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Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is a perennial warm-season
grass that originated in China, and its speed of nodal rooting is important for lawn
establishment. In our study, centipedegrass nodal rooting ability was limited by node
aging. Transcriptome sequencing of nodal roots after 0, 2, 4, and 8 days of water culture
was performed to investigate the molecular mechanisms of root development. GO
enrichment and KEGG pathway analyses of DEGs indicated that plant hormone signal
transduction and transcription factors might play important roles in centipedegrass
nodal root growth. Among them, E3 ubiquitin-protein ligases participated in multiple
hormone signal transduction pathways and interacted with transcription factors.
Furthermore, an E3 ubiquitin protein ligase EoSINATS overexpressed in rice resulted
in longer roots and more numerous root tips, while knockout of LOC_0Os079g46560
(the homologous gene of EoSINATS in rice) resulted in shorter roots and fewer root
tips. These results indicated that EoSINAT5 and its homologous gene are able to
promote nodal root development. This research presents the transcriptomic analyses
of centipedegrass nodal roots, and may contribute to elucidating the mechanism
governing the development of nodal roots and facilitates the use of molecular breeding
in improving rooting ability.

Keywords: centipedegrass, nodal root, plant hormone, E3 ubiquitin-protein ligase, SINAT5

INTRODUCTION

Adventitious roots develop post-embryonically from non-root tissues in the majority of
monocotyledon fibrous root systems (Atkinson et al., 2014). Adventitious roots include junction
roots, nodal roots, prop/stem roots, and stress-induced roots (Steffens and Rasmussen, 2016).
Adventitious roots can be naturally induced as an adaptation to environmental changes, such as
flooding (Visser et al., 1996; Lorbiecke and Sauter, 1999) and dark-light transitions (Sorin et al.,
2005; Gutierrez et al., 2009), and they can also be induced artificially by cutting and/or hormone
application (Ahkami et al., 2009; Sukumar et al., 2013). Some economically important crops (such
as strawberries and sweet potatoes) and most warm-season turfgrasses [such as Cynodon dactylon
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(L.) Pers., Zoysia japonica Steud, Eremochloa ophiuroides
(Munro) Hack., and Paspalum vaginatum Sw.] have specialized
stolons and adventitious roots produced by stem nodes, which
are known as nodal adventitious roots; as a result, these plants
can propagate rapidly.

Adventitious rooting in different species has different
regulatory mechanisms, which in turn exhibit different
physiological mechanisms and functions (Hochholdinger
et al., 2004; Atkinson et al.,, 2014; Bellini et al., 2014; Pacurar
et al., 2014). At present, the research works of nodal roots are
mostly focused on maize, sorghum, and other food crops with
erect stems. For example, fewer crown nodal roots of maize can
improve nitrogen uptake and nitrate efficient (Guo and York,
2019), and more aerial nodal roots may improve root-lodging
resistance efficiently (Zhang et al., 2018). Comparing with
seminal roots, nodal roots have larger metaxylem area and higher
levels of auxin, which may enhance the uptake of nutrients
transported with the flow of water (Liu et al., 2020). In sorghum,
the growth angle of nodal roots strongly influences the spatial
distribution of soil profile to impact drought adaptation (Joshi
et al., 2017). For nodal roots of stolon, the research works
were mostly focused on white clover indicating that nodal
roots influence branch development (Thomas et al., 2003).
However, the molecular mechanism of stolon nodal roots largely
remains unknown.

Centipedegrass [E. ophiuroides (Munro) Hack.] is a perennial
warm-season grass that originated in China and has the
characteristics of good adaptation to poor soil, low maintenance,
few pests, and high ornamental value (Li et al, 2020).
Centipedegrass has well-developed stolons, and the rooting
ability of stolon nodal roots is related to the speed of lawn
establishment. However, the regulatory mechanism governing
centipedegrass nodal root development has rarely been reported.
Previous studies confirmed that phytohormones are the most
important modulators of root development and auxin plays
a central role (Lavenus et al., 2013). Auxin has effects on
every aspect of root development, including meristem initiation,
emergence, and elongation (Bellini et al., 2014). For example,
auxin transporter PIN-FORMED (PIN) proteins are important
in the regulation of root development in rice and maize (Xu
et al, 2005; Li Z. et al, 2018). In rice, plants transgenically
expressing RNA that interfere with the OsPINI gene have the
same number of adventitious root primordia as the wild type but
rarely germinate adventitious roots, indicating that the PINI gene
is involved in the germination of adventitious roots (Xu et al.,
2005). ZmPIN1a overexpression in maize results in the formation
oflonger seminal roots and denser lateral roots with an increasing
number of lateral roots and also inhibits root elongation
(LiZ. et al., 2018).

