., Pw being the
probability for a wilted plant and Pt the probability for a turgid
plant where Pw + Pt = 1.

Model 3 for proximal RGB images:

Pt =
e(εc−0.43)

1+ e(εc−0.43)

Pw = 1− Pt

Model 4 for aerial RGB images:

Pt =
e(εd−31.74)

1+ e(εd−31.74)
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FIGURE 6 | Receiver operating characteristic (ROC) curves of model 3 (proximal data) and model 4 (aerial data) for estimating irrigation regimes. The x-axis is false
positive rate (1-specificity) and the y-axis is true positive rate (sensitivity). The area under the curve (AUC) value (0.82 and 0.92 for the models) represents
predictability of the models. AUC value ranges from 0 to 1; 0 being 100% predictions of the model are wrong; whereas 1 means 100% of predictions made by the
model are right (Huang and Ling, 2005).

Pw = 1− Pt,

where e = 2.718 is the Euler’s number,

εc = 11.70× saturation− 0.07× CSI, and

εd = −0.21× lightness− 0.65× a
∗

− 37.90× GGA− 0.28

×CSI

Model 1 (proximal) with a∗, u∗, and CSI as selected predictors
had AIC and SC values of 286.6 and 305.3 as compared with 376.4
and 385.7 for the null model (model with coefficient of predictors
as 0), and 291.1 and 344.8 for the full model (model with all
available predictors) (Table 4). Similarly, model 2 (aerial) with
intensity, saturation, lightness, a∗, u∗, GGA, and CSI as predictors
had AIC and SC values of 201.03 and 234.28, respectively, as
compared with 344.2 and 358.1 for the null model, and 208.9 and
253.2 for the full model (Table 5). Based on the c-statistic, the area
under the ROC curve (model predictability) was 0.83 for model 1
and 0.92 for model 2.

Model 3 (proximal) with saturation and CSI as predictors had
AIC and SC values of 175.7 and 185.0 as compared with 232.2 and
235.3 for the null model and 184.3 and 221.7 for the full model
(Table 4). Model 4 (aerial) with lightness, a∗, GGA, and CSI as
predictors had AIC and SC values of 110.5 and 126.1, respectively,
as compared with 209.9 and 213.0 for the null model and 104.4
and 141.9 for the full model (Table 4). Based on the c-statistic,
the area under the ROC curve was 0.82 for model 3 and 0.92 for
model 4 (Figure 6).

The Classification Accuracy
The classification accuracy of the model-derived wilting (for
ordinal 0–5 score) was 69% for aerial and 61% for proximal data

(Table 5). The accuracy increased to 81% for aerial and 91% for
proximal when using the second highest probability and to 90%
for aerial and 99% for proximal when using the nearest score
method. The classification accuracy of the model-derived wilting
(for binary turgid vs. wilted rating) was 88% for aerial and 77%
for proximal (Table 6). Correlating the ordinal and binary wilting
scores taken manually with derived ones, aerially derived wilting
had r-values of 0.85 for ordinal and 0.71 for binary, whereas
proximally derived wilting had r-values of 0.60 for ordinal and
0.54 for binary (data not shown).

Cross-Validation
The mean AUC of the ROC curve derived from the 10-fold cross-
validation was 0.83 for model 1, 0.93 for model 2, 0.82 for model
3, and 0.93 for model 4 (Table 7). The mean AUC values using
leave-one-out cross-validation was 0.83 for model 1, 0.92 for
model 2, 0.82 for model 3, and 0.93 for model 4 (Table 7).

Model Validation
Models validated using 2019 RGB color indices and wilting data
showed classification accuracy of 71% using model 1 and 75%
using model 2 (Table 8). The classification accuracy increased to
91% and 94% using the second probability method and 96% and
98% using the nearest score method. Classification accuracy for
binary logistic models were 93% for model 3 and 95% for model 4.

DISCUSSION

The 28 genotypes used in this study represent a subset of
the United States mini-core peanut germplasm collection with
contrasting morphological and physiological traits and with
different responses to water deficit stress (Holbrook et al., 1993;
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TABLE 6 | Wilting accuracy matrix with the number of manual wilting scores (2018) on visual scale at the left and outside the table and the count of image-derived wilting
scores in the table.

