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Crop yield forecasting activities are essential to support decision making of farmers,
private companies and public entities. While standard systems use georeferenced
agro-climatic data as input to process-based simulation models, new trends entail the
application of machine learning for yield prediction. In this paper we present HADES
(HAzelnut yielD forEcaSt), a hazelnut yield prediction system, in which process-based
modeling and machine learning techniques are hybridized and applied in Turkey. Official
yields in the top hazelnut producing municipalities in 2004–2019 are used as reference
data, whereas ground observations of phenology and weather data represent the main
HADES inputs. A statistical analysis allows inferring the occurrence and magnitude of
biennial bearing in official yields and is used to aid the calibration of a process-based
hazelnut simulation model. Then, a Random Forest algorithm is deployed in regression
mode using the outputs of the process-based model as predictors, together with
information on hazelnut varieties, the presence of alternate bearing in the yield series,
and agro-meteorological indicators. HADES predictive ability in calibration and validation
was balanced, with relative root mean square error below 20%, and R2 and Nash-
Sutcliffe modeling efficiency above 0.7 considering all municipalities together. HADES
paves the way for a next-generation yield prediction system, to deliver timely and robust
information and enhance the sustainability of the hazelnut sector across the globe.

Keywords: crop simulation model, machine learning, random forest, yield analysis, decision support system

INTRODUCTION

Turkey is the cradle of hazelnut cultivation and the largest hazelnut producer and exporter in the
world (Erdogan, 2018). The history of hazelnut in Turkey originates in the North of Anatolia, along
the Black Sea coast, which is a natural habitat of cultivated hazelnuts (Corylus avellana L.). About
700,000 ha of land in Turkey are nowadays devoted to hazelnut cultivation (Turkish Statistical
Institute, 2020). Due to interannual yield variations, the average annual hazelnut production varies
widely (Frary et al., 2019), fluctuating between 400,000 and 800,000 tons (Turkish Statistical
Institute, 2020). Nut yield per hectare tends to be lower than in other countries, mainly due to
old orchards where agricultural practices are not fully sustainable (Bozoğlu et al., 2019). Nowadays,
Turkey supplies more than 65% of the world hazelnut production (Islam, 2018).
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Two main distinct production regions are traditionally
identified in Turkey, with contrasting characteristics: the Eastern
region, which covers the area from the Georgian border to the
Central Black Sea coast, including the municipalities of Samsun,
Ordu, Giresun, Trabzon, Rize, and Artvin; and the Western
region, which comprises the area of Central and Western Black
Sea coasts, including the municipalities of Kocaeli, Sakarya,
Duzce, Zonguldak, Bartin, Kastamonu, and Sinop. The Eastern
region is considered the best suited for hazelnut cultivation for
a climatic standpoint, with generally superior quality (Erdogan,
2018). The orchards are usually small (<2 ha), mostly old
(>50 years) and agricultural practices generally do not include
mechanization. This region is characterized by narrow coastal
plains, abruptly rising hills and mountains parallel to the sea, with
hazelnut planting extending up to 30 km inland. The flat area is
limited, and most orchards are placed on steep hills with shallow
soil. In the Western region, the land is relatively flat or with a
gentle slope, allowing mechanization. Hazelnut trees are grown
in deep and fertile soils and the orchards are well organized, with
larger average size and younger trees, leading to a higher average
yield than in the East.

According to the Turkish Statistical Institute (TÜİK), the
average yield in the Eastern and Western region in 2004–
2019 were 0.72 t ha−1 and 1.16 t ha−1, respectively. Late
frosts represent one of the most dangerous abiotic stress factors
contributing to yield reduction in Turkey. For example, 2004
and 2014 registered heavy late frost events, which, despite
their relatively short duration, severely impacted the national
production. Additionally, hazelnut trees are very susceptible
to high temperatures with high vapor pressure deficit during
ripening causing a reduction in the photosynthetic activity and
in turn on hazelnut yield (Girona et al., 1994). A main peculiarity
of hazelnut cultivation is biennial bearing. While the mechanism
causing a tree to respond with alternate years of relatively high
and then low production is still debated, such yearly variation in
production challenges the industry in terms of stock capability,
logistics and industrial production. Several attempts are currently
being tested to dampen this effect and obtain a more constant
production (Rossello et al., 2018).

Despite the relevance of this crop for the confectionary
industry, no hazelnut yield prediction systems are currently
available to meet the different stakeholders’ needs (Kadiyala
et al., 2015). These needs range from the identification of
appropriate cropping plans and management decisions (Dury
et al., 2011), to the evaluation of the cropping systems’
performances across alternative agronomical, socioeconomic
and environmental scenarios (Kasampalis et al., 2018). The
common background of standard yield prediction systems is
the integration of georeferenced informative layers, referred to
pedo-climatic conditions and agricultural management practices,
into process-based crop simulation models, to simulate the yield
variability in a target area at a given spatial resolution (Hartkamp
et al., 1999). The flourishing of machine learning techniques
in all anthropic activities, including agriculture, is opening new
perspectives for crop yield prediction, given the availability of
historical datasets to train the models and to validate their
performance (van Klompenburg et al., 2020).

Recent years have seen the publication of the first attempts
to develop a robust method for hazelnut yield prediction.
The HAZEL model presented in Bregaglio et al. (2016) is a
process-based yield simulator that reproduces the tree growth
and development, simulating the interactions among the main
physiological processes and environmental conditions. Building
on this paper, Bregaglio et al. (2020) extended the application of
HAZEL to four orchards in each of the three countries (Italy,
Chile, and Georgia), using three-year experimental datasets.
Through statistical techniques, it was proven that model
sensitivity slightly varies across environments, without changes
to the ranking of the model parameters. This suggested a good
reliability of the obtained results for further applications.

