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Nitrate is an important source of nitrogen for poplar trees. The nitrate transporter (NRT)
gene family is generally responsible for nitrate absorption and distribution. However, few
analyses of the genetic effects and expression patterns of NRT family members have
been conducted in woody plants. Here, using poplar as a model, we identified and
characterized 98 members of the PtoNRT gene family. We calculated the phylogenetic
and evolutionary relationships of the PtoNRT family and identified poplar-specific
NRT genes and their expression patterns. To construct a core triple genetic network
(association - gene expression - phenotype) for leaf nitrogen content, a candidate gene
family association study, weighted gene co-expression network analysis (WGCNA), and
mapping of expression quantitative trait nucleotides (€QTNs) were combined, using
data from 435 unrelated Populus. tomentosa individuals. PtoNRT genes exhibited
distinct expression patterns between twelve tissues, circadian rhythm points, and
stress responses. The association study showed that genotype combinations of allelic
variations of three PtoNRT genes had a strong effect on leaf nitrogen content. WGCNA
produced two co-expression modules containing PtoNRT genes. We also found that
four PtoNRT genes defined thousands of eQTL signals. WGCNA and eQTL provided
comprehensive analysis of poplar nitrogen-related regulatory factors, including MYB17
and WRKY21. NRT genes were found to be regulated by five plant hormones, among
which abscisic acid was the main regulator. Our study provides new insights into the
NRT gene family in poplar and enables the exploitation of novel genetic factors to
improve the nitrate use efficiency of trees.

Keywords: association genetics, expression pattern, leaf nitrogen content, NRT gene family, Populus,
transcription factor

INTRODUCTION

Nutrient absorption, transport and recycling are key processes in the plant life cycle. During
seasonal leaf senescence, trees reabsorb specific nutrients from the leaves. These nutrients are stored
in stems and roots and used at the beginning of the next growing season to support new growth
(Babst and Coleman, 2018). Seasonal nutrient storage gives long-lived perennials an advantage over
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other plants. Nitrogen is one of the macronutrients necessary for
the growth of forest trees. It is a major component of essential
compounds such as amino acids, nucleotides, chlorophyll,
hormones and vitamins (Xu et al,, 2012). N availability is
usually the main factor limiting the productivity of trees.
The nitrogen use efficiency (NUE) of plants is defined as
the efficiency with which plants obtain and use nitrogen.
Transporters play a key role in nitrogen-related signaling,
metabolism, and physiology, as they allow the movement of
water and solutes (such as inorganic ions, hormones, amino
acids, and sugars) across biological membranes (Hedrich, 2012).
Nitrate (NO37™) is the main N source used by higher plants.
Most NO3 ™~ obtained by plants from soil is actively transported
by a NO3~ transporter (NRT) (Gojon et al, 2011). To adapt
to fluctuating nitrate concentrations in soil, plant roots have
developed a low-affinity transport system (LATS, >1 mM)
and high-affinity transport system (HATS, 1 uM ~ 1 mM).
According to whether the specific soil nitrate concentration
could induce gene expression, two types of transport modes
were differentiated, namely constitutive (cLATS/cHATS) and
inducible GLATS/iHATS) (O’Brien et al., 2016).

AINRTI1.1 (also known as CHLI/NPF6.3) of Arabidopsis
thaliana was the first member of the NRT family to be identified
(Tsay et al, 1993) and has dual affinities for nitrates (Liu
et al, 1999). This dual-affinity nitrate transporter is involved in
nitrate absorption and root-to-shoot transport, and also plays an
important role in nitrate-induced auxin transport and regulation
of root morphology (Bouguyon et al., 2015). In A. thaliana,
NRT1.5 is a low-affinity bidirectional nitrate transporter that
participates in the loading of nitrate into the root xylem, which
is essential for the transport and outflow of nitrate nitrogen from
root to stem (Lin et al., 2008). AtNRT1.6 is mainly responsible for
delivering nitrate from maternal tissues to developing embryos
(Almagro et al., 2008), which also suppresses NO3~ starvation-
induced leaf senescence (Meng et al., 2016). The function of
AtNRT1.8 is absorbing nitrate into xylem parenchyma cells,
thereby removing nitrate from the xylem sap (Li et al., 2010).
AtNRT1.9 promotes the loading of nitrate into the root phloem
and enhances the downward transport of nitrate within roots
(Wang and Tsay, 2011). The NRTI subfamily genes were revised
nomenclature for the characterized NPF members (Leran et al.,
2014). The NRT2 subfamily is a high-affinity nitrate transporter.
NAR2, which forms a complex with NTR2 (Kotur et al,
2012), is named NRT3.

Arabidopsis and rice contain 53 and 93 NPF genes,
respectively. The functions of many NRT genes remain unknown,
and only a few have been characterized. OsNRT1/NPF8.9 was
the first NRT gene identified in rice (Lin et al, 2000).The
spatial expression pattern of OsNRT1 suggests that it may be
involved in nitrate absorption. OsNRT1.1b/OsNPF6.5 is one of
the closest linear homologs of AtNPF6.3 in rice, and it also
encodes a nitrate transporter that regulates nitrate absorption
and root-stem transport (Hu et al, 2015). Interestingly, a
single nucleotide polymorphism (SNP) leading to Thr327Met
substitution between indica and japonica varieties is responsible
for the enhanced nitrate uptake, root-stem transport, nitrate
assimilation, and nitrogen use efficiency (NUE) of indica rice.

These results indicate that marker-assisted molecular breeding of
improved nitrate transporters is a feasible method for improving
plant NUE. In rice, OsNPF7.3/PT6 mediates peptide transport
and plays roles in regulating total nitrogen content and plant
growth (Fang et al, 2017). Overexpression of transporters
in the NRTI(NPF) and NRT2 subfamilies can also enhance
NUE. For example, overexpression of rice OsNRT2.3b not only
increased nitrate and iron uptake but also increased yield
under both low and high-nitrogen field conditions (Fan et al.,
2016). A specific promoter is necessary for some transporters to
improve NUE of transgenic plants. Transporters are generally
expressed specifically in certain tissues or cells. When they
are constitutively and universally expressed, they have negative
impacts on NUE and yield. For example, the introduction of
ubiquitin-driven OsNRT2.1 into rice resulted in decreased NUE
and grain yield, whereas the introduction of the nitrate-induced
promoter OsNAR2.1p had the opposite effect (Chen et al., 2016).
Poplars are perennial deciduous woody plants. Their NUE
can be effectively improved by increasing the absorption capacity
of nitrate in roots and the redistribution capacity of nitrate
in other tissues. The expression pattern of NRT gene family
members shows obvious tissue specificity, but few tissues have
been subjected to tissue-specific analysis (Bai et al., 2013),
especially the xylem, cambium, phloem and other tissues peculiar
to woody plants. Due to the large number of NRT gene family
members, the genetic effects of NRT genes on the nitrogen
content and growth traits of poplar remain unclear. Therefore,
we carried out relevant research on an important plantation tree
species in China, P. tomentosa, to elucidate nitrogen utilization
associated with the NRT gene family in poplar. We examined
population expression data and comprehensive tissue-specific
data for P. tomentosa and preliminarily analyzed the correlations
between genotype, expression and leaf nitrogen content through
association analysis. Our study provides new insights into the
genetic regulation of perennial tree nutrition and growth traits.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