Ubiquitin-mediated proteolysis is involved in auxin signal
transduction to influence root development (Frugis and Chua,
2002). E3 ubiquitin-protein ligases determine the specific
recognition of target proteins, interact with transcription factors,
and degrade them (Xie et al., 2002; Kelley and Estelle, 2012). In
rice, the RING finger E3 ubiquitin ligase soil-surface rooting 1
(SORI) protein interacts with the Aux/IAA proteins OsIAA9 and
OsIAA26 (Chen et al., 2018). OsIAA26 is the target protein of

OsSOR1 and can be degraded by the ubiquitin/26S proteasome
(Chen et al., 2018). However, OsIAA9 inhibits the E3 activity
of OsSORI to protect OsIAA26 from degradation, indicating
that the OsSOR1-OsIAA26 module functions downstream
of OsTIR1/AFB2-auxin-OsIAA9 signaling to regulate ethylene
inhibition of rice seed root growth (Chen et al., 2018). In apple,
a small ubiquitin-like modifier (SUMO)-conjugating E2 ligase
MASCEI interacts with MdAREFS, and the conjugating enzyme
activity of MASCE1 is enhanced by the E3 ligase MdSIZ1 to form
an MdSCE1-MdSIZ1-MdARF8 complex, which regulates lateral
root formation (Zhang et al., 2020). Lateral root formation is
promoted by overexpressing MdSIZ1 or MdARFS in transgenic
apple plants (Zhang et al., 2020). The Arabidopsis RING finger-
containing E3 ligase SINAT5 attenuates the auxin signal by
interacting with and degrading NAC1 (NAM/CUC-like protein
1) to reduce the number of lateral roots (Xie et al., 2000, 2002).

Centipedegrass is an excellent warm-season turfgrass (Li J.
et al,, 2018), and the stolon is the main reproductive organ
of warm-season turfgrass. However, the weak rooting ability
of centipedegrass stolon nodal roots influences the speed of
lawn establishment, and the molecular mechanism governing
centipedegrass nodal root development has not been fully
elucidated. In this study, we evaluated the rooting ability of
different nodes of centipedegrass accession E039, and sampled
the first node roots at four time points (0, 2, 4, and 8 days)
for transcriptome sequencing. The differentially expressed genes
(DEGs) were identified by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses. One E3
ubiquitin-protein ligase EoSINAT5 was selected from DEGs and
its effects on nodal root development were verified in transgenic
rice. This study provided an overview of centipedegrass nodal
root development and helped to elucidate the molecular
mechanisms governing this process.

MATERIALS AND METHODS

Plant Materials and Treatments

The centipedegrass accession E039, “Ganbei,” which was collected
from Mount Lushan of Jiangxi Province in China (28°36'N,
116°00'E), was stored in a greenhouse at the Institute of Botany,
Jiangsu Province and the Chinese Academy of Sciences. For the
rooting ability evaluation of different order nodes, the rooting
rates of 1-16 nodes (from the young nodes to the old nodes) of
E039 were counted after 4, 8, and 12 days of water culture with
pure water. Each sample consisted of 15 biological replications.
The rooting rate of nodes was calculated according to the
following equation:

. root number
rooting rate of nodes = ———  x 100%

node number

The rooting rate of branches was calculated according to the
following equation:

) root number
rooting rate of branchecs = x 100%

branch number
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RNA-Seq and Bioinformatic Analysis

The roots of the first node of E039 were sampled at 0 day
(the root length about 0.1 cm), 2 days (the root length about
0.5 cm), 4 days (the root length about 2.0 cm), and 8 days
(the root length about 4.0 cm) after water culture, frozen
by liquid nitrogen, and stored at —80°C. Each sample had
three biological replicates. Total RNA was extracted using
an RNA Isolation Kit (Waryong, Beijing, China). A total of
12 cDNA libraries were constructed, and the transcriptome
was sequenced by Novogene (Tianjin, China)' on an Illumina
HiSeq 2500 platform. The raw datasets are available in
the NCBI repository http://www.ncbi.nlm.nih.gov/bioproject/
PRJNA687624. Clean reads were obtained from the raw data
by removing adaptor sequences, reads with ambiguous bases
“N; low-quality reads (padj < 10) and fragments measuring
fewer than 20 bp in length. The transcriptome was assembled
based on the left.fq and right.fq using Trinity (v2.4.0) software
(Grabherr et al., 2011). Gene function was annotated based
on Nr (NCBI non-redundant protein sequences), Nt (NCBI
non-redundant nucleotide sequences), Pfam (Protein family),
KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-
Prot (a manually annotated and reviewed protein sequence
database), KO (KEGG Ortholog database), and GO. The DEGs
were identified from each comparison through the DESeq (Wang
et al., 2020) R package with padj < 0.05 and | log2FoldChange|
> 1. GO enrichment analysis of DEGs was performed by
the GOseq R package (Young et al, 2010). The DEGs were
identified from the KEGG® enrichment analyses, and KOBAS
(Mao et al., 2005) software was used to test the statistical
enrichment of DEGs. All heat maps were created using TBtools
software (Chen et al., 2020) with the “Log Scale” and “Row
Scale.” The trend analysis of DEGs was performed by the online
OmicShare tool’.

Quantitative RT-PCR Validation

Twelve DEGs were randomly selected from Supplementary
Table 1 to validate the reliability of the transcriptome data.
The primers for these genes were designed using Primer 5.0
software. The EoActin was used as a housekeeping gene (Chung
et al., 2019). Each sample was analyzed with three biological
and three technical replicates, and the relative expression
levels were calculated using the 27 22€T method (Livak and
Schmittgen, 2001). The primers used in this study are listed in
Supplementary Table 2.

EoSINATS5 Genetic Transformation

On the basis of the Cluster-13984.84258 sequence in the
centipedegrass transcriptome, the EoSINAT5-F/R primer
pair was designed with Primer 5.0 software, and the
integrated coding sequence (CDS) and DNA sequences
were obtained (Supplementary Table 2). The sequence
of AtSINAT5 was obtained from the TAIR website

Uhttp://www.novogene.com/
Zhttp://www.genome.jp/kegg/
Shttp://www.omicshare.com/tools/Home/Soft

(AT5G53360)*. Gene structure analysis of EoSINAT5 and
AtSINAT5 was performed using GSDS 2.0°. The amino acid
sequences of other SINAT5 proteins in other species were
obtained from the NCBI website®. The protein alignment
of EoSINAT5 and other SINAT5s was performed with
DNAMAN 5.2.2 software.