This paper presents an operational prototype of a hybrid
model for hazelnut yield prediction, named HADES (HAzelnut
yielD forEcaSt), in which process-based modeling and machine
learning techniques are integrated. In Materials and Methods,
we introduce the datasets required as input, with a statistical
analysis of hazelnut yields, and then describe the different
HADES modules and the machine learning layer. The Results
section reports a quantitative assessment of HADES performance
in calibration and validation. In Discussion we examine the
advantages and drawbacks of the proposed hybrid system, with
an outlook to further research that needs to be conducted, while
the Conclusions section deals with the transferability of HADES
to an operational setting.

MATERIALS AND METHODS

HADES Workflow
The workflow of HADES is shown in Figure 1. Four sources
of input data were used: (i) official statistical hazelnut yield
data in the period 2004–2019, as provided by the Turkish
Statistical Institute (TÜİK) (Turkish Statistical Institute, 2020),
(ii) phenological observations collected in field surveys in 2018–
2019 in the main Turkish hazelnut growing municipalities
(Sakarya, Duzce, and Zonguldak in the Western Black Sea region;
Samsun, Giresun, Ordu, and Trabzon in the Eastern Black Sea
region), (iii) information on the three main hazelnut varieties
in each municipality collected in a field survey carried out
in 2019, and (iv) daily weather data derived from the NASA
POWER database1. These inputs were used to perform a three-
step analysis. In the first step, the statistical analysis of official
yields allowed identifying time trends and evaluating the presence
and strength of the alternate bearing. This analysis was meant
to characterize specific properties of the yield series, which were
then used as input to the second step, i.e., the calibration and
evaluation of the HAZEL simulation model (Bregaglio et al.,
2016). Here, the NASA POWER weather data were used as
inputs, while the phenological observations were employed as
reference data to derive a single parameter set for all the Turkish
hazelnut growing regions. This was needed to calibrate HAZEL,
aiming at maximizing its accuracy in predicting TÜİK official
yields. The third and last step of the HADES workflow is a

1https://power.larc.nasa.gov/
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Random Forest (RF, Breiman, 2001) regression-based machine
learning layer, which uses as input the three main hazelnut
varieties grown in each municipality, the yields predicted by
HAZEL (step 2), several agro-meteorological indicators, and the
outputs of the yield analysis (step 1). The final accuracy of
HADES in predicting official yield was assessed as the median
performance in model validation, over all 100 bootstrap samples
drawn with replacement from the original input datasets.

Statistical Analysis of Official Yield Data
Data on hazelnut production (t) and cultivated area (dekare)
in the period 2004–2019 were downloaded from the data
portal of the Central Dissemination System of TÜİK at NUTS3
(municipality) level. Yield, expressed in t ha−1, was derived as
the ratio between production and cultivated area for the seven
municipalities of Duzce, Sakarya and Zonguldak in the Western
part of Turkey, and Giresun, Ordu, Samsun and Trabzon in the
Eastern part of the country. The choice of the municipalities was
driven by their relevance in term of cultivated area, given that
they account for 95% of the total average hazelnut area in the
considered period.

Basic statistics (mean and standard deviation) were calculated
at the municipality level, and a trend analysis (Siegel, 1982)
followed by a Mann-Kendall test (Mann, 1945; Kendall, 1975)
were performed to identify any linear trends in the series and to
assess the significance of the resulting slopes. Similarities in yield
trends between municipalities were evaluated using Pearson’s
correlation and allowed to cluster municipalities, using complete
linkage as clustering criterion and Euclidean distance as the
distance metric.

Two indices were used to characterize the occurrence and
magnitude of alternate bearing in the yield time series, as
proposed by Hoblyn et al. (1937). Occurrence was evaluated
using the bienniality index (B), which firstly identifies the sign
of variation in annual yields, and then quantifies the percentage
of occurrence of the typical on-off pattern (min: 0%—no
biennial bearing, max: 100%—perfect alternance). The intensity
of fluctuation was computed as:

I =
n∑

i=2

∣∣yi − yi−1
∣∣

yi + yi−1
/(n− 1) (1)

where I is the sum of the absolute difference between two
consecutive yields (yi−1 and yi) divided by their sum and
averaged by the number of data points (n). I = 1 corresponds to
maximum alternate bearing with no hazelnut yield in the off year,
whereas I = 0 indicates constant yield (no alternate bearing) in the
series. The significance of the I value was tested after recalculating
I on synthetic yield series, derived by bootstrap resampling with
replacement (5,000 samples) of the original data series, and
considering the frequency of exceedance of the original I value
(Huff, 2001). The higher the frequency, the lower the likelihood
of alternate bearing.

A new method has been developed to label annual yields as
on/off years. The procedure is based on the computation of a
yearly index I∗, derived from I, which considers both the sign and

the intensity of the variation in annual yield, and is used to classify
each year with respect to the previous one.

