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It is well known that S interacts with some macronutrients, such as N, P, and K, as
well as with some micronutrients, such as Fe, Mo, Cu, Zn, and B. From our current
understanding, such interactions could be related to the fact that: (i) S shares similar
chemical properties with other elements (e.g., Mo and Se) determining competition
for the acquisition/transport process (SULTR transporter family proteins); (ii) S-requiring
metabolic processes need the presence of other nutrients or regulate plant responses
to other nutritional deficiencies (S-containing metabolites are the precursor for the
synthesis of ethylene and phytosiderophores); (iii) S directly interacts with other elements
(e.g., Fe) by forming complexes and chemical bonds, such as Fe-S clusters; and (iv) S
is a constituent of organic molecules, which play crucial roles in plants (glutathione,
transporters, etc.). This review summarizes the current state of knowledge of the
interplay between Fe and S in plants. It has been demonstrated that plant capability
to take up and accumulate Fe strongly depends on S availability in the growth medium
in both monocots and dicot plants. Moreover, providing S above the average nutritional
need enhances the Fe content in wheat grains, this beneficial effect being particularly
pronounced under severe Fe limitation. On the other hand, Fe shortage induces a
significant increase in the demand for S, resulting in enhanced S uptake and assimilation
rate, similar to what happens under S deficiency. The critical evaluation of the recent
studies on the modulation of Fe/S interaction by integrating old and new insights gained
on this topic will help to identify the main knowledge gaps. Indeed, it remains a challenge
to determine how the interplay between S and Fe is regulated and how plants are able to
sense environmental nutrient fluctuations and then to adapt their uptake, translocation,
assimilation, and signaling. A better knowledge of the mechanisms of Fe/S interaction
might considerably help in improving crop performance within a context of limited
nutrient resources and a more sustainable agriculture.

Keywords: iron, sulfur, interaction, methionine, nicotianamine, citrate

INTRODUCTION

The global human population is expected to increase to 9.7 billion by 2050 and 11.2 billion by 2100
(UN 2015). Thus, providing food and feed in an equitable, healthy, and sustainable manner is a
key challenge (Beddington, 2010). The access to adequate and nutritious food is essential to human
wellbeing, but to reach this objective global food production needs to be increased by 70% within
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2050. Healthy soil is a major factor for agriculture production,
but soil resources are finite and non-renewable over the human
time scale. Indeed, both natural events and mostly anthropogenic
activities (e.g., deforestation, drainage, tillage, etc.) led to soil
degradation and consequently to limited access to high-quality
soil for provisioning of essential ecosystem services.

This negative trend is expected to continue at least until
2030 (Report: EU agricultural outlook 2017-30). Consequently,
to maximize ecosystem services like food production, it is crucial
to also recover the marginal agricultural lands for agriculture
use. However, they have already been affected by the already
existing problems of soil fertility (e.g., nutrient depletion, water
scarcity, acidity, salinization, depletion of organic matter, and
poor drainage) ascribable to the land-use changes (Scherr,
1999; Tilman et al., 2002; Lal, 2015), which have been often
exacerbated by climate change (Pilbeam, 2015). It should also
be highlighted that a more massive use of the current farming
practices to meet the challenge of more food demand is very
likely to lead to more intense competition for natural resources,
increased greenhouse gas emissions, and further deforestation
and land degradation. This condition is even more dramatic
when comparing agricultural productivity between high-income
and low-income countries.

The availability of nutrients in different edaphic conditions as
well as its effect on the whole plant development and metabolism
have been widely described, mainly at the level of a single nutrient
at a time. However, at the field scale multiple deficiencies and/or
nutrient interactions are very likely to occur. Furthermore, it
is well recognized that the deficiency or excess of a single
nutrient is typically coordinated with a change in the demand
for another, or even more than one, nutrient. In this context,
we can distinguish between positive/synergic interaction (when
the plant grows better with combined nutrients with respect to
the sum of their individual effects) and negative/antagonistic
interaction (combining nutrients results in worsening plant
growth with respect to the sum of their individual effects)
(Fageria, 2001; Marschner, 2012; Pii et al., 2015; Rietra et al., 2017;
Xie et al., 2021).

However, although the comprehension of the multi-level
interactions among the various mineral elements is considered
crucial to understanding the different sensing and signaling
pathways induced by a single or multiple shortage/s, the impact
of these nutrients’ interactions on crop performance are largely
unknown. This lack is certainly ascribable to the complexity of the
phenomenon. In fact, the consequences of multiple deficiencies
are almost never the mere sum of those caused by each of
the individual deficiencies. An example is represented by the
interactions between nitrogen (N) and sulfur (S). In this specific
case, it has been widely demonstrated that grain productivity
benefits from simultaneous N and S fertilization (Kalmbacher
et al., 2005; Habtegebrial and Singh, 2006; Mathot et al., 2009;
Salvagiotti et al., 2009), most likely for their role in protein
synthesis (Crawford et al., 2000). In this respect, the coordination
of N and S assimilatory pathways in plants corroborate this
hypothesis, suggesting the functionality of putative co-regulation
mechanisms (Koprivova et al., 2000). However, when one of
the two nutrients is missing, the lacking one represses the

