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Salinity, as a major environmental stressor, limits plant growth, development, and crop yield remarkably. However, plants evolve their own defense systems in response to salt stress. Recently, microRNA (miRNA) has been broadly studied and considered to be an important regulator of the plant salt-stress response at the post-transcription level. In this review, we have summarized the recent research progress on the identification, functional characterization, and regulatory mechanism of miRNA involved in salt stress, have discussed the emerging manipulation of miRNA to improve crop salt resistance, and have provided future direction for plant miRNA study under salt stress, suggesting that the salinity resistance of crops could be improved by the manipulation of microRNA.
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INTRODUCTION

Salinity, as a major environmental stress factor, restricts crop growth and yield globally. It is reported that salinity affected a land area as large as 800 million hectares across the globe, accounting for 6% of the land (Abdel Latef et al., 2020; Attia et al., 2021). Approximately 20% of the irrigated soils are affected by salinity stress (Zhao et al., 2013), and 50% of arable land will be affected by 2050 (Butcher et al., 2016). Salt stress leads to changes in metabolic activity, cell wall damage, and cytoplasmic dissolution; it reduces the photosynthetic efficiency, accelerates aging, increases respiratory consumption and toxin accumulation, and eventually results in plant death (Osman et al., 2020; Abdel Latef et al., 2021). It is estimated that salinity can result in $27.3 billion in agricultural damage every year (Qadir et al., 2014). On the other hand, regional food scarcity will persist continually, particularly in South Asia, sub-Saharan Africa, the Middle East, and where population increase is rapid but agricultural outputs are low (FAO, 2017). Therefore, breeding and growing salt-tolerant crops to utilize the marginal and high-salinity soils are one of the most important strategies to meet the increase in food demand required by the estimated population in 2050 of 10 billion people (Mekonnen and Hoekstra, 2016; FAO, 2017; Morton et al., 2019).

MicroRNA (miRNA) is a non-coding single-stranded small RNA with a length of 21–24 nucleotides, and it acts as gene regulators to control the transcript abundance of its target gene. In the wild, miRNA exists in diverse organisms, including plants, animals, and microorganisms, and it regulates growth, development, signal transduction, response to adversity, and other biological processes. It was firstly discovered in Caenorhabditis (Lee and Ambros, 2001) and was then detected in four laboratories at approximately the same time in Llave et al. (2002), Mette et al. (2002), Park et al. (2002), Reinhart et al. (2002). After that, more and more plant miRNAs have been identified and functionally characterized in various plant species. MiRNA family names are listed in the order of publication, and miRNAs with similar sequences (usually fewer than 3 nt in difference) and common functions are classified as members of the same miRNA family (Wang Q. et al., 2014). Both the intraspecific conservation and interspecific differences of miRNAs are environmentally adaptive and evolve with the change in environment (Zhang et al., 2018). However, the evolution of miRNAs is conservative because some key target genes of miRNAs are conservative (Gramzow and Theißen, 2019).