I∗ =
yi − yi−1

yi + yi−1
(2)

A positive value of I∗ indicates an on year and a negative value
indicates an off year, provided that the intensity of variation is
significant (Eq. 3). Yield variation was considered negligible when
its absolute value (| I∗|) was lower than 99.9% of the I values
obtained from the permutations of the whole series; under this
threshold, indicated as I0.001, biennial bearing does not occur
in yield data series, which can in turn be considered flat and
constant. Yearly yield data were then labeled as unexpected when
they have the same label as the previous year.

year label =


on if (|I∗| > I0.001) ∧ (I∗ > 0)

off if (|I∗| > I0.001) ∧ (I∗ < 0)

prev. year label otherwise
(3)

HAZEL Model Calibration and Evaluation
HAzelnut yielD forEcaSt is a process-based simulation model
that reproduces the effect of seasonal environmental conditions
on the phenological development and growth dynamics of a
hazelnut tree (Bregaglio et al., 2016). The simulation run starts
at the end of the previous cropping season, set to September
1 in Turkey, when a sequential phenological model starts to
be executed with separate chilling (Črepinšek et al., 2012)
and degree day accumulation. Chilling hours accumulate when
air temperatures are between 0 and 7◦C. Female flowers are
receptive to pollen in mid-winter and leaf budbreak occurs
in the spring. The phenological model of hazelnut vegetative
and reproductive phases presented in Bregaglio et al. (2016,
2020) was updated according to the new assessment scale in
use by the agronomists, who performed the field observations
(Supplementary Table 1.1). Ten phenological phases are
modeled for vegetative development, from dormant buds to
leaves dropping, whereas reproductive stages are separated for
catkins (male flowers) and female inflorescences, from flowering
to nuts dropping. Initial leaf area index (LAI) is then assigned
according to plant dimensions: plant height and crown size.
The light interception model considers the inter- and intra-
row distance (Pronk et al., 2003) and uses as input the direct
and diffuse light components, which are derived from global
solar radiation (Spitters et al., 1986). Plant gross photosynthesis
is simulated with a decoupled stomatal conductance (Jarvis,
1976) and carbon assimilation model (Chen et al., 1999). Net
assimilation is derived considering the losses due to maintenance
and growth respiration of leaves, fruits, stem, branches and
fruits (de Vries et al., 1989). The partitioning to tree organs is
simulated as dependent on phenological phases, with hazelnut
growth starting from the development of the ovary (R10 in
Supplementary Table 1.1). At the end of each day, the growth
rate of green LAI is computed from specific leaf area and
the rate of biomass partitioned to the leaves. Full algorithmic
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FIGURE 1 | The HADES yield prediction system. Input data sources (official yields, phenological observations, weather data, and main varieties per municipality) are
used in a three-step workflow: a statistical analysis of the yield series, the application of the process-based HAZEL model, and the use of a machine learning layer to
optimize the system accuracy.

description is provided in Bregaglio et al. (2016). The impact
of late frost was simulated according to the algorithm presented
in Supplementary Material 2, considering the increasing
susceptibility of hazelnut trees from female flowering to ovary
enlarging, based on experimental work from Chozinski (1995).
The alternate bearing pattern was reproduced by reducing the
maximum daily portion of assimilates partitioned to fruits
in off years according to a municipality-specific coefficient,
corresponding to the average percentage reduction between on
and off years, derived from the statistical analysis of official
yields (section 2.2).

Model calibration focused first on phenology, using field
observations collected in 2018 and 2019 on 22 sites located
in the main hazelnut producing municipalities, as reference
data (total 289 observations). The thermal thresholds to reach
the hazelnut vegetative and reproductive phases were adjusted
using a multi-start simplex automatic optimization algorithm,
according to Bregaglio et al. (2020), to give a single parameter
set representative for the entire Turkish hazelnut region.
Then, the most relevant parameters, selected according to the
sensitivity analysis of Bregaglio et al. (2020), were calibrated
using the same optimization algorithm, separately for Western
and Eastern municipalities. Model evaluation was performed
using the hold-out method stratified by municipality (7 classes)
and alternate bearing (on-off, 2 classes). The original yield
dataset was split in two equal parts, one for calibration
activities and the other for evaluation of model performance on
independent data (Klemes, 1986), making sure that each subset
maintains the same proportions of classes as the total dataset
(Kohavi, 1995). Parameter values after calibration are presented
in Supplementary Material 1.

The daily minimum and maximum air temperature (◦C) used
as input for the simulations was downloaded from the NASA
POWER database, which provides gridded data at 0.5◦ resolution
for the entire globe. We selected 17 grid cells covering the
hazelnut growing regions in the seven selected municipalities.
Daily global solar radiation (MJ m−2 d−1) as input to HAZEL
was estimated from air temperature according to Hargreaves and
Samani (1982).

Machine Learning Layer
Besides process-based simulation models, machine learning
techniques have opened new perspectives in crop yield
prediction. The machine learning layer in HADES relies on
RF regression, where many regression trees are grown without
pruning, using random bootstrap samples of the input data,
and all trees are averaged to come up with the conclusive
response. The ranking of the importance of individual predictor
variables is computed as the increase of mean squared error
(MSE) in the prediction of internally held-out samples, resulting
from the permutation of the respective predictor in the model
(Breiman, 2001; Liaw and Wiener, 2002). The higher this increase
in MSE after permuting the predictor, i.e., after breaking its
original relationship with the response variable, the greater its
importance. To create the response variable for RF regression, the
original TÜİK yield time series data were split into a calibration
(75% of the overall data; n = 84) and a validation dataset
(25% of the overall data; n = 28) stratified by municipality,
so that each municipality appeared exactly four times in the
validation set, regardless of the growing season. Each split
represents one bootstrap sample. In order to come up with
robust metrics of HADES accuracy in predicting official yield,
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100 bootstrap samples with replacement were created from the
original yield series. Furthermore, to avoid model overfitting
and to retrieve more reliable accuracy metrics, leave-one-out
cross validation was performed during model training. The
final model accuracy, evaluated in terms of relative root-mean-
square error (RRMSE), mean absolute error (MAE), coefficient
of determination (R2), Nash–Sutcliffe model efficiency (EF) and
coefficient of residual mass (CRM), was determined as the
median values of the respective metric in model validation over
all 100 bootstrap samples. Following the same logic, the final
variable importance ranking was assessed as the median value of
percentage increase in MSE over all bootstrap samples. In order
to evaluate spatial patterns in yield prediction, maps for each
growing season showing the percentage error in prediction per
municipality were created.