As described in a previous manuscript, a 10-year-old association
population of 435 unrelated individuals was vegetatively
propagated in Guanxian County, Shandong Province, China (36°
23N, 115° 47'E) in 2009, from root segments, using a random
complete block design of three blocks (Xiao et al., 2020). The
sampled population was randomly selected from 1047 individuals
from natural P. tomentosa populations, representing almost the
entire natural distribution of P. tomentosa (30-40° N, 105-125°
E), which can be divided into three climatic regions (Zhang et al.,
2010). The DNeasy Plant Mini kit (Qiagen, Shanghai, China) was
used to extract total genomic DNA from fresh leaves of each
individual according to the manufacturer’s protocol.

Identification of NRT Genes in

P. tomentosa
The whole genome of P. tomentosa was sequenced using the
Pacbio-HiFi method. All known 62 NRT gene sequences of
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Arabidopsis thaliana were downloaded from the AtGenlE'.
The protein sequences of 62 AtNRT genes were used as
queries for the Basic Local Alignment Search Tool (BLAST)
against the P. tomentosa genome. The identified PtoNRT
protein sequences were uploaded to the National Center for
Biotechnology Information (NCBI) Protein BLAST program
(blastp?) for comparison against the Arabidopsis genome using
the UniProtKB/Swiss-Prot database. This process resulted in
exact matches of 62 Arabidopsis NRT genes. All candidate
PtoNRT protein sequences were further screened based on their
conserved domains (CDs) using the NCBI Batch CD Search
program’. The observed CDs included those of major facilitator
superfamily (MFS), nitrate reductase (NAR) and phospholamban
(PLN) proteins, as expected in Arabidopsis. We obtained
homologous PtoNRT genes from P. trichocarpa using the BLAST
to uniform gene ID. The cis-regulatory elements (CREs) for the
promoter sequence of NRT family genes in P. tomentosa were
predicted using plantCARE®. The CDS and protein sequences
of PtoNRT genes were uploaded to GenBank Banklt (accession
numbers: MW544773 - MW544870)°.

Bioinformatic and Phylogenetic Analysis
The isoelectric point (pI) and molecular weight of PtoNRT
protein were predicted using ExPASy®. Identified PtoNRT protein
sequences were subjected to multiple sequence alignment in
MEGA X software’. For treatment of gaps and missing data,
we selected partial deletion with a site coverage cutoff of 80%.
The optimal amino acid substitution model was identified as
Jones-Taylor-Thornton (JTT) + (G) + (F). A phylogenetic
tree of protein sequences was constructed using the maximum
likelihood (ML) approach with 1000 bootstrap replicates in
MEGA X. All positions with less than 90% site coverage
were eliminated, or in other words, less than 10% total
alignment gaps, missing data, and ambiguous bases were
allowed for any position. Figtree® was used to visualize the
phylogenetic tree.

Gene Structure, Conserved Motif, and
Chromosomal Mapping Analysis

The Multiple Expectation maximizations for Motif Elicitation
(MEME) program’ was used to analyze conserved motifs in
PtoNRT protein sequences. Gene structures, conserved motifs
and domains within the phylogenetic tree were visualized using
TBtools (Chen et al., 2020), which need to provide tree file,
MAST.XML file, domain file, and GFF3 file of P. tomentosa.
Chromosomal positioning was determined in TBtools using the
GFF3 file and a gene list.

Thttp://atgenie.org/

Zhttps://blast.ncbi.nlm.nih.gov/Blast.cgi
3https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
“http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
Shttps://www.ncbi.nlm.nih.gov/genbank/
Shttp://web.expasy.org/compute_pi/
“https://www.megasoftware.net
Shttp://tree.bio.ed.ac.uk/software/figtree/
“http://meme-suite.org/tools/meme

Collinearity Analysis

The whole full length protein sequences from P. tomentosa were
aligned with themselves using BLAST with a cut-off e-value of
10~>. Collinearity blocks across the entire genome and collinear
pairs between PtoNRT proteins were located using MCScanX
software according to the blastp results. From the collinearity file,
tandem file and gene list file, visualization of the collinearity map
was conducted in TBtools. The blastp results were also used to
calculate the K,/K; ratio for P. tomentosa. To analyze collinearity
between Arabidopsis thaliana and P. tomentosa, the entire protein
sequences of the species were aligned. The two BLAST files and
two GFFS3 files for the two species were integrated using TBtools,
and then the collinearity file was created in MCscanX. Finally, a
dual systeny plot was produced in TBtools using the GFF3 file,
collinearity file, gene list file and a control file.

RNA-seq Analysis and Gene Expression

Heatmap

Tissue-specific sampling included samples of young leaf,
expanded leaf, old leaf, apex, root, mature xylem, immature
xylem, cambium, phloem, bark, petiole, pistil, stamen, and
leaves on long and short branches. All samples were taken
from the 1-year-old P. tomentosa clone “LM50,” planted in
Guanxian County, and promptly placed into liquid nitrogen.
Leaves of LM50 grown in a growth cabinet (14-h light, 10-h
dark, 28°C) were used as sample for circadian rhythm and
stress treatment. Circadian rhythm samples were taken every
2 h over 24 h. Samples from the ABA, drought, heavy metal,
high-salt, and high-temperature treatments were taken at 1, 3,
6, 12, and 18 h. We also collected leaves from the P. tomentosa
population as samples. Each of the samples described above
was analyzed in three biological replicates. All transcriptome
data used in this study are provided in Supplementary
Datasheet 1. Statistical analysis was performed using analysis
of variance (ANOVA) in the R 3.6.3 to evaluate differentially
expressed genes. All transcriptome data have been uploaded
to the public database. The transcriptome expression data
(three biological replicates per group) are available in the
National Center for Biotechnology Information SRA database
under accession numbers PRJNA521819, PRJNA521855,
PRJNA522886, PRJNA522891, PRJNA357670, SRP141094,
SRP073689, and SRP060593.

Total RNAs were extracted using the Plant Qiagen RNAeasy
kit following the manufacturer’s instructions. Total RNAs were
used for transcriptome sequencing. The FPKM (fragments per
kilobase of transcript per million fragments) method was used to
normalize transcript expression. The processing of transcriptome
data was described in a previous manuscript (Quan et al., 2019).