Various enzymes and functional proteins are involved in the plant’s miRNA biosynthesis and functions. The primary miRNA transcripts for plants are produced by RNA polymerase II from miRNA genes, and these then pair with complementary bases to form special hairpin structures (Budak and Akpinar, 2015). Then, the stem ring secondary structure is generated by the DICER-LIKE1 (Bielewicz et al., 2013). After the methylation catalyzed by HUA Enhance 1 at the 3′ end, the double strand was transferred to the cytoplasm with the help of the transport protein HST. In the cytoplasm, this double-stranded miRNA is decomposed into mature single-stranded miRNA and integrated into RNA-induced silencing complex (RISC) cells, where miRNA interacts with the complementary target mRNA and activates the catalytic RISC with the assistance of Argonaute 1 (AGO1) (Koroban et al., 2016). There are two modes for miRNA to regulate gene expression: RNA cleavage and translation inhibition. The first mode is that miRNAs guide the Argonaute component of RISC to cleave a single phosphodiester bond opposite to the 10th and 11th nucleotides of the miRNA within complementary RNA. Then, the RISC will be free by releasing the fragments, and it then subsequently recognizes and cleaves another transcript (Jones-Rhoades et al., 2006). Afterward, the cleavage fragments are released to make the RISC competent for other RNA recognization and cleavage (Jones-Rhoades et al., 2006). MiRNA-mediated translational repression requires the participation of P-body components, a microtubule-severing enzyme, AGO1, and AGO10 (Brodersen et al., 2008). In addition, miRNA possibly prevents translation by triggering the sequestration of miRNA target in P-bodies (Chen, 2009). In addition, each miRNA can control multiple target genes (Haas et al., 2012). For instance, miR156 promotes floral meristem identity transformation by targeting SPL3, SPL4, and SPL5 in Arabidopsis thaliana (Xu et al., 2016). A gene can also be regulated by multiple miRNAs. For example, miR31 and miR143 affect steroid hormone synthesis by targeting the FSHR receptor (Zhang et al., 2019).

MiRNAs can regulate plant growth, development, pathogens, and abiotic stress responses. MiR160, miR169, peu-miRn68, and 477b are involved in the hormone signaling crosstalk model of root growth and development in apple rootstock, A. thaliana and Populus (Sorin et al., 2014; Lian et al., 2018; Meng et al., 2020). Cs-miR414 and cs-miR828 are involved in tea bud dormancy (Jeyaraj et al., 2014). For pathogen stress regulations, miR397 plays a negative regulatory role in apple resistance to hepatitis B virus (Yu et al., 2020), miR396 affects the susceptibility to rice blast (Chandran et al., 2019), and miR528 increases the viral defense ability of Oryza sativa (Wu et al., 2017). In the aspect of abiotic stress regulations, miR399 and miR827 are important for the resistance to phosphorus deficiency (Hackenberg et al., 2013; Du et al., 2018). The lack of sulfur induces the expression of miR395 for the regulation of genes in the sulfur assimilation pathway (Kawashima et al., 2009). The expression of miR319 is crucial for the cold tolerance of rice (Yang et al., 2013). MiR399 regulates Arabidopsis flowering at different temperatures (Kim et al., 2011). Recently, the comparative antagonistic expression profile of miR169 indicates that the miR169 family is a general regulator of various abiotic stresses (Rao et al., 2020). In addition, the over-expression of miR156 changes the expression level of other miRNAs, thus increasing the contents of anthocyanins, flavonoids, and flavonols and decreasing the total lignin content, suggesting the essential role of miRNAs in nutritional processes (Wang et al., 2020).

Noticeably, it is demonstrated that miRNA plays important roles in plant salinity responses and adaptation through various miRNA-mediated biological processes, including signal transduction, membrane transport, protein biosynthesis and degradation, photosynthesis, and transcription. In the present review, we mainly discuss the recent research progress on salt-stress-related miRNA in plants and the future research direction about miRNA in the salinity stress research field to come up with a strategy to improve the agronomic traits of stress tolerance through the manipulation of miRNAs.



IDENTIFICATION AND EXPRESSION OF PLANT MIRNAS UNDER SALT STRESS

In recent years, with the rapid development of biotechnology, such as microarray and high-throughput deep sequencing, thousands of plant miRNAs were identified under salt stress. As shown in Table 1, different concentrations (80–600 mM) of NaCl and treatment time (3 h to 15 days) were applied for salt stress treatments for identifying salt-responsive miRNA (Table 1). MiRNAs were detected in leaf, root, stem, and flower separately or in the whole seedling (Table 1). Fu et al. identified 1,077 miRNAs in Zea mays, comprising the highest number of identified miRNAs in various crops among the reports (Fu et al., 2017). Moreover, 882, 876, 693, and 650 miRNAs were identified in Mesembryanthemum crystallinum, Medicago truncatula, Vicia faba, and Ipomoea batatas, respectively (Jian et al., 2016; Cao et al., 2018; Alzahrani et al., 2019; Yang et al., 2020). The numbers of identified miRNA vary from dozens to hundreds, which may be due to the plant species, tissue specificity, development stage, and salt stress treatment methods. However, the large-scale identification of miRNAs under salt stress is very necessary and essential, and it lays a solid foundation for the further illumination of the miRNA network.