The CDS of EoSINAT5 was first cloned into a pMD19-T
vector and subsequently introduced into the pEarleyGatel03
vector by LR recombination. The pEarleyGatel03 vector
has the herbicide Basta resistance gene Bar. The gRNA
target  sequence (GGGGCAGCGGTTGTGAACCC) of
LOC_Os07g46560 (the homologous gene of EoSINAT5
in rice) was prepared in oligodimers and subsequently
introduced into the pYLCRISPR/Cas9-MH vector. The
pEarleyGate103-EoSINAT5 and pYLCRISPR/Cas9-MH-
LOC_Os07g46560 were introduced into “Nipponbare” rice
by BIOGLE GeneTech (Hangzhou Biogle Co., Ltd., Zhejiang,
China). The detected primers of overexpression transgenic
lines were Bar-F/R, while the knocked out transgenic lines
were LOC_0Os07g46560-F/R (Supplementary Table 2). OsActin
(GenBank: XM_015774830.2) was used as a housekeeping
gene. The total root length and tip number of wild-type
and transgenic lines (each line contained ten plants) were
analyzed by WIinRHIZO (Zealquest Scientific Technology
Co., Ltd.). The significant difference analysis was performed
by SPSS Statistics v.18.0 (Duncan’s test) (SPSS Inc., Chicago,
IL, United States).

RESULTS

Rooting Ability Evaluation of Different

Nodes

The rooting parts of centipedegrass are primarily in the nodes of
stolons. To determine the node order in the stolon, we defined
the node that has three leaves as the first node (Figure 1A).
The following nodes were the second node, third node, fourth
node, and so on (Figure 1A). To identify the node order for
transcriptome sequencing research, we evaluated the rooting
ability of nodes 1-16 (from young nodes to old nodes) from E039
(Figure 1B). The rooting rates of nodes were counted after 4, 8,
and 12 days of water culture. The results showed that nodes 1-
4 had a higher rooting rate, especially the first node, which had
the highest rooting rate (Figure 1C). Following the fifth node,
the rooting rates decreased significantly (Figure 1C). The rooting
rate statistic of lateral branches showed that branch rooting was
dominant in nodes 5-16 (Figure 1D). These results indicated
that the young nodes of centipedegrass rooted more easily, while
the old nodes rooted with greater difficulty. The lateral branches
appear in the old nodes and develop into new stolons. Therefore,
we chose the first node of centipedegrass E039 for subsequent
research. The roots elongated during water culture in 0, 2, 4, and
8 days (Figure 2A).

*http://www.arabidopsis.org/
®http://gsds.cbi.pku.edu.cn/
Chttps://blast.ncbinlm.nih.gov/Blast.cgi
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FIGURE 1 | Rooting ability evaluation of different accessions and nodes. (A) The nodes order of centipedegrass. Scale bar represents 1 cm. (B) The rooting situation
of nodes 1-16 of EO39 after water culture at 0, 4, 8, and 12 days. (C) The rooting rate of 1-16 nodes after water culture at 4, 8, and 12 days. (D) The rooting rate of

160 -
140 -
120 -
100 -
80 -
60 -
40 -
20 - H

o JULIL 00100000 00 J00 000U

12345678 910111213141516

m4d 8d 12d

Rooting rate of nodes (%)

100 - m4d 8d 12d

20 -

12345678 910111213141516

Rooting rate of branches (%)

Transcriptome Sequencing of
Centipedegrass E039 Nodal Roots

Root samples of the first nodes for RNA-seq were collected at 0,
2,4, and 8 days of water culture. Each sample had three biological
repeats. An average of 66.6 million raw reads from the 12 libraries
were obtained, and the Q20 (proportion of nucleotides with a
quality value greater than 20 in clean reads) percentage range
was determined to be 95.04-97.46% (Supplementary Table 3).
In total, 199,988 unigenes were revealed by RNA-seq assays.
These unigenes had the highest annotation ratio of 72.36% in Nt,
and the annotated unigenes were primarily classified in Sorghum
bicolor and Zea mays (Supplementary Figure 1), indicating
that centipedegrass had close genetic relationships with sorghum
and maize. There were more unigenes (119,448, 59.73%) with
lengths exceeding 1,000 bp than unigenes (80,540, 40.27%) with
lengths between 200 and 1,000 bp. The mean length of unigene
sequences was 1,699 nucleotides (nt), and the N50 was 2,517
nt. The unigene expression levels of replicate samples were

estimated from the value of fragments per kilobase per million
fragments (FPKM) and highly corrected with Pearson correlation
coefficients between 0.88 and 0.91 (Figure 2B). A principal
component analysis (PCA) of all the unigenes indicated that 12
samples clustered four groups, and the 4 day time point group
was notably distinct from the other time points (Figure 2C).