Estimated turgid vs. wilted plants

Proximal images Aerial images

Plant water status No of plots within each water status Turgid Wilted No of plots within each water status Turgid Wilted

Turgid 76 55 21 116 106 10

Wilted 91 17 74 52 11 41

Total 167 168

Accuracy 77% 72% 81% 88% 91% 79%

Wilting was on a binary scale of turgid/wilted†. The percentage represents the fraction of wilting scores that were estimated correctly using RGB color indices‡ derived
from RGB images. Indices were used to estimate leaf wilting using ordinal logistic regression*. The proximal images were taken 11 and 13 weeks after planning (WAP)
whereas the aerial images were taken 15 WAP.
†Wilting score 0 and 1 were rated as turgid and scores above 2 (2 inclusive) were rated as wilted.
‡RGB color indices – Intensity, Hue, Saturation, Lightness, a*, b*, u*, v*, green area (GA), greener area (GGA), crop senescence index (CSI).
*Allison, 2012.

Holbrook and Dong, 2005). In response to induced low soil
moisture stress by covering the plots with rainout shelters
from 8 to 14 WAP, the genotypes were visibly wilted with
wilting scores ranging from 0 to 3 after four and from 0 to 5
after 6 weeks of stress (Figure 4). The beginning of induced
moisture stress treatment coincided with beginning pegging
and pod growth stages, which are growth stages sensitive to
moisture stress with significant effects on yield (Rowland et al.,
2007). Indeed, low soil moisture decreased peanut yield from
an expected 4500 kg ha−1 to only 2000 kg ha−1 or less, which
corresponds with peanut production in Virginia (Balota et al.,
2020). For example, year 2014 was a good peanut year with a
state average of 5040 kg ha−1, but year 2010 was dry, and average
yield was only 2016 kg ha−1 (US Department of Agriculture-
National Agricultural Statistics Service, 2019). This is because,
under drought, chlorophyll content, carbon assimilation and

TABLE 7 | Area under the receiver operating characteristic (ROC) curve derived
using c-statistic for 10-fold cross-validation sets.

Proximal Aerial

Folds N Ordinal Binary N Ordinal Binary

1 16 0.83 0.82 16 0.92 0.94

2 16 0.83 0.82 16 0.93 0.93

3 16 0.83 0.81 17 0.92 0.93

4 17 0.84 0.83 17 0.93 0.94

5 17 0.82 0.82 17 0.92 0.93

6 17 0.83 0.81 17 0.93 0.93

7 17 0.83 0.82 17 0.92 0.94

8 17 0.84 0.83 17 0.94 0.93

9 17 0.83 0.85 17 0.92 0.92

10 17 0.82 0.82 17 0.92 0.93

Total 167 168

Mean 0.83 0.82 0.93 0.93

N is the number of data points assigned to the validation set for that fold. The model
used for the c-statistic on each validation set was trained using the remaining (167 –
N for proximal, and 168 – N for aerial) data points. All 10-fold sets were randomly
generated.

photosynthetic efficiency decrease, and ultimately, biomass and
yield accumulation are less (Reddy et al., 2003; Pilon et al.,
2018). In this study, plots that maintained turgid vines, i.e.,
genotypes scored 0 and 1, had the highest yield under drought.
The plots for which wilting was scored 2–5 produced only
around 1000 kg ha−1 with a 30% initial yield decrease when
wilting was scored 2 followed by 50% yield reduction for plots
with greater wilting (Figure 5). If the relationship between
plant wilting and yield is proven on larger-scale production,
a wilting score of 2 could be used to trigger irrigation of
peanut, and aerial estimations could become important for
efficient irrigation scheduling as suggested by Rowland et al.
(2012).

The RGB-derived color indices from proximal and aerial
images were associated with leaf wilting (Table 3). For example,
due to water deficit, canopy color shifted from green (120◦)
to yellow (60◦), i.e., chlorophyll content decreased, resulting in
lower hue angles in wilted plants than turgid plants. Similarly,
severely wilted plants had a smaller fraction of green pixels
captured with canopy images and, therefore, less GA and GGA.
The indices a∗ and u∗ increased with wilting increase; they
became less negative, which indicates that canopy color changed
from green to red in stressed and wilted plants. Similar results
were found in soybean, wheat, corn, and peanuts confirming our
hypothesis that RGB images can discriminate turgid vs. wilted
peanut canopies, i.e., tissue turgor pressure falls close to zero
under low soil moisture stress (Vergara-Díaz et al., 2015, 2016;
Balota and Oakes, 2017; Zhou et al., 2020).

Wilting models 1 and 2 had classification accuracies of 61%
for proximal and 69% for aerial images (Table 5). The accuracy
improved when using the first and second highest probability
for classification to 91% for proximal images and 81% for aerial
images. When using the nearest score classification, wilting
estimation accuracy raised to 99% for proximal images and 90%
for aerial images (Table 5). Lower accuracy from aerial images
could be attributed to reduced resolution in comparison with
proximal images. Another reason could be the number of wilting
levels, which were fewer for proximal imagery (wilting level 4
and 5 were absent) as compared with aerial images. Nonetheless,
when using the nearest score classification, the accuracy of
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TABLE 8 | Wilting accuracy matrix with the number of manually taken wilting scores (2019) on visual scale at the left and outside the table and the count of model
estimated wilting scores in the table.