TABLE 1. The identification of plant miRNAs under salt stress by deep-sequencing.
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The expression levels of miRNA are up- or down-regulated by salinity stress. For instance, the expression of miR167 in panicle is negatively correlated with the increase of salt concentration (Jodder et al., 2018). In cotton, miR156, miR157, and miR172 are up-regulated at 0.25% NaCl, but their expression decreases with increasing salt concentration (Wang et al., 2013). The expression of miR164 also decreases with the increase of salt stress in maize (Shan et al., 2020). Macovei et al. found that the expression levels of Osa-miR414, -miR164e, and -miR408 significantly decrease with increased salt stress and further regulate the occurrence of genes to resist external salt stress by increasing the content of helicases (Macovei and Tuteja, 2012). In addition, some miRNAs are expressed differently in the early and late stages of salt stress treatment. For example, zma-miR169 displays initial up-regulation and subsequent down-regulation under salt stress (Luan et al., 2015). MiRNAs and their targets, such as cotton miR156-SPL2, miR159-TCP3, miR162-DCL1, miR395-APS1, and miR396-GRF1, exhibit negative correlation on expression levels (Wang et al., 2013).

Table 2 shows the expression levels of some representative miRNAs in plants under salt stress. MiR156, miR319, and miR528 are induced by salinity stress (Wang et al., 2013; Stief et al., 2014; Zhou and Luo, 2014; Xie F. et al., 2015; Yuan et al., 2015), while miR164 and miR397 are repressed (Macovei and Tuteja, 2012; Wang et al., 2013; Gupta et al., 2014; Qin et al., 2015; Xie F. et al., 2015; Lu et al., 2017), which were confirmed at least in two plant species (Table 2). Interestingly, the expression levels of nine miRNAs (e.g., miR159, miR168, miR169, miR172, miR393, miR395, miR396, miR399, and miR408) were promoted in some plant species but were inhibited in the other plant species. For instance, salinity stress increases the expression of miR393 in Arabidopsis thaliana, Triticum aestivum, and Agrostis stolonifera, but decreases the expression of miR393 in Oryza sativa, Gossypium sp., and Spartina alterniflora (Xia et al., 2012; Gupta et al., 2014; Iglesias et al., 2014; Qin et al., 2015; Xie F. et al., 2015; Zhao et al., 2019). Similarly, the expression of miR396 is increased by salinity in Solanum lycopersicum, Nicotiana tabacum, and Agrostis stolonifera but decreased in Arabidopsis thaliana, Oryza sativa, and Spartina alterniflora (Gao et al., 2010; Chen L. et al., 2015; Qin et al., 2015; Cao et al., 2016; Yuan et al., 2019). Up- or down-regulated gene expression usually suggests potential positive or negative functional role. However, the same miRNA has an opposite expression pattern in different plant species under salinity stress conditions, suggesting the same miRNA may play a diverse role in different plant species under salt stress. Moreover, the expression levels of some miRNAs, including miR167, miR390, miR394, miR402, and miR414 were only investigated in very few plant species under salinity stress (Table 2). Considering some miRNAs displayed totally different expressions in different species, their expression patterns need to be investigated in more plant species under salinity stress conditions.