Four different sources of input variables were used as
predictors: (i) the three main hazelnut varieties grown in each
of the major hazelnut growing municipalities, (ii) the alternate
bearing pattern in terms of labels (on/off) for each growing
season as derived from the statistical analysis of official yield
series (section 2.2), (iii) the yields per municipality in each
growing season as predicted by HAZEL (section 2.3) and
(iv) agro-meteorological indicators computed according to the
phenological development in each municipality and growing
season. In order to compute the agro-meteorological indicators at
the municipality level, daily weather data from the same 17 NASA
POWER grid cells used as input to HAZEL were aggregated.
For a subset of 14 phenological phases (R7—R13; V1—V7,
Supplementary Material 1) per municipality and growing
season, the following predictors were calculated: minimum,
average and maximum temperature (◦C), total precipitation
(mm), relative humidity (%) and maximum wind speed (km
h−1). This sums up to a total of 89 predictors (3 main
varieties, on/off label, yield predicted by HAZEL, 14 phenological
phases × 6 indicators). The yield predictions were simulated at
the end of each growing season (August 31), and only weather
data before this date were incorporated into the RF model,
i.e., no weather forecast was used in the set of predictors. The
RF machine learning layer of HADES was developed in the R
free statistical software (R Core Team, 2020) using the “caret”
package (Kuhn, 2008), which internally relies on the widely used
“randomForest” package (Liaw and Wiener, 2002).

RESULTS

Analysis of Official Yields in Turkey by
Region and Municipality
The statistical yield analysis performed in the seven main
hazelnut growing municipalities is presented in Figure 2.

No significant time trend (p = 0.05) was detected in the official
yield time series. The average yield in the period 2004–2019 in
the Western municipalities was higher than in the Eastern region,
with Sakarya (y = 1.3 t ha−1) ranked as the municipality with
the highest yield, followed by similar values in Duzce (y = 1.11
t ha−1) and Zonguldak (y = 1.09 t ha−1). In the Eastern region,
Giresun was the municipality with the lowest yield (y = 0.64

t ha−1), whereas Ordu and Trabzon were characterized by the
same average yield (y = 0.7 t ha−1), and eventually Samsun
emerged as the highest yielding municipality (y = 0.83 t ha−1).
Standard deviations were very similar across municipalities, with
values ranging from 0.05 t ha−1 in Duzce and Ordu to 0.09 t
ha−1 in Samsun.

The characterization of the occurrence of alternate bearing in
the series, quantified via the bienniality index (B), highlighted
that the majority of annual yield data in all municipalities
followed the expected on-off pattern. The percentage of years
in which alternate bearing was detected ranged between 71% in
Zonguldak and Giresun, to 93% in Duzce and Sakarya. After
bootstrap resampling with replacement to quantify the intensity
of alternate bearing, the calculation of the I index led to higher
values in the Eastern region, ranging from 0.20 in Trabzon
to 0.31 in Giresun, where yield variations were the highest.
A slightly lower value (0.16), but with higher significance was
computed in all the Western municipalities (Supplementary
Material 3). According to the procedure developed to highlight
anomalies in the yield series (section 2.2), the following years
were labeled as unexpected on year: 2006 in Zonguldak in all
Eastern municipalities, 2007 in Zonguldak, Sakarya and Ordu,
2008 in Sakarya and Ordu, 2013 in Ordu and 2015 in Duzce.
Few cases of unexpected off years were detected in the Western
region (2009 in Zonguldak and 2016 in Sakarya), whereas in
the Eastern region the years 2010 and 2011 in Giresun and
Trabzon, and the year 2014 in Giresun, Trabzon and Samsun
were labeled as anomalies.

The correlation and the cluster analyses performed on the
official yield series in the seven main hazelnut producing
municipalities are graphically presented in Figure 3. The highest
positive correlation between yield data series was found between
Sakarya and Duzce (Pearson r = 0.82, p < 0.05), followed by
Giresun and Trabzon (r = 0.81, p < 0.05). The correlations
between Zonguldak yield data and the other municipalities
were positive but not significant. High positive correlations
(p < 0.05) were also found between the yield data corresponding
to the Eastern municipalities, with a decreasing strength from
the pair Samsun-Giresun (r = 0.78) to the following ones:
Giresun-Ordu (r = 0.77), Samsun-Trabzon (r = 0.75), Samsun-
Ordu and Ordu-Trabzon (r = 0.67). The application of the
clustering algorithm led to a clear distinction between the
Eastern and Western region and was used as the criterion to
develop two distinct parameter sets of the HAZEL model. The
Euclidean distances computed between the yield data series
were 1.06 and 1.59 for the Eastern and Western municipalities,
respectively. The Euclidean distance between the entire yield data
series was 3.04.

Process-Based Model Calibration and
Evaluation
A synthetic overview of HAZEL performance in reproducing
phenological development and yield in calibration and evaluation
datasets is provided in Table 1.