Determination of Nitrogen Content in

Leaves

We collected old leaves from the P. tomentosa population
(Guanxian County) in both summer and autumn. We used
an oven to remove moisture from the leaves. The dry leaves
were then ground into a powder. We accurately weighed a
sample of 0.2500-0.5000 g (accurate to 0.0001 g), placed it in a
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polytetrafluoroethylene digestion tank, added 5 mL nitric acid
(superior grade purity) and, after a short incubation, placed it in
the digestion furnace at 100°C (rising 5°C per minute) until the
sample was completely digested. Then, 3 ml of hydrogen peroxide
(premium grade purity) was added, and the acid was driven off at
100°C until the volume of the digestion solution was less than
2 ml, which was transferred to a 50 ml plastic volumetric flask
and brought up to that volume. An inductively coupled plasma
mass spectrometer ICP-MS (model: Agilent 7700x, American
Agilent Technologies) was used to determine total elemental
contents except mercury. All samples were analyzed in three
biological replicates. Leaf nitrogen content results showed a
normal distribution (Supplementary Table 1).

Weighted Gene Co-expression Network

Analysis of the P. tomentosa Population
Total RNA extracted from the old leaves of 435 unrelated
individuals of P. fomentosa was used for RNA-seq in 2016,
following the methods described above. Library construction and
sequencing were performed by Beijing Biomarker Technology
Corporation (Beijing, China).

We performed WGCNA using the nitrogen contents of leaves
in summer and autumn as phenotypes, based on the expression
levels from 89 P. tomentosa individuals (core population)
for 7636 genes. The R 3.6.3 (R Core Team, 2020) WGCNA
package was used to construct the co-expression network. The
correlations between the modules and leaf nitrogen content were
represented with R values. The processing of WGCNA data is
described in Supplementary Method 1.

SNP-Based Association Mapping

The resequencing data and methods used for 435 unrelated P.
tomentosa individuals were described in previous study (Quan
et al., 2019). We used the mixed linear model (MLM) in TASSEL
v5.0 (Bradbury et al., 2007) to test for statistical associations
between SNPs and leaf nitrogen content traits in the association
population. The K matrix was calculated previously (Du et al,,
2012), and the Q matrix was assessed using STRUCTURE v2.3.4
(Evanno et al., 2005) based on three significant subpopulations.
The P-value was evaluated for each association, and the
significance was defined based on P-value < 10E-04. We used the
EPISNP1 package in epiSNP software (Ma et al., 2008) to test for
pairwise epistatic effects. The two-locus interaction effects were
divided into groups based on additive (A) and dominance (D)
interactions, designated AA, AD, DA, and DD.

Expression Quantitative Trait Loci

Analysis

Expression quantitative trait loci (eQTL) analysis was performed
to associate single nucleotide polymorphisms with individual
gene expression levels. R 3.6.3 (R Core Team, 2020) and the
MatrixEQTL package were used to identify eQTLs. The SNPs
of 89 individuals of P. tomentosa were used as the genotype.
NRT genes that were expressed in more than 70% of the 89
individuals were retained for eQTL analysis. The 89 individuals
and their leaf nitrogen contents were used as covariates. eQTLs

detected within a 250-kb window surrounding the transcription
start sites of their targets were regarded as cis-eQTLs, and all
others were treated as trans-eQTLs. The processing of eQTLs
is described in Supplementary Method 2. The domains and
possible binding motifs of candidate transcription factors were
analyzed using Pfam".

RESULTS

Identification, Sequence Features, and
Phylogenetic Analysis of PtoNRT Gene
Family Members

To identify NRT genes in P. tomentosa, we performed genome-
wide prediction of PtoNRT genes based on 62 identified NRT
genes in A. thaliana. Using the resulting candidate PtoNRT
genes, we performed a reciprocal BLAST search against the
Arabidopsis genome, and precise matches to 62 AtNRT were
obtained. In total, 98 PtoNRT genes were identified, of which
87 genes belong to the NRT1/NPF subfamily, seven to NRT2,
and four to NRT3 (Supplementary Table 2). The number of
NRT1 subfamily members expanded from 53 in Arabidopsis to
87 in P. tomentosa. The number of genes in the NRT2 subfamily
remained unchanged. The NRT3 subfamily expanded from two
to four genes. The predicted molecular weight of PtoNRT genes
varied from 9.28 kDa (NRT3.1) to 120.07 kDa (NPF5.10). Their
estimated pl values ranged from 5.27 (NPF1.2) to 9.78 (NRT2.5).

To investigate the evolutionary relationships among PtoNRT
family members, an ML tree was constructed from PtoNRT
protein sequences using MEGA X software. The phylogenetic tree
showed that the three subgroups (NRT1/PT, NRT2 and NRT3)
are distinctly separated (Figure 1A). The NRT1/PT subgroup
can be further distinguished into four branches according to
conserved motifs and domains. NRT3 subfamily members all
contain NAR2 domains. The first plant NAR2-type member
identified was as WOUND-RESPONSIVE 3 protein (WR3)
(Marois et al, 2002). NRT2 subfamily genes contain a PLN
domain, while MFS is typically the main domain of NRT1/NPF
subfamily genes. Most NRT1/NPF genes have 12-15 conserved
motifs (Figure 1B), which are mainly transmembrane regions. In
particular, PtoNPF5.10E has two identical domains and is twice as
long as homologous genes. Interestingly, PtoPPR contains both
PLN and MFS domain (Figure 1C) and, thus, presumably has
both NRT2 and NPF functions.

We investigated the chromosomal locations of PtoNRT
members. The 98 PtoNRT genes are distributed unevenly
on the nineteen chromosomes (Figure 2A). Chromosome
(Chr) 18 contains the largest number of PtoNRT genes, with
12, followed by ChrOl, with 11 genes. Chr05 contains two
genes and Chrll has only one. In addition, four genes
(PtoNPF5.6A, PtoNPF5.6D, PtoNPF5.10B, PtoNPF5.10H) were
located on two scaffolds. Notably, eleven PtoNPF1.2 subgroup
genes are located on chromosome 18 in adjacent positions,
suggesting a replication event during evolution, and the same
pattern was apparent for PtoNPF5.10 subgroup on Chrl3. We

WOhttps://pfam.xfam.org/
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FIGURE 1 | Phylogenetic, gene structure, and motif analyses of PtoNRT genes. (A) Phylogenetic relationships among PtoNRTs. The phylogenetic tree (left panel)
was constructed with MEGA X software using the maximum likelihood (ML) method with 1000 bootstrap replicates. (B) Motif analysis of PtoNRT protein sequences.
All motifs were identified using MEME software (http://meme-suite.org/). The length of each motif is shown proportionally. (C) Gene structure and domain analyses of
PtoNRT genes. Gene structure maps were drawn using TBtools. A scale bar is provided at the bottom.

investigated further the collinearity of PtoNRT and AtNRT
genes through whole genome synteny analysis. We found that
many PtNRT genes show collinearity within the P. tomentosa
genome (Supplementary Figure 1), suggesting that intraspecific
replication events have occurred in Populus. A few single-copy
genes remain, including PtoNPF5.1, PtoNPF6.1, and PtoNPF6.3.
During evolution, duplication was the main impetus for NRT
gene expansion. Under different selective pressures, homologous
genes may evolve different functions, thereby increasing the
diversity of gene functions. Our selection pressure analysis
suggests that PtoNPF2.8B, PtoNPF2.11C and PtoNPF1.2I are
positively selected, while all other PftoNRT genes are under
purifying selection (Supplementary Table 3). The collinearity of

orthologs between the genomes of Arabidopsis and P. tomentosa
shows that only half of NRT genes are significantly conserved
between the two species (Figure 2B). Two AfNRT genes are
homologous to three PtoNRT genes, and nine AtNRT genes
are duplicated in Populus, remaining 31 pairs of orthologs
(Supplementary Table 4).