TABLE 2. The expression of representative plant miRNAs under salt stress.
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MIRNA STUDIES IN HALOPHYTE PALNTS

Glycophyte plants, such as Arabidopsis and rice, can only survive at salinity levels 0–100 mM NaCl without any capability to adapt to high salt stress (Horie et al., 2012), whereas some remarkable halophytes can tolerate salinity levels as high as >1000 mM NaCl (Flowers and Colmer, 2008; Munns and Tester, 2008). To an extent, the salt-sensitive glycophytes may not provide enough insights into salt tolerance mechanisms, and the halophytes may have more value for expanding our knowledge about salt resistance mechanisms. Therefore, the exploration of the role of halophyte miRNAs in salinity adaptation can offer compelling contributions for devising strategies of resistance improvement in crops through genetic engineering and plant selection programs. However, there are not many reports on the discovery of salt-responsive miRNAs in halophytes (Table 1).

The halophyte plant Suaeda maritima grows naturally along the seashore. The expression of S. maritima sma-miR2 and sma-miR5 increases under the influence of seawater, suggesting their metabolic regulatory roles specific to saline environments (Gharat and Shaw, 2015). Eutrema salsugineum, a close relative of A. thaliana, can thrive in high salt conditions ranging from 100 to 500 mM (Amtmann, 2009). E. salsugineum has been developed as a valuable model plant for salt stress-tolerance study because its salinity tolerance is extreme, its lifetime is short, its seed production is copious, and its transformation is easy (Zhu, 2000; Amtmann et al., 2005). Zhang et al. (2013) identified 246 miRNAs candidates in E. salsugineum. In addition, 26 conserved miRNAs and 4 novel miRNAs were found to display a significant response to salt stress in E. salsugineum (Zhang et al., 2013; Wu et al., 2016). Recently, 88 conserved miRNAs and 13 novel miRNAs were identified from Reaumuria soongorica seeds treated with various NaCl concentrations, providing a useful reference for salt resistance improvement of seed germination (Zhang H. et al., 2020). A total of 135 conserved miRNAs and the hairpin precursor of 12 novel mcr-miRNAs were found from M. crystallinum seedlings treated with 200 mM NaCl (Chiang et al., 2016). Oryza coarctata is a wild relative of rice and grown in saline water. Mondal et al. found 338 known and 95 novel miRNAs in salt-treated O. coarctata leaves, providing a miRNA-target networking that is involved in salt stress adaption (Mondal et al., 2015). Halostachys caspica (Bieb.), a salt-tolerant short shrub, can be naturally grown on the field with a salt concentration as high as 100 g/kg dry soil (Song et al., 2006). (Yang et al., 2015) found that 31 conserved miRNAs and 12 novel miRNAs were significantly up-regulated, and 48 conserved miRNAs and 13 novel miRNAs were significantly down-regulated by salinity stress in H. caspica. A set of miRNAs were also identified in a salt marsh monocot halophyte smooth cordgrass (Spartina alterniflora Loisel) and another plant named salt cress (Thellungiella salsuginea) (Zhang et al., 2013; Zandkarimi et al., 2015). These identified miRNAs in halophytes can be further projected as potential miRNAs for developing salt tolerance in glycophyte crops.