The phenological observations collected in 2018 and 2019
growing seasons were reproduced by HAZEL with variable
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FIGURE 2 | The plots show yield data in seven Turkish municipalities (red continuous line for Eastern municipalities, blue for Western municipalities) in the period
2004–2019. Unexpected on and off years are marked with a circle. The yield trend is reported as a dashed line. The table shows the statistics of the series: mean
yield (y) and variance (σ2), trend slope, bienniality index (B), alternate bearing intensity (I) and significance.

accuracy. The reproductive phases related to female flowers and
fruits (112 observations) were simulated with a MAE of 11.1 days
(11.9 days in Western and 10.5 days in Eastern regions), with
a slight overestimation in the East (CRM = −0.04) and the
opposite in the Western region (CRM = 0.09) (Table 1). The
MAE committed by the model in simulating catkin development
(70 observations) and vegetative phase (87 observations) was
larger (15.5 and 15.6 days, respectively), the latter being better
reproduced in the Western (8.6 days) than in the Eastern
region (21.5 days). Regarding yield simulations, overall model
performances in calibration and evaluation were very similar
(Table 1), with less than 0.2 t ha−1 of MAE, with overestimation
(CRM = −0.11). On average, model accuracy according to the
RRMSE was higher in the Western region (less than 24.0%
RRMSE in calibration and evaluation) than in the East, where
RRMSE in calibration reached 34.5%. EF values ranged between
0.49 and 0.59 in Eastern and Western region, respectively. The
correlation between simulated and official yields was always
statistically significant at p = 0.01, with overall R2 value higher
than 0.65, and ranging between 0.48 and 0.62 in calibration and
evaluation when considering the two regions (Table 1).

The simulated dynamics of hazelnut development and yield in
the calibration and evaluation datasets are presented in Figure 4,
where key phenological phases are reported as compared with
field observations in 2018–2019. Simulated and official yield data
are presented divided into on and off years, and reporting the
associated variability as± one standard deviation.

Simulations of key hazelnut phenological phases in 2004–2019
were in line with observations. Average dates of beginning of
female flowering in field observations spanned between day of
year (DOY) 17 (January 17, East) and 28 (January 28, West), with
maximum anticipation of 15 days in the West (Figure 4). The
start of the ovary development occurred on average on DOY 96
(April 6) in all municipalities in 2018 and 2019, and model results
were close to this date in the West, whereas in the East this phase
was simulated on DOY 119 (April 29). Nuts clusters were visible
around DOY 144 (May 24) in field samplings and were simulated
on average on DOY 137 (May 17). The dates when immature
fruits were observed and simulated ranged between DOY 198 and
203 (July 17–22), respectively (Figure 4).

Hazelnut yield dynamics started from ovary enlarging and
followed a logistic shape, with inflection point close to immature
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FIGURE 3 | Pearson correlation matrix (on the left) and cluster analysis (on
the right) on the yield data in the seven main hazelnut growing municipalities.
Non-significant correlation values are reported in gray.

fruits stage, and then with a smoothed increase until harvest.
Average official yields in on years ranged between 0.83 t ha−1

in Giresun and Ordu to 1.06 t ha−1 in Samsun in the Eastern
regions, with larger variability in Giresun and Trabzon (sd 0.20
t ha−1). Corresponding average simulated yields were slightly
lower than the official ones and ranged between 0.74 t ha−1 in
Giresun and 0.85 t ha−1 in Samsun (Figure 4). The associated
variability was comparable to official data and followed an
increasing gradient from Ordu (0.19 t ha−1) to Giresun (0.22 t
ha−1) and Trabzon (0.31 t ha−1). In the Western municipalities,
average official yields in on years were higher than in the East and
ranged between 1.24 t ha−1 in Zonguldak (sd 0.26 t ha−1) and
1.49 t ha−1 in Sakarya (sd 0.20 t ha−1). The model reproduced
the high yield in on years in Sakarya, although with a slight
underestimation (1.36 t ha−1, sd 0.16 t ha−1). It also replicated
the lowest productivity of Zonguldak (1.12 t ha−1, sd 0.19 t
ha−1). Official yields in off years were lower in the Eastern
municipalities, comprised between 0.40 t ha−1 in Giresun (sd
0.19 t ha−1), 0.48 t ha−1 in Ordu (sd = 0.13 t ha−1), 0.55 t
ha−1 in Trabzon (0.14 t ha−1) and 0.60 t ha−1 Samsun (sd 0.21
t ha−1). Simulations reproduced the same trend, once more with
underestimation ranging from the lowest value in Giresun (0.32
t ha−1, sd 0.10 t ha−1) to the highest in Samsun (0.43 t ha−1,
sd 0.15 t ha−1). The official and simulated yields were higher in
the West, in off years, with Sakarya as the municipality with the
highest yield both in the official (average 1.05 t ha−1, sd 0.10 t
ha−1) and simulated data (average 0.86 t ha−1, sd = 0.10 t ha−1).

Integration of the Machine Learning
Layer
HAzelnut yielD forEcaSt model performance is reported in
Table 2, both at the level of the seven main hazelnut
growing municipalities and separately for the Western and
Eastern regions.

While the official TÜİK yields were predicted with a MAE
of 0.15 t ha−1 on the level of the main hazelnut growing
municipalities, as well as separately for the Western region,
the MAE in the Eastern region was slightly lower (0.14 t
ha−1). Model performance has proven to be robust with similar
MAE values both in leave-one-out cross-validated calibration
and in validation. In terms of this metric, model performance
improved from HAZEL (Table 1) to HADES (Table 2) for all
spatial aggregation levels, both in calibration and validation,
with the only exception of the Eastern region in validation,
where the MAE value slightly increased (from 0.13 t ha−1 to
0.14 t ha−1). Model accuracy according to the RRMSE was
better in the West (16.76%) than in the East (23.4%). When
comparing the RRMSE values before (Table 1) and after (Table 2)
the incorporation of the machine learning layer, a significant
improvement can be observed at all spatial levels and both
in calibration and validation. EF was always positive, with the
best result on the level of all municipalities (0.73), followed
by the Eastern (0.60) and the Western region (0.49). In terms
of CRM, HADES was slightly biased toward overestimating
official yields in the East (CRM = −0.05 in calibration and
−0.04 in validation), whereas the opposite held true in the
West (CRM = 0.04 and 0.03, respectively). Consequently, on
the level of all municipalities, the HADES yield estimate was
unbiased (CRM = 0.00). R2 values for all main hazelnut growing
municipalities were 0.72 in calibration and 0.75 in validation,
respectively. Considering the two regions separately, values
ranged between 0.50 (validation West) and 0.62 (calibration and
validation East). Just as EF and CRM, also the R2 values improved
from HAZEL to HADES, with the only exception of the Eastern
region in validation, where R2 slightly decreased. A detailed
graphical comparison of the model performance on the level
of the main hazelnut growing municipalities by means of R2

and MAE sampling distributions that resulted from predicting
official yields over all 100 bootstrap samples is presented in
Supplementary Material 4.