Tissue or Organ Specific Expression of
PtoNRT Family Members

To determine the potential functions of NRT genes in Populus,
we detected the expression profiles of all NRT family genes
in various tissues (bark, old leaf, mature xylem, expanded
leaf, flower, cambium, young leaf, immature xylem, apex,
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FIGURE 2 | Chromosomal distribution of PtoNRT genes and collinearity analysis between poplar and Arabidopsis. (A) Chromosomal distribution of PtoNRT genes.
The TBtools genome visualization tool was used to illustrate the chromosomal distribution of PtoNRT genes. The chromosome number is shown to the left of each
chromosome. The chromosomal location of each PtoNRT is presented from the top to the bottom of the corresponding chromosome. The scale bar beside each
chromosome indicates the length in megabases (bp). (B) Collinearity analysis between poplar and Arabidopsis. The five chromosomes of Arabidopsis are shown at
the top, and the 19 chromosomes of P. tomentosa are at the bottom. Members of the NRT gene family are marked with red lines.

phloem, root, petiole) using our transcriptome data. As shown
in Supplementary Figure 2, NRT genes exhibited different
expression patterns among the twelve tissues or organs sampled.
The expression profiles of NRT genes in the root, mature
xylem, cambium and immature xylem show similar trends.
Expression patterns in the young leaf, apex and petiole grouped
in one cluster. Expression in the old leaf, expanded leaf,
bark and phloem samples displayed similar patterns. The
female inflorescence, a reproductive tissue, did not cluster with
any other tissues. Some homologous PtoNRT genes showed
differing expression patterns in various tissues. Homologous
genes generally cluster in different modules, suggesting that
some homologous NRT genes are differentiated into multiple
functions. For example, NPF8.1C has high expression levels in
petiole, whereas NPF8.1F has a relatively high expression level
in the mature xylem and root. AtNPF8.1 and AtNPF8.3 have
dipeptide transport activity but no nitrate transport activity,
while AtNPF8.1 also participates in peptide uptake of roots,
and AtNPF8.3 is involved in the regulation of flowering and
embryonic development in Arabidopsis (Komarova et al., 2008).
Expression of NPF8.3A was detected in mature and immature
xylem, and the expression levels of NPF8.3B were higher in roots,
mature leaves, and phloem. As previously reported, AtNPF7.3
mediates nitrate transport from root pericycle cells to the xylem
(Lin et al., 2008). However, in P. tomentosa, only NPF7.3B

showed high expression in the root, while NPF7.3C and NPF7.3A
had high transcription levels in the phloem and mature xylem,
respectively. AtNPFI.1 and AtNPFI.2 mediate nitrate transport
via phloem, redistributing nitrate from old leaves to developing
tissues (Hsu and Tsay, 2013). Only one NPFI.1 is present in
P. tomentosa and it is highly expressed in the petiole, as in
Arabidopsis. Noticeably, a total of 14 NPF1.2 members are present
in P. tomentosa, which show six different expression modes.
This diversity indicates that the function of NPF1.2 differentiated
after the replication events, enriching the pathways for nitrate
redistribution in Populus.

Phyllotactic Expression of PtoNRT Gene

Family Members

The distributions of nitrate in old and young leaves showed
different patterns. We investigated transcript levels in annual
long-shoot leaves (Long) and perennial short-branch leaves
(Short). Samples were taken successively from the apex to the end
of the phyllotaxis, designated Long 1-6 and Short 1-6. We found
that most NRT genes show inverse expression patterns between
Long and Short samples (Supplementary Figure 3). Root-to-
shoot nitrate transport occurs through the xylem, and is driven
by transpiration. As a result, old leaves obtain more nitrate from
xylem than younger leaves. Among the NPF3.1 subfamily, the
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expression level of NPF3.1C was higher in annual long shoot
leaves than in perennial short-branch leaves. Thus, NPF3.1D is
expressed in old leaves, while NPF3.1C is expressed in young
leaves. Considering that NPF3.1 is involved in the accumulation
of nitrate and gibberellin in leaves (Pike et al., 2014; Tal et al.,
2016), we speculate that NPF3.1C and NPF3.1D cooperate to
transport nitrate and gibberellin from short branches to long
shoots, promoting the growth of long shoots. Analogously, the
expression level of NPF5.7B is higher in long-shoot leaves, and
gradually decreases during leaf maturation. In contrast, NPF5.7A
has high expression in short-branch leaves, which is highest in
the oldest leaves. AtNPF4.6 is a constitutionally expressed low-
affinity nitrate transporter (Huang et al., 1999). The expression
levels of NPF4.6B and NPF4.6C in long shoot leaves are slightly
higher than those in short-branch leaves. In combination with
other proteins showing similar expression patterns, they deliver
nitrates to long shoot leaves. AtNRT2.5 is induced by nitrogen
starvation and shows a high-affinity for nitrate absorption. Most
NRT2 proteins must form complexes with NAR2.1 (NRT3.1)
to target the plasma membrane and maintain protein stability
(Kotur et al., 2012). The expression levels of NRT2.5A and
NRT2.5B increase gradually in long-shoot and short-branch
leaves. The expression trends of NRT3.1A and NRT3.1B are the
same as that of NRT2.5, indicating that NRT2 might also interact
with NRT3 in P. tomentosa to assist with the loading of nitrate
into old leaves. The expression patterns of NRT family members
in long shoot and short branch leaves are significantly different,
indicating that the nutrition and metabolism of the two leaf types
are divergent, and that different NRT proteins might function
cooperatively to reallocate nitrate.

Circadian Rhythm and Stress Treatments
Affect Expression of PtoNRT Family

Genes

Absorption and utilization of nutrients are regulated by the
circadian rhythm. Plants must also balance growth with
resistance when under stress. We performed transcriptome
analysis to identify expression modules within NRT family genes
of P. tomentosa related to the circadian rhythm and stress
treatments (Supplementary Figures 4, 5). The expression levels
of NRT family genes fluctuate significantly. NPF5.7A is highly
expressed at night, while NPF5.7B is highly expressed during
the day. Expression of NPF5.7A is down-regulated with high-
temperature treatment, which may reduce the outflow of nitrate
from leaves to help maintain a steady state. Under high-salt
stress, three genes of the NRT3.1 subfamily cluster into the same
module. Their expression levels initially increased with treatment
time, peaked at 3 h, and then decreased slowly. Thus, NRT3.1 can
respond to high-salt stress and is a potential regulator of osmotic
pressure that helps maintain homeostasis in plants.