FUNCTIONS OF MIRNA UNDER SALT STRESS

Numerous plant miRNAs have been identified under salt stress, but not many miRNAs have been functionally characterized in detail. Table 3 shows us the miRNAs responsive to salt stress, and these which were functionally studied by transgenetic approaches, such as overexpression and knocked down/out of the miRNA itself or its targets (Table 3). For instance, miR394a/b over-expression and lcr (functional loss of miR394 target LCR) mutant plants are hypersensitive to salt stress, but LCR over-expressing plants display the salt-tolerant phenotype (Song et al., 2013). MiR393 is a comparative well-studied plant miRNA in different plant species, including Arabidopsis, rice, and creeping bentgrass. MiR393ab mutant shows reduced inhibition of LR (lateral root) number and length, increased levels of ROS in LRs, and reduced APX enzymatic activity (Iglesias et al., 2014). Over-expressing Osa-mR393 in rice and Arabidopsis reduces tolerance to salt and drought and increases tillers and early flowering (Gao et al., 2011; Xia et al., 2012), while over-expressing miR393-resistant form mTIR1 in Arabidopsis enhances salt tolerance in mTIR1 transgenic plant (Chen Z. et al., 2015). However, over-expressing Osa-miR393a in creeping bentgrass improves salt stress tolerance associated with the increased uptake of potassium (Zhao et al., 2019), suggesting that the same miRNA or different miRNA from the same miRNA family may have different promotion and inhibition effects on salt tolerance in different plants. A similar situation was found for miRNA396, that is, over-expressing Osa-miR396c reduced salt and alkali stress tolerance in rice and Arabidopsis (Gao et al., 2010), but enhanced salt tolerance associated with improved water retention, increased chlorophyll content, cell membrane integrity, and Na+ exclusion during high salinity exposure in creeping bentgrass (Yuan et al., 2019). Additionally, over-expressing Sp-miR396a-5p in tobacco enhanced its tolerance to salt, drought, and cold stresses (Chen L. et al., 2015). The overexpression of miR395c or miR395e retarded and accelerated, respectively, the seed germination of Arabidopsis under high salt or dehydration stress conditions (Kim et al., 2010b).


TABLE 3. The functions of miRNA under salt stress.
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Over-expressing miR156a weakens salt resistance in apples, whereas its target gene MdSPL13 strengthens salt resistance (Ma et al., 2020). Transgenic Arabidopsis plants over-expressing the target gene PeNAC070 of miR164 exhibits promoted LR development, delayed stem elongation, and increased sensitivity to salt stress (Lu et al., 2017). Over-expressing the target gene GmNFYA3 of miR169 reduces leaf water loss, enhances drought tolerance, and increases sensitivity to high salinity and exogenous ABA (Ni et al., 2013). Over-expression of miR172c substantially increased the sensitivity of plant roots to salt stress, and the removal of miR172c would decrease the sensitivity of plant roots to salt stress, respectively (Li et al., 2016; Sahito et al., 2017). Osa-miR319a and mi319b positively regulate salt tolerance in creeping bentgrass and swithgrass, respectively (Zhou et al., 2013; Zhou and Luo, 2014; Liu et al., 2019). MiR390 increases LR growth under salt stress via the auxin pathway (He et al., 2018). Additionally, over-expressing miR399f, miR402, and miR408 in Arabidopsis, Tae-miR408 and Sm-MIR408 in tobacco, and Osa-miR528 in creeping bentgrass increases salinity tolerance (Kim et al., 2010a; Feng et al., 2013; Ma et al., 2015; Yuan et al., 2015; Baek et al., 2016; Bai et al., 2018; Guo et al., 2018), indicating that these miRNAs enhance plant salt stress adaptation. By contrast, over-expressing miR414c, miR417, and miRNVL5 increases sensitivity to salinity stress (Jung and Kang, 2007; Gao et al., 2016; Wang et al., 2019). Collectively, these results suggest that the agronomic trait of salinity stress tolerance could be enhanced by the manipulation of miRNA or its target.



DISCUSSION AND FUTURE PROSPECTS

In the face of soil salinization, the cultivation of saline-tolerant plants is one of the most economical and effective technologies for biological improvement. Understanding the molecular mechanisms of miRNAs in abiotic stress provides an effective tool for plant breeding, especially in the context of climate and human-induced environmental changes. The essential regulating role of miRNAs in plant salt stress response reveals that miRNA could be applied for salt resistance improvement in crops. The salinity resistance of transgenic plants can be remarkably increased by over-expressing miRNA or knocking down/out the target gene of miRNA. Alternatively, the salinity resistance can be promoted by knocking down/out miRNA, which has a negative effect on salinity response, or over-expressing the target gene of the miRNA. Considering that one miRNA may have more than one targets that would cause totally different effects on plants, we should carefully consider the miRNA effects on crop growth, development, and the sensitivity to other abiotic stresses when optimizing the salinity resistance by miRNA manipulation.