Image-derived wilting score (0–5 scale) Proximal images

Visual wilting
score

Number of
manually taken
wilting scores

0 1 2 3 4 5

0 71 69 0 0 2 0 0

1 12 10 0 0 2 0 0

2 14 1 0 0 12 1 0

3 49 1 0 0 42 6 0

4 21 0 0 0 14 7 0

5 0 • • • • • •

Total 167

Accuracy 71% 97% 0 0 86% 33%

Accuracy (second
probability method)

91%

Accuracy (nearest
score method)

96%

Aerial images

Visual wilting
score

Number of
manually taken
wilting scores

0 1 2 3 4 5

0 72 71 0 1 0 0 0

1 12 11 0 1 0 0 0

2 14 0 0 3 11 0 0

3 49 2 0 1 43 3 0

4 21 0 0 0 12 9 0

5 0 • • • • • •

Total 168

Accuracy 75% 99% 0% 21% 88% 43% •

Accuracy (second
probability method)

94%

Accuracy (nearest
score method)

98%

Wilting was on a scale of 0 to 5†. The percentage represents the fraction of wilting values from 2019 that were estimated correctly using the logistic model derived in
2018. The 2018 logistic models were validated by substituting the RGB color indices‡ values derived in 2019. The proximal and aerial images were taken at 15 weeks
after planting.
†A score of 0 represents a potentially healthy plant with no wilting or leaf drooping symptoms; 1 represents some terminal and newer leaf fold-up, but overall the plant
looks healthy; 2 represents almost all leaves folded up and show signs of wilting, lower and older leaves start to fold; 3 represents wilting and drooping shows up on
all leaves of the plant, low-moisture effect on older leaves is more prominent, bare ground starts to show up under the plant as leaves wilt; 4 represents all leaves are
wilted and some leaves start to change color due to chlorophyll degradation, bare ground is prominently visible, some leaves have dried and crisped up; 5 represents
all leaves have severely wilted, and color of all leaves is light green to yellow, bare ground is fully visible, more than 50% of leaves are crisp and dry, the plant is almost
physiologically dead.
‡RGB indices – Intensity, Hue, Saturation, Lightness, a*, b*, u*, v*, green area (GA), greener area (GGA), crop senescence index (CSI).

wilting estimation from aerial images increased substantially.
This method is also the closest to the traditional method of visual
rating. For example, when visually rating, the operator may find
it difficult to assign a plot clearly to a score of 1 or 2 or rather
in between 1 and 2. If rating is being performed by different
operators, i.e., different visual perceptions, or at different hours of
the day, i.e., different sun angles can influence visual perception,
then a plot that scores 2 may be assigned 1 or 3. The wilting
matrix confirmed that the majority of misclassifications were
neighbors, e.g., either 2 or 4 for a score of 3. In addition, the
statistical probabilities showed that the wilting scores assigned on
the basis of the first highest probability were marginally ahead
of the second highest probability. For example, for plot 121,

the score 2 had first highest probability of 0.37, whereas the
second highest probability was 0.35 for score 1 (data not shown).
Therefore, using either the first or second highest probability
as a true classification or nearest score classification to calibrate
the process and estimate wilting scores is closer to the visual
rating and had improved accuracy. The AUC values for model
1 (proximal) (0.83) and model 2 (aerial) (0.92) also support the
conclusion that these models are highly predictive of peanut
plant wilting. Though aerially derived wilting scores had lower
classification accuracy, they correlated better (r = 0.85) and had
higher predictability (AUC = 0.92) than proximally derived
wilting scores (r = 0.60; AUC = 0.83) (correlation data not
shown). Aerial estimation was preferred to proximal for faster
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TABLE 9 | Wilting accuracy matrix with the number of manual wilting scores (2019) on a visual scale at the left and outside the table and the count of image-derived
wilting scores in the table.