In P. tomentosa, the expression levels of NPF2.10A/B are
generally low. NPF2.11A/B are up-regulated at night, while
NPF2.11C and NPF2.11D are up-regulated in the morning and at
dusk, respectively. Another substrate of AtNPF4.6 is abscisic acid
(ABA) (Kanno et al., 2013). In our data, the expression patterns
of NPF4.6B/C are similar, decreasing with ABA treatment time.

Both genes are up-regulated at night and peak at the end of
the dark period within 2 h of light, and then sharply decrease.
NPF2.11A and NPF6.3 gene expression patterns were similar
in ABA, heavy-metal stress and circadian rhythm experiments,
suggesting that they may be regulated by the same signaling
factor and perform similar functions. In P. tomentosa, NRT
genes in leaves are regulated by the circadian rhythm, which
may be conducive to nutrient distribution. They work together
to respond to stress, balancing nutrition and resistance to
promote plant growth.

In our analyses of tissue specificity, phyllotaxis, circadian
rhythm and stress treatment transcriptome data, six genes
were never expressed (PtoNPF2.10B, PtoNPF1.2A, PtoNPF4.5B,
PtoNPF3.1B, PtoNRT3.1D, PtoNPF4.3F) (Supplementary
Figure 6). Furthermore, the expression patterns of the NRT
gene family in the P. tomentosa population are influenced
by geographical and climatic factors in the distribution area.
Among three climatic zones, the NPF1.2], NPF4.2, NPF4.6C,
NPF5.2A, NPF5.10K, NRT2.5B, NRT2.7 and NRT3.1A genes
show significant differences (Figure 3A). This finding indicates
that these NRT genes have undergone adaptive selection.
Temperature, precipitation, circadian rhythm and other
factors have caused irreversible changes to the expression
levels of these genes.

Genetic Basis for Natural Variants of Leaf

Nitrogen Content Traits in P. tomentosa

The leaf nitrogen content of P. tomentosa varies significantly
among individuals in different climatic regions (Figure 3B).
In autumn, significant differences in leaf nitrogen content
can be observed between individuals from the southern
and northwestern climate zones. In summer, the northeast
region shows significant differences in relation to the south
and northwest, while differences between the south and
northwest are not apparent. In addition, leaf nitrogen content
in summer was significantly higher than that in autumn
(Figure 3B). These results indicate that nitrogen redistribution
occurred during autumn leaf senescence and was affected by
climate and region.

We used association genetics (additive, dominant and epistatic
effects) to analyze the genetic effects of leaf nitrogen content
traits in the association population of P. tomentosa. Based on
genome resequencing data (coverage > 15x) of 285 unrelated
individuals, we selected 20,441 high-quality SNPs from 98
NRT family genes (sub-allele frequency MAF > 5%, missing
data < 10%) for further analysis (Supplementary Datasheet
2). We found nine significant loci distributed across five NRT
genes for the summer trait, and 16 loci corresponding to eight
NRT genes for the autumn trait (Table 1). Each association
explained phenotypic variations of 4.33%-6.76% (based on R?),
with an average of 5.48%. Among significant loci for autumn,
five loci were located on the NPF6.4A gene. These associated
loci exhibited various effects on traits (Figures 4A-E). Among
the 25 locus-trait associations, 11 associations (44%) had joint
additive and dominant effects (Table 1), they were distributed
within six NRT genes, with four occurring in summer and two in
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autumn. Thus, members of the NRT family function differently
in different seasons.

We tested the pairwise epistasis between the variants of
each SNP for each trait. Among 20,441 SNPs in NRT genes,
1500 significant pairwise epistatic combinations were detected
for the summer and autumn leaf nitrogen content traits at
P < 1.0 x 10~* (Supplementary Table 5). Among these
1500 epistatic interactions, 428 additive x additive (AA), 415
additive x dominance (AD), 498 dominance x additive (DA)
and 159 dominance x dominance (DD) interaction effects were
identified for the two traits. Notably, autumn leaf nitrogen
content trait accounted for 93.57% of DA effects. Among the 25
locus—trait associations, two (18_8185071_T and 5_2524687_G)

showed epistatic effects. The GG genotype of 5_2524687_G
contributed significantly to leaf nitrogen content (Figure 4D).
We selected four independent SNPs among the significant loci
for the autumn leaf nitrogen content trait, with different effects
on phenotype (Figure 4E). We identified possible genotype
combinations of the six significant SNPs for the autumn
trait (Figure 4F). The genotype alternations of two major
loci (HIC_ASM_5_2524687, HIC_ASM_6_12752091) showed
especially strong effects on phenotype. Evidently, AG/AA/CT
combinations at the first three major loci contribute to lower leaf
nitrogen content, while AA/--/CC and AA/GG/-- combinations
result in higher leaf nitrogen content. These findings support
the possibility that genotype combinations of single locus allelic
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TABLE 1 | Nitrate transporter family gene association analysis results.

Trait Gene Locus Site p Marker R2 Additive effect Dominant effect
Summer NPF5.7B HIC_ASM_4 3888128 4.48E-5 0.06051
NPF8.3A HIC_ASM_3 10772965 9.19E-5 0.06765 —2.561 0.751
NPF8.3A HIC_ASM_3 10770957 1.53E-4 0.06383 —-0.715 —1.697
NPF2.11B HIC_ASM_18 8185059 1.53E-4 0.06750 1.496 1.077
NRT2.5C HIC_ASM_18 9835285 2.21E-4 0.06108 —2.136 0.998
NPF2.11B HIC_ASM_18 8185066 4.59E-4 0.06275 —1.480 1.091
NPF2.11B HIC_ASM_18 8185043 6.79E-4 0.04331
NPF2.11B HIC_ASM_18 8185071 9.09E-4 0.05211 0.456 0.069
NRT3.1B HIC_ASM_13 10297158 9.98E-4 0.04986 2.346 0.969
Autumn NPF5.1 HIC_ASM_0 15816593 1.47E-4 0.06080
NPF6.4A HIC_ASM_15 19847470 4.86E-4 0.05207
NPF7.3C HIC_ASM_6 12752091 5.19E-4 0.05063
NPF6.4A HIC_ASM_15 19847476 5.98E-4 0.05201
NPF5.4B HIC_ASM_9 1866319 6.16E-4 0.04926
NPF6.4A HIC_ASM_15 19847459 6.38E-4 0.05013
NPF1.2A HIC_ASM_18 9798385 6.57E-4 0.04874
NPF4.5B HIC_ASM_7 57391 7.64E-4 0.04754
NPF1.2F HIC_ASM_5 2524687 7.77E-4 0.06109 0.087 —0.110
NPF6.4A HIC_ASM_15 19847450 7.97E-4 0.04976
NPF5.1 HIC_ASM_0 15813525 9.21E-4 0.04709
NPF5.1 HIC_ASM_0 15813529 9.21E-4 0.04709
NPF6.4B HIC_ASM_15 21476767 9.65E-4 0.05942 0.326 0.318
NPF6.4B HIC_ASM_15 21476768 9.65E-4 0.05942 —0.326 0.318
NPF6.4B HIC_ASM_15 21476770 9.65E-4 0.05942 —0.326 0.318
NPF6.4A HIC_ASM_15 19847455 9.94E-4 0.04690

variations are the main factors driving autumn leaf nitrogen
content. These results indicate that NRT family genes have
functions in leaf nitrogen content.