The homologous tetraploid was more tolerant to salt stress than the diploid. Moreover, novel miRNAs induced by genome replication were identified, suggesting salt-responsive miRNAs could be screened by comparative analysis on the plant materials with different ploidy and salinity stress tolerance to explain the key roles of miRNA in achieving better salt stress tolerance. Generally, miRNAs are evolutionarily conserved in their functions in response to salt stress. However, the same miRNAs or different miRNAs from the same miRNA family may have different promotion and inhibition effects on salt tolerance in different plants. Therefore, the function of some miRNAs should be widely studied in different species, especially in crops.

Moreover, considering the significant number of salt- stress-responsive miRNAs identified by using powerful technology (such as high throughput sequencing), only a few miRNAs have been functionally characterized. Therefore, after the identification of plant miRNAs under salinity stress, further studies should be focused on the exploration of function, which will be very crucial for the salt tolerance improvement through miRNA manipulation in crops. Additionally, miRNAs may affect the plant stress tolerance through their interaction with ABA biosynthesis and the regulation of auxin response factors, The investigation of the crosstalk between miRNA and plant hormone will thus expand our knowledge and understanding of the role of plant miRNAs under stress conditions. Finally, the construction of the plant miRNA network in salt stress response will shed light on the salinity resistance improvement through miRNA manipulation in crops.
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Species Common MiRNA name Target gene Salt tolerance phenotype Method/Technology References
Name
Malus Apple MiR156a MdSPL13 Overexpressing MiR156a weakened salt MiR156a and SPL13 Ma et al., 2020
domestica resistance in apple, whereas MdSPL13 overexpression
strengthened
Populus Peu-miR164 PeNACO70, Promoted lateral root development, Overexpress Luetal., 2017
euphratica PeNACO12, delayed stem elongation, and increased PeNACO70 in
PeNAC028 sensitivity to drought and salt stresses in Arabidopsis
PeNACO70 transgenic plants
Glycine max Soybean MiR169 GmNFYA3 Reduced leaf water loss, enhanced Overexpress GmMNFYA3  Niet al., 2013
drought tolerance and increased in Arabidopsis
sensitivity to high salinity and exogenous
ABA in GmNFYAS overexpression plants
Glycine max Soybean Gma-miR172¢ Glyma01939520 Soybean miR172c confers tolerance to Overexpress of Lietal, 2016
water deficit and salt stress, but soybean miR172¢
increases ABA sensitivity in transgenic
Arabidopsis thaliana