Differential Expression During Nodal

Root Elongation of Centipedegrass

The DEGs were identified from each comparison with
padj < 0.05 and | log2FoldChange| > 1. In total, 33,561
unigenes were differentially expressed among the 2 days
vs. 0 day, 4 days vs. 2 days, and 8 days vs. 4 days pairwise
comparisons. In the 2 days vs. 0 day comparison, 7,595 unigenes
were upregulated, and 7,304 unigenes were downregulated
(Figure 2D). The numbers of upregulated DEGs were increased
in 4 days vs. 2 days and 8 days vs. 4 days, with 8,798 and 9,767
genes being upregulated, respectively (Figure 2D). The number
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FIGURE 2 | Expression profiles of centipedegrass EO39 nodal roots. (A) The first nodal roots of EO39 were exhibited in O day (the root length about 0.1 cm), 2 days
(the root length about 0.5 cm), 4 days (the root length about 2.0 cm), and 8 days (the root length about 4.0 cm) after water culture. The roots are indicated by red
triangles. Scale bar represents 1 cm. (B) Pearson’s correlation between 12 samples. (C) PCA of 12 transcriptome samples. (D) The number of upregulated and
downregulated DEGs in 2 days vs. 0 day, 4 days vs. 2 days, and 8 days vs. 4 days.
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of downregulated DEGs was decreased at 4 days vs. 2 days
(5,388 genes) and was increased at 8 days vs. 4 days (7,411
genes) (Figure 2D).

To explore the molecular mechanism underlying nodal
root development, the functional categories of the DEGs were
classified through GO analysis. The top 30 enriched GO terms
of the 2 days vs. 0 day comparison showed that DEGs were
primarily enriched in “oxidation-reduction process,” “regulation
of RNA biosynthetic process,” “regulation of transcription, DNA-
templated,” “regulation of nucleic acid-templated transcription,”
“oxidoreductase activity,” and “response to stress” (number of
genes > 1,000) (Supplementary Figure 2A and Supplementary
Table 4). The top 30 enriched GO terms of the 4 days vs.
2 days and 8 days vs. 4 days comparisons showed the same
results: DEGs were primarily enriched in “oxidation-reduction
process” and “oxidoreductase activity” (number of genes > 1,000)
(Supplementary Figures 2B,C and Supplementary Table 4).

Moreover, the top 30 enriched GO terms of all upregulated
and downregulated DEGs showed that the common enrichments
were primarily related to oxidation-reduction processes,
including “oxidoreductase activity, acting on paired donors,”

“oxidoreductase activity, acting on peroxide as acceptor; and
“peroxidase activity” (Figures 3A,B and Supplementary
Table 5). In addition, transcription factor (TF)-related
terms were clearly enriched, including “transcription factor
complex,” “nucleic acid binding transcription factor activity,”
and “transcription factor activity, and sequence-specific DNA
binding” (Figures 3A,B and Supplementary Table 5). Moreover,
12 enriched GO terms were specifically enriched in upregulated
and downregulated DEGs (Figure 3). Among these genes, those
related to the “response to hormone” GO term were especially
upregulated in the 2 days vs. 0 day comparison (Figure 3A).
For all downregulated genes, the top 30 enriched GO terms
were nearly significantly different in the 8 days vs. 4 days
comparison (Figure 3B).

To characterize the DEG functions, pathways significantly
involved (P-value < 0.05) in the response to nodal root
development were identified using the KEGG database.
For the upregulated and downregulated DEGs, a total of
29 and 19 KEGG pathways were significantly enriched,
respectively  (Supplementary Table 6). The pathways
containing the above five most DEGs were “phenylpropanoid
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FIGURE 3 | DEG analysis of centipedegrass nodal root development stages.
(A) Top 30 enriched GO terms of all upregulated DEGs. (B) Top 30 enriched
GO terms of all downregulated DEGs. (C) Number of upregulated and
downregulated DEGs enriched in five KEGG pathways.

“glycolysis/gluconeogenesis,” “plant hormone
signal transduction,” “plant-pathogen interaction,” and “carbon
fixation in photosynthetic organisms” (Supplementary
Table 6 and Figure 3C). In these five KEGG pathways, the
number of upregulated DEGs was clearly greater than that of
downregulated DEGs in the 4 days vs. 2 days comparison, while
the number of upregulated DEGs was clearly less than that
of downregulated DEGs in the 8 days vs. 4 days comparison
(Figure 3C). Meanwhile, the numbers of upregulated DEGs
in  “glycolysis/gluconeogenesis,”  “plant hormone  signal
transduction,” “plant-pathogen interaction,” and “carbon

biosynthesis,”

fixation in photosynthetic organisms” pathways exhibited an
increasing trend from the 2 days vs. 0 day comparison to the
4 days vs. 2 days comparison and exhibited a decreasing trend
from the 4 days vs. 2 days comparison to the 8 days vs. 4 days
comparison (Figure 3C).

Identification of DEGs Involved in the
Centipedegrass Nodal Root

Development

To further screen DEGs, the selection conditions were set as |
log2FoldChange| > 2 and padj < 0.05. The results of GO and
KEGG analyses indicated that plant hormone signal transduction
might play an important role in centipedegrass nodal root
development. A total of 201 DEGs were identified in plant
hormone signal transduction and selected from all of those
comparisons (Supplementary Table 7). Ubiquitin-mediated
proteolysis participates in multiple signal transduction pathways
of plant hormones, including auxin, gibberellin, ethylene,
and jasmonic acid’. Therefore, 293 DEGs of E3 ubiquitin-
protein ligases were selected from all of those comparisons
(Supplementary Table 8). In addition, TF families may also
play important roles in centipedegrass nodal root development,
and 923 DEGs of TF families were identified from all of those
comparisons (Supplementary Table 9). After the trend analysis,
the clearly upregulated (profile 4 and profile 5) DEGs and
downregulated (profile 0 and profile 1) DEGs were set aside for
further analysis (Supplementary Figure 3).