assimilation of the other and induces physiological changes
aiming at re-balancing the contents in the plant (Hawkesford
and De Kok, 2006). Clear links have been also established
between S and phosphorus (P) in the soil/plant system. Plants
have developed tightly controlled mechanisms to coordinate S
transport and homeostasis with photosynthesis and the carbon
status, in a similar manner to the inorganic P transport system
(Lejay et al., 2008). Plants maintain intracellular homeostasis of
both elements in response to their respective external availability.
For instance, plant cells operate a rapid replacement of sulfolipids
by phospholipids under S deficiency, and vice versa during P
deficiency (Sugimoto et al., 2010). Such a metabolic switch is
evidence of P/S nutritional interdependency.

This review summarizes the current state in the field of the
interplay between iron (Fe) and S in plants toward a vision of a
more sustainable use of the soil resource and within the context
of the great challenge of food security.

BASIS OF THE INTERACTION BETWEEN
SULFUR AND IRON

Over recent years, S deficiency has become widespread in many
regions of the world. The occurrence of S deficiency has been
described in cereals as well as in other crops. The reasons
behind this trend are mainly the strong decrease in the inputs
of S from atmospheric deposition and the use of high-analysis
low S fertilizers (Zhao et al., 1999). At the beginning of the
1980s, environmental policies drastically reduced SO2 emissions
with a further lowering in the 1990s (Haneklaus et al., 2008),
causing a diminished S input to soil. This phenomenon has
been worsened using high-analysis low-S fertilizers and the
declining use of S-containing fungicides with the final result of
a widespread S deficiency for crops (McGrath and Zhao, 1995;
McGrath et al., 1996).

Iron deficiency is one of the major agricultural problems
leading to lower crop yields and Fe fertilization management
has been the focus of attention for the last decades (Kim and
Guerinot, 2007; Briat, 2009). With respect to its metabolic roles,
Fe nutrient is crucial for the proper functioning of metabolic
processes related to electron transport, such as respiration and
photosynthesis, as well as for chlorophyll biosynthesis (Briat
et al., 2007). Indeed, Fe deficiency firstly appears with a reduced
growth and leaf chlorosis in young leaves and then on older
ones associated with alteration of the main metabolic pathways.
Iron deficiency provokes serious imbalances in the ultrastructure
and functionality of chloroplasts, with 90% of Fe present in a
leaf localized in the chloroplasts (Morrissey and Guerinot, 2009;
López-Millán et al., 2016).

In soils, Fe is present in huge amounts, being the fourth most
abundant element in the earth’s crust in percentage after oxygen,
silicon, and aluminum. Therefore, widespread limited availability
of Fe for plant nutrition is not related to its absolute content
into the soil, but rather to its limited solubility. In particular,
Fe deficiency is a typical feature of alkaline soils (Marschner,
2012), which cover more than 25% of the earth’s surface (FAO,
2015). Low Fe availability in calcareous soils can be ascribed to
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an extremely low solubility of soil Fe. Further, alkaline conditions
may also depress or even block Fe uptake mechanism from the
apoplast into the symplast, which can be related to the pH of the
former (Mengel, 1994; Nikolic and Kastori, 2000).

SULFUR AVAILABILITY AFFECTS PLANT
CAPABILITY TO COPE WITH IRON
SHORTAGE

When Fe is limited in the substrate, plant roots rely on two main
strategies to acquire it, i.e., Strategy I and Strategy II, based on
Fe3+-reduction and Fe3+-chelation, respectively (Kobayashi and
Nishizawa, 2012). Strategy I, used by all except graminaceous
plants, involves: (i) the mobilization of Fe3+ ions from soil
particles through rhizosphere acidification, likely driven by an
increase in plasma membrane H+-ATPase activity; (ii) the
induction of a ferric chelate reductase (FCR) activity, which
allows higher reduction rate of Fe3+ to Fe2+; and (iii) the uptake
of the resulting Fe2+ via an Fe2+ transporter (IRT). The Strategy
II system is restricted to grasses, which secrete mugineic acid
(MA) family phytosiderophores (PS) from their roots to chelate
and solubilize Fe3+ in the rhizosphere (Takagi, 1976). The Fe3+–
PS complexes are then taken up by root cells through the action
of Yellow Stripe 1 (YS1) proteins (Murata et al., 2006).

Both mechanisms undoubtedly improve Fe acquisition by
plants, although Fe deficiency issues can still occur, regardless of
whether the plant is being grown in nutrient-rich or poor soils.
In fact, it has been observed that Fe deficiency could be caused by
factors other than limited available Fe and, on the other hand, Fe
deficiency could be overcome by factors besides Fe supply.