Glycine max Soybean MiR172¢c NNC1 Overexpression and knockdown of Overexpress miR172c Sahito et al.,
miR172c activity resulted in substantially and knockdown 2017
increased and reduced root sensitivity to miR172c
salt stress, respectively
Agrostis Creeping Osa-miR319a AsPCF5, AsPCF6, Enhanced drought, salt tolerance, Overexpressing Zhou and Luo,
stolonifera bentgrass AsPCF8, AsTCP14 increased leaf wax content and water Osa-miR319a in 2014; Zhou
retention, but reduced sodium uptake creeping bentgrass etal., 2013
Panicum Switchgrass Osa-miR319b PvPCF5 Osa-miR319b positively regulated ET Overexpress Osa- Liuetal., 2019
virgatum synthesis and salt tolerance miR319b, target mimic
miR319 in swithgrass
Populus spp. Poplar MiR390 ARF3.1, ARF3.2, Stimulated LR development and Overexpress and He et al., 2018
ARF4 increased salt tolerance knockdown (STTM)
miR390 in poplar
Helianthus Jerusalem MiR390 TASS, ARF3/4 May play an active role in salt tolerance Bioinformatics, gene Wen et al., 2020
tuberosus artichoke cloning and RT-gPCR
analyses
Arabidopsis Arabidopsis MiR393 TIR1, AFB2 MiR393ab mutant shows reduced miR393ab double Iglesias et al.,
thaliana inhibition of LR number and length, mutant was obtained 2014
increased levels of ROS in LRs, and from the cross of
reduced APX enzymatic activity miR393a-1 and
miR393b-1
Arabidopsis Arabidopsis MiR393 TIR1 Enhanced salt tolerance in mTIR1 Overexpressing Chen Z. et al.,
thaliana transgenic plant miR393-resistant form 2015
mTIR1 in Arabidopsis
Oryza sativa Rice OsmiR393 OsTIR1, OsAFB2 Reduced tolerance to salt and drought, Overexpressing Xia et al., 2012
increased tillers and early flowering OsmiR393 in rice
Oryza sativa Rice Osa-miR393 LOC_0s02906260,  Transgenic plants were more sensitive to Overexpressing Gao et al., 2011
LOC_0Os05941010,  salt and alkali treatment Osa-miR393 in rice and
LOC_0Os05905800 Arabidopsis
Agrostis Creeping Osa-miR393a AsTIR1, AsAFB2 Improved salt stress tolerance associated ~ Overexpressing Zhao et al.,
stolonifera bentgrass with increased uptake of potassium Osa-miR393a in 2019
creeping bentgrass
Arabidopsis Arabidopsis MiR394a/b LCR MiR394a/b over-expression and cr (LCR Overexpressing Song et al.,
thaliana loss of function) mutant plants are miR394a/b and LCR in 2013
hypersensitive to salt stress, but LCR Arabidopsis
over-expressing plants display the
salt-tolerant phenotype
Arabidopsis Arabidopsis MiR395¢, APS1, APS3, Overexpression of miR395¢ or miR395e Overexpression of Kim et al.,
thaliana MiR395e APS4, SULTR2;1 retarded and accelerated, respectively, miR395¢c or miR395e in  2010b
the seed germination of Arabidopsis Arabidopsis
under high salt or dehydration stress
conditions
Oryza sativa Rice Osa-miR396¢ LOC_0s01932750,  Reduced salt and alkali stress tolerance Overexpressing Gao et al., 2010