After reconfirming the selected DEG functions and removing
the DEGs with particularly low expression levels (FPKM
value < 10 in all samples), 20, 20, and 69 DEGs were reserved
in plant hormone signal transduction, E3 ubiquitin-protein
ligase, and TE respectively (Supplementary Table 1).
plant hormone signal transduction, three, four, and five
DEGs belonged to the auxin/INDOLE-3-ACETIC ACID
(AUX/IAA), auxin-responsive GH3 family protein (GH3),
and small auxin-up RNA (SAUR) families in auxin signal
transduction, respectively (Supplementary Table 1 and
Figure 4A). Among these genes, five DEGs were upregulated,
while six DEGs were downregulated (Supplementary Table 1
and Figure 4A). Salicylic acid signal transduction exhibited
seven upregulated DEGs, including two TGA family members
and five PRI (pathogenesis-related protein 1) family members
(Supplementary Table 1). Gibberellin (GA) signal transduction
yielded one upregulated gene, GIBBERELLIN INSENSITIVE
DWARF]I (GID1), and abscisic acid (ABA) signal transduction
resulted in one upregulated gene, osmotic stress/ABA-activated
protein kinase 2 (SAPK2), during centipedegrass nodal root
development (Supplementary Table 1). In ubiquitin-mediated
proteolysis, 20 DEGs of E3 ubiquitin-protein ligase were
selected, 12 of which were upregulated and eight of which
were downregulated (Supplementary Table 1). However,
most of the E3 ubiquitin-protein ligase DEGs exhibited an
initial upregulation followed by a decreasing tendency or an
initial downregulation followed by an increasing tendency
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(Figure 4B). Only Cluster-13984.84258 (SINAT5) had a clear
decreasing tendency during root development at the four time
points (Figure 4B). Meanwhile, 69 DEGs were identified in
nine TF families, and the most strongly enriched family was
the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF)
domain class transcription factor with 33 DEGs (Supplementary
Table 1 and Figure 4C). The second most enriched family was
WRKY TFs, containing 16 DEGs (Supplementary Table 1 and
Figure 4C). The rest of the DEGs belonged to the basic (region)
leucine zipper (bZIP) TF family (four DEGs), GATA TF family
(four DEGs), heat stress TF family (five DEGs), homeodomain
TF family (three DEGs), lysine-specific demethylase (LSD) TF
family (two DEGs), sigma factor TF (one DEG), and zinc finger
proteins (one DEG) (Supplementary Table 1 and Figure 4C).
These results showed that auxin signal transduction, E3
ubiquitin-protein ligases (especially Cluster-13984.84258 and
SINATS5), the AP2/ERF TF family, and the WRKY TF family
may have significant roles in regulating centipedegrass nodal
root development.

Verification of RNA-Seq Data
To confirm the reliability of the RNA-seq data, we selected 12
genes from the 109 DEGs (Supplementary Table 1) and validated

them using quantitative real-time PCR (qRT-PCR). These
DEGs were significantly upregulated or downregulated during
centipedegrass nodal root growth (Supplementary Figure 4).
The qRT-PCR results were largely consistent with the RNA-seq
data, demonstrating that our sequencing data for centipedegrass
nodal roots were reliable.

Ectopic Expression of EOSINAT5 and
Knockout of the Homologous Gene
LOC_0s07g46560 in Rice Affected Root

Development

The genomic sequences of SINAT5 between E. ophiuroides and
Arabidopsis thaliana were compared, and two introns were
contained in EoSINATS5 (Cluster-13984.84258), while only one
intron was observed to be contained in AtSINAT5 (AT5G53360,
see text footnote 4) (Supplementary Figure 5A). The amino
acid sequence alignment among A. thaliana, E. ophiuroides,
and other Poaceae plants showed that EoSINAT5 has RING-
HC and Sina domains, and these two domains were conserved
in Poaceae plants (Supplementary Figure 5B). However,
compared with A. thaliana, the RING-HC and Sina domains
of SINAT5s in Poaceae plants had multiple amino acid
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length of WT and EoSINAT5-overexpressing transgenic plants. (D) Root tip numbers of WT and EoSINAT5-overexpressing transgenic plants. Letters above bars

indicate significant differences between the respective values (p < 0.05).

site differences (Supplementary Figure 5B), indicating that
SINAT5s in Poaceae plants might have function differences.
During nodal root development in centipedegrass, EoSINAT5
showed a clearly tendency of expression reduction (Figure 4B).
To further examine gene function, EoSINAT5 driven by the
cauliflower mosaic virus (CaMV) 35S promoter was introduced
into rice “Nipponbare” by Agrobacterium-mediated genetic
transformation. In total, 16 transgenic lines were obtained, and
11 lines exhibited similar phenotypes. Three of 11 transgenic
lines were chosen to analyze the root length and root tip
number. Compared with wild-type (WT) plants, the transgenic
lines had longer roots and more numerous root tips (Figure 5).
Furthermore, we knocked out LOC_0Os07¢46560 the homologous
gene of EoSINATS5 in rice and obtained five mutant transgenic
lines. One base deletion line and two base insertion lines were
chosen for further analysis. Compared with WT plants, the
mutant transgenic lines had shorter roots and fewer root tips
(Figure 6). These results showed that EoSINAT5 promoted
root development and that its homologous gene had a similar
function in modern plant rice. In Arabidopsis, the E3 ubiquitin-
protein ligase SINAT5 ubiquitinates NACI to participate in
auxin signal transcription and regulate root development (Xie
et al, 2002). In our transcriptome data, expression of two

NACI unigenes was found upregulated evidently, which shows
the contrary expression trend of EoSINAT5 (Supplementary
Table 10).