Figure 5 presents the importance of the predictors used in
RF regression, determined using the percentage increase of MSE
when a respective predictor was randomly permuted.

The yields simulated by HAZEL (section 3.2) emerged as
the most important feature, which confirms both that HAZEL’s
accuracy in predicting yield is sufficiently high and also
that the coupling of a process-based model with a machine
learning layer is beneficial to predict official yields. Information
obtained in the field, i.e., the three most important hazelnut
varieties per municipality, ranked second, underlining the value
of ground-based observations in a machine learning-based
yield prediction framework. Alternance, which constitutes the
outcome of step 1 followed on rank three. Several agro-
meteorological variables computed according to the phenological
development in each municipality were then ranked from
position 4 downward. These remaining features all presented very
similar increases in MSE.

Figure 6 depicts a detailed spatial overview of the performance
of HADES in predicting official yield in the main hazelnut
growing municipalities, considering all growing seasons from
2004–2019. Considering all municipality × growing season
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TABLE 1 | HAZEL model performance in reproducing hazelnut phenology, considering catkin development, female flowers/fruits ripening and vegetative phase and yield.

Region Variable Unit Period Use Data MAE RRMSE EF CRM R2

All municipalities Catkin development days 2018–2019 C 70 15.5 – 0.98 −0.01 0.98

Female flowers/fruits days 2018–2019 C 112 11.1 – 0.96 0.02 0.96

Vegetative phases days 2018–2019 C 87 15.6 – 0.86 −0.09 0.91

Yield t ha−1 2004–2019 C 88 0.19 28.6% 0.55 −0.11 0.65

E 88 0.16 27.2% 0.56 −0.11 0.68

East Catkin development days 2018–2019 C 45 18.4 – 0.98 −0.01 0.98

Female flowers/fruits days 2018–2019 C 61 10.5 – 0.96 −0.04 0.96

Vegetative phases days 2018–2019 C 47 21.5 – 0.76 −0.14 0.85

Yield t ha−1 2004–2019 C 47 0.19 34.5% 0.41 −0.09 0.48

E 49 0.13 26.4% 0.59 −0.04 0.62

West Catkin development days 2018–2019 C 25 10.1 – 0.99 −0.02 0.99

Female flowers/fruits days 2018–2019 C 51 11.9 – 0.97 0.09 0.98

Vegetative phases days 2018–2019 C 40 8.6 – 0.96 −0.01 0.98

Yield t ha−1 2004–2019 C 41 0.19 22.6% 0.49 −0.11 0.61

E 39 0.19 23.8% 0.25 −0.13 0.51

Statistical metrics quantifying model accuracy are synthesized for all main hazelnut growing municipalities and separately for Eastern and Western region. C, calibration
dataset; E, evaluation dataset; MAE, mean absolute error; RRMSE, relative root mean square error; CRM, coefficient of residual mass.

combinations, HADES obtained absolute percentage errors in the
range of ± 10% in 33% of the cases and in the range of ± 20%
in 65% of cases. In the Western region, there were only two
cases with prediction errors larger than 40%: in Sakarya in 2004
(Yobs = 1.85 t ha−1, Ypred = 1.27 t ha−1) and in Zonguldak
in 2019 (Yobs = 1.75 t ha−1, Ypred = 1.21 t ha−1). Overall, the
percentage errors were higher in the Eastern region, especially in
seasons with low yields (e.g., 2004, 2014). In 2004, HADES largely
overestimated yields in all Eastern municipalities, even though
predicted yield was the lowest of all growing seasons (mean Yobs
in the East = 0.21 t ha−1, mean Ypred = 0.45 t ha−1). The same
holds partially true for 2014, where HADES overestimated yields
in Ordu and Giresun, while it underestimated it in Samsun (mean
Yobs in the East = 0.48 t ha−1, mean Ypred = 0.52 t ha−1).

DISCUSSION

Alternate Bearing Emerged in Hazelnut
Yield Series
The subdivision of the Turkish Black Sea coast into an old
and a new hazelnut production region is well established in
the literature (Islam, 2018). The former covers about 70% of
the total hazelnut area and is located in the Eastern Black
Sea area, while the latter extends in the Western Black Sea
area, comprising the municipalities of Duzce, Sakarya and
Zonguldak. However, less information is available on the inter-
annual variability of Turkish hazelnut yields, even though it is
well known that this tree crop has a marked alternate bearing
in most growing environments (e.g., Italy, Roversi and Ughini,
2006; Chile, Ascari et al., 2020; United States, Mehlenbacher et al.,
2011). This phenomenon has multiple causes, encompassing
biochemical, physiological, genetic and environmental factors
(Sharma et al., 2019), and consists of two major multiannual
reproductive strategies, leading to heavy fruit load in 1 year,