Estimated turgid vs. wilted plants

Proximal images Aerial images

Plant water status No of plots within each water status Turgid Wilted No of plots within each water status Turgid Wilted

Turgid 89 82 7 90 86 4

Wilted 78 5 73 78 5 73

Total 167 168

Accuracy 93% 92% 94% 95% 96% 94%

Wilting was on a binary scale of Turgid/Wilted†. The percentage represents the fraction of wilting values that were estimated correctly using the logistic model derived in
2018. The 2018 binary models were validated by substituting the RGB color indices‡ values derived in 2019. The proximal and aerial images were taken 15 weeks after
planting.
†Wilting scores 0 and 1 were rated as turgid and scores above 2 (2 inclusive) were rated as wilted.
‡Color space indices – Intensity, Hue, Saturation, Lightness, a*, b*, u*, v*, green area (GA), greener area (GGA), crop senescence index (CSI).

data collection and analysis. It was found in this study that aerial
imagery can be accomplished in a shorter period of time than
proximal imaging (a 12-min flight for aerial imagery compared
to 90 min for proximal imagery for 168 peanut plots), and
rating using aerial sensing offers greater temporal repeatability.
Although aerial imagery involves processing time (about 5 h) to
orthomosaic the image, the process is fully automated at night
and does not require personnel time. Moreover, manually taken
proximal images were prone to errors, such as differences in
camera height, sun angle, and cloud cover during the time of
collection. These drawbacks were absent in aerial imagery.

Wilting models 3 (binary proximal) and 4 (binary aerial) had
classification accuracies of 77% for proximal images and 88% for
aerial imagery (Table 6). The AUC for model 3 was 0.82 and for
model 2 was 0.87 (Figure 6). Although classification accuracy and
AUC were both used for learning algorithms in machine learning,
AUC is considered better and statistically more consistent than
classification accuracy (Ling et al., 2003; Huang and Ling, 2005).
Thus, based on AUC values, the probability of these models to
estimate wilting rating was 82% when using proximal imagery
and 92% when using aerial imagery. Moreover, aerially derived
wilting scores correlated better with manually taken wilting
scores (r = 0.71) than proximally derived wilting scores (r = 0.54)
(data not shown). Aerial sensing to estimate soil moisture and
trigger irrigation of crops is currently used (Ahmad et al., 2009;
Ge et al., 2019). For peanut, however, with dense biomass growth
and complete ground coverage early in the growing season,
similar approaches may not work. Alternatively, using the binary
wilting rating (turgid vs. wilted) estimated by models 3 and
4 can be used to represent plant water status. This has the
potential for development of smartphone applications that can
be used to decide if a peanut field requires irrigation or not,
i.e., plants having turgid rating would not require irrigation,
but wilted plants would require irrigation. However, this needs
further investigation and feasibility analysis for implementation
in peanut production.

All logistic regression models used here have high values of
the mean AUC associated with cross-validation, i.e., 0.83 for
model 1, 0.93 for model 2, 0.82 for model 3, and 0.93 for model
4 (Table 7). This proves the robustness of the models when

used on independent data sets. Using 2019 data for validation
of all models resulted in similar wilting classification accuracies
as in 2018 (Tables 8, 9). This shows that the wilting estimation
models developed in this study can be successfully used with
other data sets.

In this article, we report new models to predict wilting
in peanut and a step forward toward future automation and
real-time selection for reduced wilting and improved yield and
drought tolerance in the peanut breeding programs in the
United States and throughout the word. We also report, for the
first time, prediction models for peanut plant water status that
can be useful for irrigation scheduling in the future. For example,
currently, only 5% of the remote sensing models proposed to
schedule irrigation are implemented at the farm level in the
United States (Steve Thomason, personal communication). Our
wilting approach from RGB images could be more appealing for
growers to use than multispectral sensors as in other proposals,
but this needs further investigation at the farm level. In a previous
work, we document substantial time savings when using high-
throughput techniques in breeding (Sarkar et al., 2020). At the
same time, high-throughput techniques, such as reported in this
article, can increase the frequency of data collection and possibly
the accuracy by removing the bias of visual human perception
(Milberg et al., 2008; Borra-Serrano et al., 2018; Sarkar and Jha,
2020). Overall, the logistic models developed in this study were
successful in estimating peanut wilting and plant water status
from RGB images, which suggests potential for aerial imagery and
machine learning applications in breeding for improved drought
tolerance of peanut.

CONCLUSION

This article reports, for the first time, on a simple yet key aspect
of peanut screening for tolerance to low soil moisture stress and
uses novel, fast, cost-effective, and accurate RGB-derived models
to estimate leaf wilting. Leaf wilting caused by low soil moisture
stress can be estimated using remote sensing. It can also be used
to predict plant water status associated with maximum yield. An
important aspect of this study is the combined use of remote
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sensing and machine learning tools to build models for high-
throughput phenotyping. These methods are helpful in quick and
accurate data collection in research and breeding programs and
suggest good scope for further investigation of automated and
efficient irrigation in peanut production.
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