DISCUSSION

Aging of Nodes Limited the Rooting
Ability of Centipedegrass

Centipedegrass is an important warm-season grass that
reproduces primarily through developed stolons. The node
rooting ability of stolons is a significant factor limiting lawn
establishment. Previous studies showed that aging is a limiting
factor for adventitious rooting competence (Bellini et al., 2014).
In Arabidopsis, the derooted hypocotyls of young (12-day-old)
plants root readily within a week, while adult (26-day-old) plants
need a longer time to root and still root poorly (Diaz-Sala et al.,
2002). In our research, a similar rooting pattern was observed in
centipedegrass. The young nodes of centipedegrass rooted more
easily, while the old node’s rooting showed greater difficulty
(Figures 1C,D). However, in the actual lawn establishment
process, the swards contain numerous old nodes, which greatly
affects the speed of centipedegrass grass turf planting.
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FIGURE 6 | Knocking out LOC_0s07g46560 (EoSINAT5 homologous gene) in “Nipponbare” rice. (A) Sequencing analyses of LOC_0s07g46560 knockout
homozygous lines. (B) Root phenotypes of WT and LOC_0s07g46560 knockout homozygous lines. Scale bar represents 1 cm. (C) Total root length of WT and
LOC_0s07g46560 knockout homozygous lines. (D) Root tip numbers of WT and LOC_0s07g46560 knockout homozygous lines. Letters above bars indicate

Transcriptome Sequencing of

Centipedegrass Nodal Roots
Adventitious root development is mainly divided into three
phases, including induction, initiation, and expression (Geiss
et al, 2018). The transcriptome sequencing samples of first
nodal roots at four time points (0, 2, 4, and 8 days) after
water culture belong to the expression phase of root emergence.
According to the root morphology in different sampling time
points (Figure 2A), the 0 and 2 day roots might be in the
early emerging phase, when they still lack an elongation zone
(Motte et al., 2019), whereas, the roots elongate obviously from
2 to 4 days (Figure 2A), indicating that roots might enter a
phase of rapid elongation with the formation of elongation
zone. After transcriptome sequencing, the PCA showed that the
4 days group had the highest dispersion degree compared with
the other three groups (Figure 2C), and the GO enrichment
analysis showed that DEGs related to “cell wall” and “plant-
type cell wall” were especially downregulated in the 8 days
vs. 4 days comparison (Figure 3B). These results indicate that
4 days might be an important time point relating to the root
elongation zone formation.

Previous studies have showed that multiple plant hormones
perform coordinated regulation in root development, and auxin

stands out as a key instructive signal (Motte et al., 2019).
In the root elongation zone, auxin promotes cell expansion
by coordinating the activity of SAURs, Arabidopsis H+-
ATPase (AHAs) and cell wall-modifying proteins (Motte et al.,
2019). In our research, GO enrichment and KEGG pathway
analyses showed that DEGs enriched significantly in plant
hormone signal transduction (Figures 3A,C), indicating that
plant hormones might have important effects on centipedegrass
nodal root development. In addition, DEGs were clearly enriched
in oxidation-reduction process by GO enrichment analysis
(Figure 3A). Reactive oxygen species (ROS) signaling affects
root development by stiffening the cell wall to inhibit cell
expansion, and is not dependent on auxin (Motte et al., 2019).
Therefore, we focused on the DEGs in plant hormone signal
transduction for the moment.

Plant Hormone Signal Transduction

Involved in Nodal Root Development

In total, 20 DEGs were determined to be associated with plant
hormone signal transduction. Among these genes, 11 DEGs
belonged to auxin signal transduction, one DEG belonged
to gibberellin signal transduction, one DEG belonged to
abscisic acid signal transduction, and seven DEGs belonged
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to salicylic acid signal transduction (Supplementary Table 1
and Figure 4A). These results showed that in addition to
auxin signal transduction, salicylic acid signal transduction
might also have important effects on root development.
Furthermore, 14 DEGs were upregulated, and six DEGs were
downregulated, during centipedegrass nodal root development
(Supplementary Table 1).

In auxin signal transduction, three AUX/IAA family genes
(IAA14, IAA24, and IAA31) were identified (Supplementary
Table 1). Previous studies in Arabidopsis have shown that iaal4
mutant plants have no lateral root initiation sites and no lateral
roots (Vanneste et al., 2005). TAA14 can interact with ARF7
and ARF19 to inhibit the activities of these ARFs (Fukaki et al.,
2005). In rice, the expression level of JAA24 is decreased in the
roots of OsDGKI-overexpression transgenic plants which exhibit
lower lateral root density and thicker seminal roots (Yuan et al.,
2019). IAA31 is known to function in lateral root formation. In
rice, overexpression of OsIAA31 leads to defects in lateral root
initiation and lateral root reduction (Nakamura et al., 2006). In
our research, JAA14 was upregulated, while JAA24 and TAA3I
were downregulated, during root development, indicating that
TAA14 and JAA24 might have positive effects, while JAA31 might
have negative effects, on centipedegrass nodal root formation.