Expression Variation of WGCNA Modules
Within a Population

Weighted gene co-expression network analysis was performed
using transcriptome data from the P. tomentosa population.
A network was constructed from the filtered expression data.
We selected a soft threshold power 12 to define the adjacency
matrix based on the criterion of approximate scale-free topology
(Supplementary Figure 7), with a minimum module size of 30,
and module detection sensitivity of deepSplit 4. After merging,
16 modules were identified (Figure 5A). The connectivity of
eigengenes was analyzed to identify interactions among these
16 co-expressed modules. A significant difference among the
16 modules was found (Figure 5B). Three modules were
significantly correlated with phenotypes. The black modules were
positively related to the summer season, while the cyan and
brown model was positively related to the autumn season. A total
of 166 genes were annotated in the black module, 459 in the
brown module and 30 in the cyan module (Supplementary
Table 6). Among those genes, the black module contained
NPF4.2 (Figure 5C) and the brown module contained NPF6.4
(Figure 5D). We performed Gene Ontology (GO) annotation
of the genes in the black and brown modules. The black

module was mainly enriched in oxidation-reduction and cellular
amide metabolic process genes, while the brown module was
mainly enriched in cell wall organization or biogenesis and
cellular polysaccharide metabolic process genes (Supplementary
Figure 8). In the black module, some genes associated with
metabolism and energy transfer were significantly associated
with NPF4.2, such as a serine/threonine-protein kinase gene.
NPF6.4, in the brown module, was related to genes in the sugar
synthesis pathway and several transcription factors, including
axial regulator YABBY5 and GATA transcription factor 9. These
findings indicate that NRT family genes are involved in the
maintenance of the cell wall and cellular homeostasis.

Expression Quantitative Trait Nucleotide
(eQTN) Mapping

To investigate the causative genetic variants underlying the
transcription levels of NRT genes, eQTL analysis was performed
between whole-genome SNPs and the expression levels of
54 NRT genes (expressed in > 70% of the 89 individuals).
The leaf nitrogen contents in summer and autumn were
regarded as the phenotype. We found that four main NRT
genes defined thousands of eQTL signals (Supplementary
Datasheet 3). We selected SNP sites with higher P values for
annotation (Supplementary Table 7). Among these sites, two
were significantly related to NPF2.11 and were annotated as NAC
domain-containing protein 86 and transcription factor b(HLHI162,
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FIGURE 4 | Association analysis and epistatic detection revealed the genotypic effects of individual SNPs on leaf nitrogen content. (A) Manhattan plots for NPF2.117.
(B) Box plots showing the effects of a selected epistatic SNP of NPF2.711 on leaf nitrogen content. (C) Manhattan plots for NPF7.2. (D) Box plots of one epistatic
effect SNP in NPF1.2 for leaf nitrogen content. (E) Genotypic effects of each causal SNP on autumn leaf nitrogen content. (F) Combined genotypic effects on
autumn leaf nitrogen content in the association population of P tomentosa. Six allelic variations were ordered according to the results shown in Panel (B,D,E). We
used the following SNPs: HIC_ASM_0_15816593, HIC_ASM_5_2524687, HIC_ASM_6_12752091, HIC_ASM_7_57391, HIC_ASM_18_8185071 and
HIC_ASM_18_9798385. The genotype “..” indicates that neither genotype has an effect on leaf nitrogen content.
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respectively. Both types of transcription factors are involved
in the regulation of the NUE process (Samira etal., 2018;
Tang et al., 2019). The transcription factor gene MYBI7 showed
strong associations with NPF6.1 in both summer and autumn.
This result indicates a potential upstream regulatory network of
NRT family genes. A WRKY transcription factor was associated
with the NRT1.1 gene. This gene had high expression in roots.
We extracted the sequence of this gene and found that it has
high homology with a WRKY21-related gene in P. trichocarpa,
indicating that WRKY21 may be involved in the regulation of
NRTI.1 at the transcription level. In addition, we compared
the annotated genes with those in the WGCNA modules and
found that they overlapped with one gene in the brown module
(evm.model. HIC_ASM_15.1752). The eQTL signal of this gene
was mapped to NPF6.1 which encodes a lipid raft-regulatory
protein, remorin (REM). Our results suggested that the activities
of NPF6.1 and NPF6.4 might be related to membrane lipid
nanodomain-localized REM protein in cell-to-cell signaling.

Poplar-Specific Potential Regulatory

Factors of NRT Genes

In the results from WGCNA and eQTL, the significantly
related genes included more than 20 transcription factor and
response protein genes (Supplementary Table 8). We analyzed
the domains and possible binding motifs of these transcription
factors using Pfam. Myb-like DNA-binding domains, helix-loop-
helix DNA-binding domains and GATA zinc finger domains
were significantly enriched. Members of the bHLH family bind
to the sequence “CANNTG,” also known as the E-box motif
(Chaudhary and Skinner, 1999). GATA-type zinc finger (Znf)
transcription factor specifically binds to the DNA sequence (A/T)
GATA (A/G) (Yamamoto et al., 1990).

To investigate upstream regulatory factors of NRT genes,
we predicted cis-regulatory elements (CREs) in the promoter
sequence of NRT family genes in P. tomentosa using plantCARE
(Supplementary Table 9). We screened the resulting response
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elements (Supplementary Figure 9). Among them, the number
of light-responsive elements was largest, accounting for more
than half of all response elements. This finding is in accordance
with the large changes observed in the expression levels of
NRT family genes between day and night (Supplementary

Figure 4). More than half of the remaining elements are
hormone-responsive elements, including those responding to
auxin, methyl jasmonate (MeJA), gibberellin (GA), ABA and
salicylic acid (Figure 6). Aside from salicylic acid, the other four
plant hormones are transport substrates of some NRT proteins.
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The promoters of PtoNRT3.1A, PtoNPF1.2F, and PtoNPF5.101
are enriched among ABA responsive elements. The expression
levels of these three genes decrease significantly with increasing
ABA treatment time (Supplementary Figure 5), suggesting that
they are target genes in the ABA signaling pathway. Many
NRT gene promoters are enriched in response elements to
more than one plant hormone. The PtoNPF5.6A promoter
is enriched in ABA- and MeJA-responsive elements at the
same location, suggesting that ABA and MeJA antagonistically
regulate the expression of PtoNPF5.6A. The PtoNPF5.101
promoter was enriched in ABA- and auxin-responsive elements,
the PtoNRT3.1C promoter in MeJA- and auxin-responsive
elements, and the PtoNPF8.3A promoter in MeJA- and SA-
responsive elements. The PtoNPF4.3B, PtoNPF4.3D, PtoNPF8.1D
and PtoNPF2.11A promoters were enriched in ABA- and GA-
responsive elements. The PtoNPF7.1B promoter was enriched in
ABA-, GA- and MeJA-responsive elements. Thus, NRT genes are
coordinated by a variety of plant hormones.