and low fruit load in the following season (Goldschmidt, 2013).
Other than providing a quantitative assessment of the yield
trends in the main hazelnut producing municipalities through
correlation and cluster analyses on official yield data, our study
provides the first statistically-based assessment of the frequency
and strength of the alternate bearing in Turkish hazelnut yields.
This study confirmed that the year-to-year yield fluctuations
can be mostly explained by a biennial pattern in the examined
period (2004–2019), and that their magnitude strongly differs
among hazelnut growing municipalities. The elaboration of a new
index to understand the outliers of the expected on-off sequence
allowed identifying anomalies in the yield data series: the cause
of such outliers requires a dedicated investigation in the future.
As a preliminary explanation, it needs to be highlighted that
the exceptionally low yield in 2004 and the occurrence of the
unexpected off year in 2014 in the Eastern municipalities were
probably associated with late frost events which caused serious
damage to the yield (Erdogan and Aygun, 2017; An et al., 2020).
The cold stress function implemented in the HAZEL model
(Supplementary Material 2) allowed capturing these events, as
well as the occurrence of cold stress in 2012, which lays the
basis for an extended evaluation of the sensitivity of hazelnut
trees to cold stresses, based on site-specific weather, phenological
and yield data. This would potentially allow the definition of a
methodology to be used in operational forecasting activities to
identify the frost events triggering exceptional yield decreases.

The Application of a Process-Based
Simulation Model at Municipality Level
An underlying assumption of standard crop yield forecasting
systems is that a point-based simulation model, originally
developed to reproduce crop phenology and growth in a
homogenous field (Jones et al., 2017), maintains its validity
when executed in a gridded geographical domain, with a distinct
set of input data per simulation unit. Here we apply the
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FIGURE 4 | Simulated (lines) and observed (points) dynamics of hazelnut phenology, distinctly presented for catkins (cyan), female (blue) and vegetative (dark green)
phases. Simulated data refers to the average model outputs in 2004–2019, observed data to the field samplings collected in 2018 and 2019. Simulated dynamics of
hazelnut yield are reported for on (red) and off (orange) years, along with official yield data (squares). Shades and horizontal and vertical error bars correspond
to ± one standard deviation.

TABLE 2 | HADES performance in predicting official yields.

Region Use MAE (t ha−1) RRMSE (%) EF (−) CRM (−) R2 (−)

All municipalities C 0.15 19.78 0.73 0.00 0.72

V 0.15 19.84 0.73 0.00 0.75

East C 0.14 23.39 0.60 −0.05 0.62

V 0.14 23.40 0.60 −0.04 0.62

West C 0.15 16.72 0.49 0.04 0.51

V 0.15 16.80 0.48 0.03 0.50

Statistical metrics quantifying model accuracy are synthesized for all main hazelnut growing municipalities and separately for East and West. C, Cross-validated
performance in calibration; V, Median model performance in validation; MAE, mean absolute error; EF, Nash-Sutcliffe modeling efficiency; RRMSE, relative
root mean square error; CRM, coefficient of residual mass.
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FIGURE 5 | Median variable importance calculated over all 100 model iterations in terms of mean percentage increase in Mean Square Error (MSE, %).

same rationale using the HAZEL model to simulate hazelnut
yield across the main Turkish production regions. Further,
we derive information from the statistical analysis of official
yields to modulate the simulated growth processes, in order to
increase model accuracy. Statistical techniques, such as simple or
multiple linear regression, are commonly used in yield prediction
systems (Sharif et al., 2017), both as a single method and as
complementary tools to post-process the outputs of crop models
(Lecerf et al., 2019). We used a long official series of yield data
as the basis to infer the average reduction of the partitioning
of assimilate to nuts, to allow reproducing the alternate bearing
of hazelnut. Such an operation, which could be replaced by an
explicit consideration of the carry-over effect on hazelnut growth
in consecutive seasons (if such data will become available),
demonstrated to be effective in increasing the model’s ability to
reproduce the interannual variability of official yields.

The model calibration and evaluation proposed here would
surely benefit from the availability of multi-year and multi-
site field experimental datasets, in which crop phenological
development and yield dynamics are monitored throughout the
growing season (Bregaglio et al., 2020). An example of an ideal
dataset needed to strengthen the calibration and evaluation of
the HAZEL model is provided by Solar and Stampar (2011),
who characterized the phenology, growing and yield capacity of
16 hazelnut varieties over 15 years of experiment in Slovenia.
The availability of a similar dataset in Turkey would allow
increasing the adherence of the model to reality, and in turn
the performance of the whole prediction system. For instance,
the differences in phenological development and yield potential
of the Turkish hazelnut varieties have been not taken into
account in the model parameterization. It is well known that the

current genotypes have specific phenological traits, but sufficient
information on the spatial distribution of the different varieties
was not available. Nowadays, about 18 hazelnut cultivars are
grown in Turkey (Erdogan, 2018), even though only four round
shaped cultivars (Tombul, Palaz, Foşa, and Çakıldak) are the most
relevant (Ayfer et al., 1986). Tombul is the most cultivated variety,
which is, despite its identification, considered as a cultivar for
marketing purposes, since many different clones are sould under
the name “Tombul.”

Bostan (2009) investigated the appearance of male and female
flowers, ovary growth and fruit formation and bud break in
four main Turkish varieties and concluded that the main factors
explaining the differences in cluster formation and leaf fall period
are related to climatic variability and altitude. Despite the lack
of information to develop variety-specific parameter sets, our
results indicate that hazelnut phenological observations were
reproduced with sufficient accuracy, in line with other modeling
studies performed on tree species (Basler, 2016).