The GH3 gene family is generally regulated during plant
development steps, such as root and hypocotyl growth. In
Arabidopsis, overexpression of GH3.2 (YDKI) and GH3.5 (WESI)
in transgenic plants disrupts adventitious root development and
reduces primary root growth (Takase et al., 2004; Park et al,
2007b). The GH3.6 gene can affect multiple phenotypes of plants,
including shoots, roots, and hypocotyls (Nakazawa et al., 2001).
The function of GH3.9 is to regulate primary root development,
and gh3.9 mutants display elongated roots compared with WT
plants (Tatematsu et al.,, 2008). Several GH3 genes also exert
an effect in balancing auxin homeostasis (Chapman and Estelle,
2009). However, the function of GH3.4, GH3.8, and GH3.12
in root growth has not been determined. In our research,
one upregulated gene, GH3.4, and three downregulated genes
(one GH3.8 and two GH3.12) might play important roles in
centipedegrass nodal root development.

The SAUR gene family is an auxin-responsive gene family
that plays an important role in auxin-induced acid growth steps,
such as cell elongation and growth adaptation (Stortenbeker
and Bemer, 2018). AtSAUR32 is the first characterized SAUR
gene in Arabidopsis, and the overexpression of AtSAUR32 in
plants reduces hypocotyl elongation and causes defects in apical
hook maintenance (Park et al., 2007a). The SAUR32 gene in
centipedegrass was obviously downregulated during nodal root
growth, indicating that EoSAUR32 might inhibit cell elongation
in order to reduce root elongation. Plants overexpressing
AtSAUR41 exhibit elongated hypocotyls, increased length of
primary roots, and increased number of lateral roots (Kong et al.,
2013). In our research, the EoSAUR4I gene was upregulated
during root growth, indicating that it had similar functions to
AtSAUR4I in promoting centipedegrass nodal root development.
The SAUR7I gene belongs to the SAUR41 subfamily, which has
different amino acid sequences in the N-terminus from other
SAUR families (Kong et al., 2013). However, the expression trend

of EoSAUR71 was contrary to that of EOSAUR41, indicating that
EoSAUR71 might have the opposite function as EoSAUR41. At
present, a SAUR50-like gene of sunflower has been reported
to be specifically expressed on the eastern side of the stem
and is related to the diurnal bending of the apex toward
the sun (Atamian et al, 2016). However, to the best of our
knowledge, the function of SAUR50 in root development has not
been reported to date. In our research, the SAUR50 gene was
downregulated in root growth, showing that this gene might play
important roles in roots.

Salicylic acid (SA) is well known for improving plant
resistance by inducing expression of pathogenesis-related
proteins; also, it has important roles in plant growth and
development (Pasternak et al., 2019). In Arabidopsis, adding
of low-concentration exogenous SA (below 50 wM) promotes
adventitious roots and changes the root apical meristem
architecture, while high-concentration exogenous SA (higher
than 50 M) inhibits root development from all growth processes
(Pasternak et al., 2019). Furthermore, exogenous SA treatments
change the auxin synthesis and transport in plants (Pasternak
et al,, 2019). In SA signal transduction, functions of the TGAL5
and TGALG6 genes have not been fully elucidated. Previous studies
in rice showed that TGALS interacts with NPR1 (non-expressor
of pathogenesis-related genes 1) homologs NH4 and NH5 and
is predicted to be involved in plant development (Chern et al.,
2014). PRI/PRBI genes have been utilized as marker genes for
plant defense responses (Mitsuhara et al,, 2008). Among 22
Arabidopsis PRI genes, only one gene is pathogen-inducible,
while most PRI genes in rice can be induced by pathogens
(Mitsuhara et al., 2008). The Arabidopsis drought-induced 19
(Di19) gene can bind to the PRI promoter to enhance drought
tolerance, and PRI-overexpressing plants have a drought-tolerant
phenotype (Liu et al., 2013). In our research, all PR1/PRBI genes
were upregulated, indicating that these genes might be involved
in nodal root development in centipedegrass.

Gibberellin is necessary for the development of multiple
organs and its deficiency can cause reduced elongation of primary
roots by reducing cell elongation and proliferation rate (Rizza
et al., 2017). However, GA treatment seems to negatively affect
the adventitious root formation and reduce the number of
adventitious roots (Bellini et al., 2014; Mauriat et al., 2014).
However, synergistic effect of GA and ethylene have been proved
in promoting adventitious root formation, and abscisic acid
(ABA) can act as a competitor of GA in synergistic effect with
ethylene, which leads to negative regulation in adventitious
root development in tomato and rice (Bellini et al, 2014).
Exogenous ABA has either positive or negative effects on root
growth depending on its concentration (Li et al., 2017). GID1
is the endogenous GA receptor, and the GA-GID1 complex can
interact with DELLA proteins, which negatively regulate the GA
signaling pathway (Voegele et al., 2011). The GA-GID1-DELLA
complex can be recognized by the E3 ubiquitin ligase complex
SCFSIY1/GID2 and can be degraded through the 26S proteasome
(Voegele et al., 2011). Mutation of the GID1 gene in Arabidopsis
gives rise to shortened roots and hypocotyls (Griffiths et al., 2006).
In centipedegrass, the GIDI gene was upregulated indicating that
this gene might have positive effects during root development.
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In ABA signal transduction, SAPK2 is a member of sucrose non-
fermenting-1-related protein kinase 2 (SnRK2) subclass II (Kim
etal,, 2012). In rice, the sapk2 mutant and SAPK2-OE plants have
similar root lengths as WT plants, while after NaCl treatment,
the sapk2 mutants have decreased root length, and SAPK2-
overexpression plants clearly exhibit increased root length (Lou
et al., 2018). Therefore, the upregulated SAPK2 gene might have
a positive function in centipedegrass nodal root development.