LOC_0s02945570,
LOC 0Os04g5119

osa-miR396¢ in rice
and Arabidopsis
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Latin name of sample Sampling location Salt stress treatment Number of References
concentration/time miRNAs
Arabidopsis thaliana Root, bud 150 mM NaCl/7 d 118 Pegler et al., 2019
Brassica juncea Seedling 150 mM Nacl, 200 mM NaCl/3 h, 6 h, 51 Bhardwaj et al., 2014
12h,24h
Brassica oleracea Flower 80 mM NaCl/15 d 81 Tian et al., 2014
Cicer arietinum Root 150 mM NaCl/12 h 181 ohli et al., 2014
Cicer arietinum Root 250 mM NaCl/2 h 284 handal et al., 2017
Eutrema salsugineum & Seedlings 300 MM NaCl/O h,5h,12h 99 Wu et al., 2016
Glycine max Mature nodules 125 mM NaCl/6 h 238 Dong et al., 2013
Halostachys caspica & Root 600 mM NaCl/48 h 272 Yang et al., 2015
Hordeum bulbosum Stem 250 mM NaCl/2 w 54 Liu and Sun, 2017
Hordeum vulgare The plant body 100 mM NaCl/3 h, 8 h, 27 h 162 Deng et al., 2015
Hordeum vulgare Seedling, leaves, roots 2% NaCl/- 259 Lv et al., 2012
Ipomoea batatas Leaves, roots 150 mM NaCl/- 650 Yang et al., 2020
Lagenaria siceraria(Molina)Stand! Root 100 mM Nacl/4 h 91 Xie J. et al., 2015
Leymus chinensis Seedling 100 mM NaCl and 200 mM 148 Zhai et al., 2014
NaHCO3/24 h
Linum usitatissimum - 50 mM NaCl/18 h 332 Yu et al., 2016
Malvaceae Gossypium Leaves 150 mM Nacl/2 h, 4 h, 8 h 225 Yin et al., 2017
Malvaceae Gossypium Seedling 0.5% NaCl/10d 337 Xie F. et al., 2015
Medicagosativa Root 300 mM NaCl/8 h 453 Long et al., 2015
Medicago truncatula Seedling 20 mM NaCl + NapxSO4 5 mM 876 Cao et al., 2018
NaoCO3 + NaHCO3/72 h
Mesembryanthemum crystallinum & Seed 200 mM NaCl/60 h 967 Jian et al., 2016
Mesembryanthemum crystallinum Seedling, root 200 mM NaCl/6 h 135 Chiang et al., 2016
Musa nana Root Omm (CTR), 100mm (TR100), and 181 Lee et al., 2015
300mm (TR300) NaCl/48 h
Oryza glaberrima Leaves 200 mM NaCl/48 h 498 ondal et al., 2018
Oryza coarctata & Root 450 mM NaCl/24 h 433 ondal et al., 2015
Oryza sativa Leaves 200 mM NaCl/156d 357 Tripathi et al., 2018
Oryza sativa Root, stem 256 mM NaCl/9 h 275 Parmar et al., 2020
Panicumvirgatum Seedling 0.5% NaCl/10d 273 Xie et al., 2014
Paulownia Seedling 0.2%, 0.4% and 0.6% NaCl/20 d 187 Fan et al., 2016
Phoenix dactylifera Seedling, leaves and roots 300 mM NaCl/72 h 422 Yaish et al., 2015
Populus euphratica Leaves, roots 300 mM NaCl/3w 428 Sietal., 2014
Populus tomentosa Seedling 200 mM NaCl/10 h 187 Ren et al., 2013
Raphanus sativus Root 200 mM NaCl/8 h, 6 h, 12 h, 24 h, 204 Sun et al., 2015
48 h, 96 h
Reaumuria soongorica & Seed 43, 273 mM NaCl/- 101 Zhang H. et al., 2020
Rhizophora mangle, Heritiera littoralis Leaves 340 mM NaCl/96 h 147 Gharat and Shaw, 2015
Saccharum officinarum Shoot, root 170 mM NaCl/- 131 Bottino et al., 2013
Salicomia europaea Root, stem 200 mM NaCl/Oh, 12 h, 7 d 241 Feng et al., 2015
Sesamum indicum Seedling —/12 h, 24 h 442 Zhang Y. et al., 2020
Solanum melongena Root 150 mM NaCl/24 h 98 Zhuang et al., 2014
Spartina altemiflora & Leaf and root 500 mM sea salt/6, 12, 24, 72 h 902 Zandkarimi et al., 2015
Suaeda maritima & Aerial portions 255 mM NaCl/9 h 147 Gharat and Shaw, 2015
Thellungiella salsuginea & Leaves, roots 200 mM NaCl/24 h 246 Zhang et al., 2013
Triticum aestivum Seedling 200 mM NaCl/7 d 317 Han et al., 2018
Triticum monococcum subsp. monococcum Leaves, roots 100 mM NaCl/0, 3 h, 6 h, 12 h, 24 h 167 Unlti et al., 2018
Triticum turgidum ssp. dicoccoides The plant body 150 MM NaCl/O h, 3h,6 h, 12 h, 24 h 212 Feng et al., 2017
Vicia faba Seedling 150 mM NaCl/2 w 693 Alzahrani et al., 2019
Zea mays Leaves and roots 250 mM NaCl/12 h 1077 Fuet al., 2017
Zea mays Maize ears —/— 102 Liu et al., 2014

# indicates the plant name of halophyte; - indicates no related information.
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