Machine Learning Techniques in Crop
Yield Forecasting
Crop yield prediction systems relying on process-based
simulation models have flourished in the last decades, and
were implemented as software frameworks (e.g., Thorp and
Bronson, 2013; Shelia et al., 2019) or integrated modeling
systems at various degrees of complexity (e.g., GEPIC, Liu et al.,
2007; SMILE, Enders et al., 2010). Operational yield prediction
systems are currently in use by international organizations,
such as the Food and Agriculture Organization of the United
Nations (AgroMetShell, Mukhala and Hoefsloot, 2004), and by
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FIGURE 6 | Median model results in terms of percentage error in predicting official yield per municipality and year. The maps report the comparison between
absolute values of official (Yobs) and predicted yield (Ypred).

governmental institutions, such as the European Commission
(EU, MARS/BioMA, Donatelli et al., 2012; van der Velde
and Nisini, 2019). The implementation of machine learning
techniques in traditional crop yield forecasting systems has not
yet become a standard, although recent realizations have already
been the subject of review papers (Elavarasan et al., 2018; van
Klompenburg et al., 2020). HADES embraces this trend and
adopts an ensemble-based supervised learning algorithm, RF,

in regression mode on top of a process-based modeling layer.
RF is one of the most used machine learning techniques in
agriculture thanks to its non-parametric nature, high predictive
ability, internal evaluation of attributes, robustness to noise, and
lack of proneness to overfitting (Rupnik et al., 2019). To date,
applications of RF for yield prediction targeted, among others,
mango (Fukuda et al., 2013) and switchgrass (Tulbure et al.,
2012), whereby Jeong et al. (2016) proved that RF outperformed
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multiple linear regression for yield prediction of staple food
crops at the regional and global level. In our study, other than
being essential in improving system performances, RF provided
a robust ranking of the predictors, confirming the added value
of the process-based model application, whose simulated yields
were top-ranked, as well as the relevant contribution of ground
information on the targeted hazelnut systems.

Outlook
HAzelnut yielD forEcaSt, as presented here, was executed
considering the entire agro-meteorological time series from the
start of each growing season until harvest. Such a system cannot
be applied in an operational context, where yield predictions
need to be available weeks to months before harvest. Future
developments of HADES will focus on its accuracy in predicting
official yields at defined timesteps prior to harvest, using seasonal
or sub-seasonal weather forecast to complement the agro-
meteorological time series until the end of the growing season
(e.g., Hansen and Indeje, 2004). Furthermore, the cold stress
function implemented in HAZEL (Supplementary Material 2),
which allows capturing late frost events contributing to yield
reduction in Turkey, should also be used as additional predictor
in HADES. Also, the HADES implementation would encompass
the consideration of other factors reducing the quantity and
quality of hazelnut yield in the area, such as fungal diseases
(Arciuolo et al., 2020) and viruses (Apple Mosaic Virus, Akbaş
and Deǧirmenci, 2009).

Further developments will also employ the use of an
ensemble of machine learning algorithms, whose development
and applications are booming across disciplines, e.g., medicine
(Peng, 2006) and economics (Zhu et al., 2016). This will allow
inferring synthetic metrics from the distributions of the ensemble
predictions, as recently done with crop models (Wallach et al.,
2016), as well as evaluating differences in algorithms performance
in specific conditions. The availability of free statistical packages
implementing several machine learning algorithms to be run
in ensemble mode (e.g., caret, Kuhn, 2008) will facilitate this
operation and will be considered in the near future. In parallel
to this, Everingham et al. (2016) demonstrated that subsetting
the entire set of predictor variables used as input to a machine
learning model to consider only the most important predictors
as selected through RF variable importance can lead to more
accurate yield predictions. This procedure can be extended from a
single machine learning model to the entire ensemble of models.

Eventually, the performance of HADES will be tested in other
regions of the world, which offers the possibility to assess the
flexibility of the proposed system to predict yield in different
environments that offer a diverse range of available predictors at
different scales.

CONCLUSION

In recent years yield prediction systems for tree crops have started
to emerge in the landscape of agricultural modeling. Process-
based crop simulation models and machine learning techniques
have both been applied to different tree crops. However, so far,

these two approaches have been mostly used independently from
one another. HADES represents a new frontier in crop yield
prediction, where process-based modeling and machine learning
techniques are hybridized to enhance system performance. Each
component of the system keeps the possibility to be either
integrated in a single workflow or used stand-alone, thus
fostering its implementation without affecting the whole system,
e.g., when new data or models are available. The case study
presented here is located in Turkey, the main hazelnut producing
country, but HADES is scalable to any region of the world, where
sufficient data are available. We deliberately considered a case
study that covers a rather vast area, where data availability is
relatively limited with several types of information being difficult
to obtain due to the large spatial scale. The possibility to transfer
the HADES system to any location of interest is promising
for multiple stakeholders in the hazelnut sector that urgently
needs predictive models applicable to different scales and in
different regions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SB, KF, and LG conceived the HADES conceptual framework and
wrote the manuscript with the support of FG. TV, FG, and SB
performed the yield analysis and calibrated and evaluated the
HAZEL model. KF and LG developed the machine learning layer.
LG supervised the project. All authors contributed to the article
and approved the submitted version.

FUNDING

The research was carried out with the cooperation and
contribution of the PROMENADE project funded by the
Hazelnut Company division of Ferrero Trading Lux., and
received support by the AgriDigit-Agromodelli project (DM
n. 36502 of 20/12/2018), funded by the Italian Ministry of
Agricultural, Food and Forestry Policies and Tourism.

ACKNOWLEDGMENTS

The authors would like to thank Soremartec Italia S.r.l., for
their support in the field surveys where hazelnut phenological
observations were collected.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
665471/full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org 12 June 2021 | Volume 12 | Article 665471

https://www.frontiersin.org/articles/10.3389/fpls.2021.665471/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.665471/full#supplementary-material
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-665471 June 1, 2021 Time: 18:49 # 13

Bregaglio et al. The HADES Yield Prediction System

REFERENCES
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