E3 Ubiquitin-Protein Ligase Involved in
Nodal Root Development

The ubiquitin-proteasome system (UPS) mediates proteolysis
by ubiquitin and is involved in nearly every aspect of plant
biology. Ubiquitin-mediated proteolysis involves a three-step
enzymatic cascade between El, E2, and E3 enzymes, and E3
ubiquitin-protein ligases determine the specific recognition of
target proteins (Kelley and Estelle, 2012). The E3 ubiquitin-
protein ligases have been classified into four groups (i.e., HECT,
RING, U-box, and cullin-RING) (Kelley and Estelle, 2012),
and DEGs we identified in E3 ubiquitin-protein ligases mostly
belong to the RING-finger type, except PUB23, which belongs
to the U-box type. However, most of these genes have not been
reported to be associated with root development, except EL5
(Elicitor 5) and SINAT5. In rice, the inactivated EL5 protein gives
rise to a rootless phenotype with cell death in root primordia,
and moderately impaired E3 activity of EL5 can form short
crown roots (Koiwai et al., 2007). Further research has proven
that ubiquitin ligase EL5 maintains root meristem viability by
regulating cytokinin-mediated nitrogen effects (Mochizuki et al.,
2014). For the RHCIA gene in Arabidopsis, the overexpression
line roots have severe alterations in root meristem architecture,
while T-DNA insertion lines exhibit a short root phenotype (Jiang
et al,, 2010). In Arabidopsis, overexpressing of SINATS5 results in
fewer lateral roots, and mutations in the RING motif of SINAT5
result in more lateral roots (Xie et al., 2002).

EoSINAT5 Was Involved in Root

Development

Transgenic rice phenotypes verified that EoOSINAT5 had a positive
effect on root development and that its homologous gene
LOC_Os07g46560 in rice had similar amino acid sequences
and functions (Figures 5, 6 and Supplementary Figure 5B).
A previous study reported that NACI activates the expression
of two downstream auxin-responsive genes DBP (DNA-binding
protein) and AIR3 (Auxin-induced in root cultures protein 3)
(Xie et al., 2000), and AtSINATS protein can ubiquitinate NAC1
to downregulate auxin signal transduction (Xie et al., 2002). In
our transcriptome data, two NACI unigenes, one DBP unigene
and nine AIR3 unigenes were found (Supplementary Table 10).
Contrary to EoSINAT5, the expression levels of NAC1 were
obviously upregulated and indicating that EoSINAT5 and NAC1
might have interaction relationship. However, the DBP unigene
had downregulated expression level and AIR3 unigenes had very
low expression levels (Supplementary Table 10), proving that
they were not activated by NACI gene. Accordingly, EoSINAT5
and AtSINAT5 might have a different regulatory mechanism in

root development, and the molecular mechanism governing the
function of EoSINATS5 requires further study.

CONCLUSION

In our research, aging of nodes limited the rooting ability of
centipedegrass. The transcriptome sequencing of nodal roots
after 0, 2, 4, and 8 days of water culture revealed that 4 days
might be an important time point relating to the root elongation.
GO enrichment and KEGG pathway analyses of DEGs indicated
that plant hormone signal transduction and transcription
factors might play important roles in centipedegrass nodal root
growth. E3 ubiquitin-protein ligases might be involved in the
plant hormone signal transduction with transcription factors
to regulate root development. Transgenic results showed that
differentially expressed E3 ubiquitin-protein ligase EoSINATS5
and its homologous gene (LOC_Os07¢46560) in rice have a
similar function in promoting the root growth.
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Supplementary Figure 1 | Annotation of all unigenes in centipedegrass nodal
root development. (A) The number and ratio of unigenes annotated in seven
databases. (B) Species classification of unigene annotation in the NR database.

Supplementary Figure 2 | Top 30 enriched GO terms of the 2 days vs. 0 day
comparison, 4 days vs. 2 days comparison, and 8 days vs. 4 days comparison.
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Supplementary Figure 3 | Trend analysis of DEGs in “Plant hormone signal
transduction,” “E3 ubiquitin-protein ligase,” and “Transcription factor.” The color
modules are significantly enriched modules with p < 0.05. The same color
indicates a similar trend.

Supplementary Figure 4 | gRT-PCR validation of 12 genes randomly selected
from the 109 DEGs in Supplementary Table 1. Values are presented as the
mean + SE. The column diagrams represent the relative expression levels of
genes. The line charts represent the FPKM values of genes.

Supplementary Figure 5 | Gene structure and protein alignment of EoSINATS.
(A) Structural analysis of the E0OSINAT5 gene in Arabidopsis and centipedegrass.
Black boxes represent exons, and black lines represent introns. (B) Protein
alignment of SINAT5s from Sorghum bicolor (SbSINATS, XP_002461156.1),
Setaria italica (SISINAT5, XP_004958578.1), Dichanthelium oligosanthes
(DOSINAT5, OEL30966.1), Oryza sativa japonica group (OsSINATS,
XP_015644782.1), Oryza brachyantha (ObSINAT5, XP_006658066.1),
Brachypodium distachyon (BASINAT5, XP_003557906.1), Triticum urartu
(TuSINAT5, EMS52645.1), Aegilops tauschii subsp. Tauschii (AsSINATS,
XP_020178176.1), Arabidopsis thaliana (AtSINAT5, AT6G53360), and Eremochloa
ophiuroides (Munro) Hack. (EoSINATS5, Cluster-13984.84258). Green underlining
indicates a conserved RING-HC region of SINAT5 proteins. Red underling
indicates a conserved Sina region of SINAT5 proteins. Black, red, and blue
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