DISCUSSION

The NRT Gene Family Has Expanded in

Poplar

The NRT gene family has many members with distinct
functions. At present, 62 NRT genes have been identified
in Arabidopsis (AtGenlE). We found 98 NRT genes in
P. tomentosa that are homologous to those in Arabidopsis
through a homology comparison. Compared with previous
research (Bai et al, 2013) and existing annotations in
the database (Phytozome), the number of NRT genes
we identified represent only a slight increase or decrease
(Supplementary Table 4).

Some single-copy genes have shown few sequence changes
during evolution. We assume that the functions of these genes
are relatively well conserved between poplar and Arabidopsis.
For example, PtoNPF6.3 is the closest ortholog of AtNPF6.3
in poplar, and both encode dual-affinity nitrate transporters.
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The expression pattern of PtoNPF6.3 is also similar to that in
Arabidopsis (Guo et al., 2001; Krouk et al,, 2010). Therefore,
PtoNPF6.3 is likely to be a key transceptor in the nitrate
signaling pathway. AtNPF4.1 was identified as having ABA
and GA transport activity through yeast screening experiments
(Kanno et al, 2012). The homologous gene of AtNPF4.1 in
P. tomentosa, PtoNPF4.2, is highly expressed during daytime
and in old leaves. PtoNPF4.2 may also be a transporter of
ABA and GA that helps maintain the physiological balance
of old leaves. Notably, the expression level of PtoNPF4.2 is
extremely different in the northeastern and southern climate
regions, which may be due to differences in the leaf growth cycle
caused by climatic factors. This finding indicates that the genes
of perennial woody plants have developed functions similar to
those of annual herbaceous plants during their evolution. The
functions of NRT2.7 seem to have diversified during evolution.
AtNRT2.7 is specifically expressed in seeds and is responsible
for loading nitrate into the vacuoles of seed cells (Chopin
et al., 2007). However, in P. tomentosa, NRT2.7 expression
is up-regulated at night and is elevated in growing leaves.
Thus, NRT2.7 participates in nutrient transport during leaf
growth and development in poplars. Furthermore, the expression
level of NRT2.7 differs significantly between individuals in the
southern and northwestern climate zones. This difference may be
related to differing leaf growth patterns caused by climatic and
geographical factors.

The PtoNPF2.11B gene is orthologous to AtNPF2.11,
AtNPF2.10 and AtNPF2.9 (Supplementary Table 4). AtNPF2.10
and AtNPF2.11 show low-affinity nitrate transport and
glucosinolate (GLS) transport activities (Nour-Eldin et al,
2012). AtNPF2.10 also participates in the transport of GAs
and jasmonic acid-isoleucine (JA-Ile), mediating the transfer
of JA/JA-Ile from damaged leaves to undamaged leaves in
response to wound signals (Ishimaru et al., 2017; Saito et al,
2015). AtNPF2.11, AtNPF2.10, AtNPF2.9 all have NO3 - and
GLS transport functions (Nour-Eldin et al, 2012). AtNPF2.9
participates in phloem loading of nitrate in the root, while
AtNPF2.10 and AtNPF2.11 are involved in GLS translocation
to seeds. The PtoNPF2.11B gene is expressed in the bark,
female flowers, apex and petiole, suggesting that it may
have evolved a novel function. On the other hand, some
subfamily members (PtoNPF5.10, PtoNPF1.2) located in the
same chromosome region do not have orthologous genes
(Figure 2A). This finding shows that tandem duplication
events within the poplar genome have led to the expansion
of these subfamily members. Although the number of genes
in the NRT2 subfamily in poplar has not changed, only three
members have orthologous relationships with NRT2 genes of
Arabidopsis (AtNRT2.6: PtoNRT2.4A, PtoNRT2.4B; AtNRT2.7:
PtoNRT2.7). Other members may have undergone major
mutations or translocations during evolution. PtoNRT3.1A and
PtoNRT3.1C are orthologous to both AtNRT3.1 (AT5G50200)
and the AT4G24730 gene. However, AT4G24730 has no detailed
annotation information for Arabidopsis. Therefore, we can
basically confirm that the AT4G24730 gene belongs to the
NRT3 subfamily.

Diverse Expression Patterns of NRT

Family Genes in Poplar

Bark is a unique organ of woody plants. An important feature of
the seasonal nitrogen cycle of poplars is the accumulation of bark
storage protein (BSP) (Babst and Coleman, 2018). Much of the
nitrogen that moves to the stem from senescent leaves in autumn
is used for synthesis of BSP. PtoNPF1.2B is highly expressed in
the bark (Supplementary Figure 2), and one of its orthologous
genes in Arabidopsis is AtNPF1.2. AtNPF1.2 is expressed in the
companion cells of the major veins of expanded leaves, and is
involved in transferring nitrate that has accumulated in mature
and expanded leaves to the phloem of major veins, allowing
nitrate redistribution from larger expanded leaves to the youngest
tissues (Hsu and Tsay, 2013). We speculated that PtoNPF1.2B is
responsible for nitrate loading in bark. Surprisingly, PtoNPF1.2B
is highly expressed in all tissues except old leaves and mature
xylem. To adapt to the high demand for nitrate transport in
perennial plants, NPF1.2 is expressed in more locations in poplars
than Arabidopsis. The tissue-specific expression and subcellular
localization of NPF1.2 protein in poplars is an interesting
topic for future research. Presumably, NPF1.2 is a high-capacity
channel for nitrate transportation in poplar.

Long-shoot leaves and short branch leaves are unique tissue
classifications of trees. Long-shoot leaves are leaves that grow
from current-year shoots, whereas short-branch leaves are leaves
that grow from perennial branches. The leaves on long shoots
are more tender and faster growing. NRT genes, which are
highly expressed in long-shoot leaves, may be responsible for
unloading of nitrate into developing leaves. The nitrate flow
rate will be greater in the more mature short-branch leaves. We
found that PtoNPF6.3, PtoNRT3.1A and PtoNRT2.5A/B all have
higher expression levels in short-branch leaves relative to long-
shoot leaves (Supplementary Figure 3). Previous studies have
shown that expression of AtNRT3.1 (ortholog of PtoNRT3.1A)
is essential for the correct orientation of AtNRT2.1 in the
plasma membrane and maintenance of AtNRT2.1 stability
(Yong et al, 2010). The AtNRT2.1/AtNAR2.1 complex is a
tetramer composed of two subunits each of AtNRT2.1 and
AtNAR2.1, which functions in high-affinity nitrate influx.
Moreover, except for AtNRT2.7, all other NRT2 transporters
interact with AtNRT3.1 (Kotur et al, 2012). As NPF6.3 is
a dual-affinity transporter, it is converted into a low-affinity
protein when the nitrate concentration is high. At that point,
NPF6.3 transmits a nitrate signal to the nucleus, which may
induce the expression of NRT3.1 and promote formation of
NRT2/NRT3.1 high nitrate affinity complexes to supplement
the function of NPF6.3. When the nitrate concentration is low,
efficient nitrate transport channels are not needed. The low-
nitrate signal transmitted by NPF6.3 may inhibit the expression
of NRT3.1 and reduce the number NRT2/NRT3.1 complexes.
Simultaneous conversion of NPF6.3 into a high-affinity protein
occurs to maintain the transport flux of nitrate. Furthermore, the
expression of PtoNRT3.1A was significantly lower in the drier
and hotter northwest climate region than in the humid and rainy
southern climate region. Moreover, under the influence of five
stressors, namely ABA, drought, heavy metal, high salt and high
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temperature, the expression of PtoNRT3.1A showed a downward
trend, suggesting that environmental factors such as drought and
high temperature reduce the mobility of nitrate.

Genetic Effects and Trans-Acting
Factors of NRT Genes

Trees reabsorb specific nutrients from the leaves during seasonal
leaf senescence (Wang et al., 2018). Compared with other organs,
leaves have a higher nitrogen content. Trees can transfer up to
50-80% of nitrogen in the leaves to the stem for storage during
seasonal dormancy, and then use it for growth in spring, greatly
improving their nitrogen use efficiency (NUE). A previously
reported allele variation of OsNRT1.1B significantly improved
grain yield and NUE (Hu et al,, 2015). Genotypic variations
underlying phenotype diversification can be used for molecular
marker assisted breeding. Thus, our primary goal was to elucidate
the role of PtoNRT genes in leaf nitrate reflux.

Association analysis is a reliable strategy for identifying causal
genes in studies of tree population genetics (Ingvarsson and
Street, 2011). In our association results, the leaf nitrogen contents
of individuals with different haplotypes at three SNP loci
(HIC_ASM_5_2524687-NPF1.2F, HIC_ASM_6_12752091-
NPF7.3C and HIC_ASM_7_57391-NPF4.5B) differed
significantly (Figures 4D,E). The GG, CC, and GG genotypes
of those loci, respectively, lead to high-nitrogen phenotypes.
A high-nitrogen content in leaves during autumn is not a
desired result. Avoiding the combination of these genotypes can
effectively reduce leaf nitrogen content in autumn (Figure 4F).
NPFI.2F is sensitive to ABA (Supplementary Figure 5), which is
the key hormone that induces leaf senescence. AtINPF4.5 has been
identified as an ABA transporter (Kanno et al., 2012). However,
the role of NRT gene regulation by ABA in leaf senescence has
not been studied. NPF7.3C is highly expressed in the phloem.
Arabidopsis NPF7.3 is associated with stress tolerance (Zhang
et al., 2014), and the npf7.3 mutant exhibits leaf senescence-
related phenotypes (Zheng et al., 2016). The cooperative network
of NRT genes and their regulatory factors during leaf senescence
is an interesting topic that warrants further investigation.

We obtained 27 transcription factors from the results
of WGCNA and eQTL. We also predicted the CREs of the
promoter sequences of NRT family genes. A dozen NRT gene
promoters were found to contain circadian control elements
(Supplementary Table 9). This result indicates that NRT gene
expression is indeed regulated by the circadian rhythm, with
distinct patterns during the day and night that help maintain the
physiological balance and promote the development of plants.
Many promoters of NRT genes are also enriched MYB binding
sites (Supplementary Figure 9), suggesting that they are directly
regulated by MYB transcription factors. MYB transcription
factors play key roles in various developmental processes in
plants. In addition, an MYB-like transcription factor responds
to low-nitrate conditions by binding to the AfNRTI.I gene
promoter (Lee et al., 2020). The PtoNPF7.3C and PtoNPF2.7
promoters were associated with the drought-inducible MYB
binding site. Their expression levels first increased and then
decreased with drought-stress treatment time, suggesting that
these two genes respond to drought stress. The PtoNPF5.2A

and PtoNPF4.6B promoters were related to the light-responsive
MYB binding site. Their expression levels fluctuated with the
cycle of day and night, suggesting that MYB is involved in
regulating the circadian rhythm of NRT genes. The PtoNPF1.2H
and PtoNPFI1.2N promoters enriched the MYBHv1 binding site,
which contains a CCAAT-box sequence. The CCAAT box is a
common cis-acting element to which diverse transcription factor
proteins are known to bind (Laloum et al, 2013), including
nuclear transcription factor Y (NF-Y) subunit A-1 in the black
module. GATA transcription factor 9 in the brown module
and GATA transcription factor 16 in the black module may
also regulate NRT genes with GATA motif-enriched promoters.
The promoters of PtoNPF5.10] and PtoNPF5.1 each contain
three GATA-motifs. The functions and regulatory relationships
of many NRT genes require further exploration, especially
those of poplar NRT genes that are differentiated from genes
in Arabidopsis.

Our research has found some interesting results of the NRT
family in P. tomentosa, which may have potential breeding value.
Association analysis and eQTL associated sites are significantly
related to NPF2.11B. NPF6.4 was significantly correlated with
leaf nitrogen content phenotype in association analysis and
WGCNA. It shows that NPF2.11 and NPF6.4 may play the key
role in the nitrogen use efficiency of poplars. The promoter of
NRT3.1 enriches the response elements of ABA and other plant
hormones. NRT3.1 responds to high salt stress and has the same
expression trend as NRT2.5. The expression patterns of NRT3.1
in poplars are diverse, which may be a key factor in the regulation
of nitrate absorption and distribution in poplars.
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Supplementary Figure 1 | Collinearity analysis of genes within poplar.

Supplementary Figure 2 | Expression profiles of NRT family genes in P.
tomentosa. Heatmap of tissue-specific expression.

Supplementary Figure 3 | Expression profiles of NRT family genes in P.
tomentosa. Long-shoot leaves and short branch leaves. Long, annual long-shoot
leaves; Short, perennial short-branch leaves. The development of leaves, showing
gradual maturation from 1 to 6.

Supplementary Figure 4 | Expression profiles of NRT family genes in P.
tomentosa. Heatmap of circadian rhythm-related expression. Samples were
collected every 2 h, under a cycle of 14 h light and 10 h dark.

Supplementary Figure 5 | Expression profiles of NRT family genes in P.
tomentosa. Heatmap of stress-induced expression. ABA, ABA treatment; D,
Drought; HM, Heavy metal; HS, High salt; HT, High temperature. Labels 1-5
correspond to samples collected at 1, 3, 6, 12, and 18 h, respectively.

Supplementary Figure 6 | Venn diagram of non-expressed genes.
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