Research on the S/Fe interaction started from the evidence
that S-deficient plants showed a limited ability to accumulate
Fe. Literature on this topic was minimal. In fact, to our
knowledge, one of the first studies on barley plants showed
that sulfate availability in Fe-deficient growth medium could
affect PS accumulation in root tissues and the extent of 14C
glucose incorporation into PSs (Kuwajima and Kawai, 1997).
Since then, significant interactions between external S supply and
Fe homeostasis have been described in several crops, both grasses
(Astolfi et al., 2003, 2006a, 2018; Bouranis et al., 2003; Zuchi
et al., 2012; Ciaffi et al., 2013; Wu et al., 2015, 2020; Celletti
et al., 2016a) and dicots (Zuchi et al., 2009, 2015; Muneer et al.,
2014; Paolacci et al., 2014; Coppa et al., 2018), suggesting its
independence of the adaptive responses activated by the plant
species of both strategies.

Early physiological evidence showed that maize plants
exposed to S deficiency had a lower shoot Fe content than
those grown in the presence of S (Astolfi et al., 2003; Bouranis
et al., 2003). Further, it has been demonstrated in barley that S
deficiency could potentially prevent Fe accumulation in shoots
by lowering the release rate of PS (Astolfi et al., 2006a) and/or by
hindering the capability to take up Fe from the external solution
(Astolfi et al., 2006b). In addition, HvYS1 expression, the specific
transporter of Fe3+-PS complexes, is modulated by S supply
(Astolfi et al., 2010) in barley, suggesting that S mainly affects the
Fe acquisition step.

Interestingly, barley plants fully recovered their capability to
cope with Fe shortage after resupplying S to S-deficient plants
(Astolfi et al., 2010, 2012). After the S resupply, the increase in
PS release in root exudates was evident after 24 h of growth in
S-sufficient nutrient solution and the increase reached values up
to four-fold higher than control after 48 h from S resupply (Astolfi
et al., 2010, 2012). A significant drop of Fe accumulation induced
by S deficiency has been gathered in durum wheat (Ciaffi et al.,
2013) and, later, in rice plants (Wu et al., 2015). Interestingly,
transcriptomic analysis of durum wheat roots has identified 377
differentially expressed transcripts under S deficiency (Zamboni
et al., 2017). Among them, several transcripts encoding formate
dehydrogenase were downregulated by S deficiency, resulting
in limited removal of the formate, which is released by the
methionine (Met) cycle. As a result, the amount of NADH
produced is not sufficient for PS biosynthesis, which is most likely
hindered (Mori, 1999; Zamboni et al., 2017). On the other hand,
it has been recently shown that S-deficiency-induced reduction
of Fe content in rice shoots was associated to a decreased
nicotianamine (NA) level, suggesting that S is not only crucial for
Fe acquisition but also for its translocation to the shoot (Wu et al.,
2020), being NA the main Fe chelator involved in both xylem and
phloem Fe transport within the plants (Von Wirén et al., 1999;
Briat et al., 2007).

Overall, this evidence indicated that plants require an
adequate S supply to efficiently cope with Fe starvation. Thus, it
was not surprising that an over-supply of S allowed to improve,
specifically in durum wheat, the Fe use efficiency of plants and
the accumulation of this micronutrient in plant tissues (Zuchi
et al., 2012; Celletti et al., 2016a). Moreover, providing S above
adequate concentrations may result in the improvement of wheat
Fe use efficiency (Hawkesford et al., 2014) and this S nutritional
effect seems to be especially advantageous for plants grown
under severe Fe limitation, leading to a significant recovery of
deficiency symptoms (Zuchi et al., 2012). However, the positive
effect of super-optimal S supply in improving the capability of
wheat plants to accumulate Fe was later confirmed in wheat
but not in barley and maize plants. In these an antagonistic
effect between Fe deficiency and S surplus has been observed,
resulting in a reduction of Fe accumulation in shoots (Celletti
et al., 2016a). The differential Fe accumulation pattern could
most likely be ascribed to the different capability to release PS
by the three grasses (Marschner, 2012). Actually, the increased
ability of durum wheat to accumulate Fe was associated with
a significantly higher PS release at root level, but the same
did not hold true for barley and maize (Celletti et al., 2016a).
Interestingly, PS release from wheat roots was also associated
with increased S accumulation in both shoot and root tissues
(Celletti et al., 2016a).

This aspect of S/Fe interplay highlights new solutions to
increase Fe levels in cereal grains and might be exploited
for biofortification purposes. Unfortunately, increased Fe
accumulation in vegetative tissues resulting from super-optimal
S supply did not result in increased Fe concentration in grains,
suggesting that the mechanisms involved in the allocation of
Fe in seeds might be different from those controlling the root
uptake and the allocation in the leaves (Astolfi et al., 2018).
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However, S over-fertilization allowed plants to at least overcome
Fe deficiency (Astolfi et al., 2018).

On the other hand, the reduction of shoot Fe concentration
induced by limited S supply was also observed in dicots, such
as tomato (Zuchi et al., 2009) and oilseed rape (Muneer et al.,
2014). In S-deficient tomato plants it has been ascribed to
the inhibition of Fe uptake, due to the prevented induction
of the Fe3+-chelate reductase and the limited activity and
expression of the Fe2+ transporter (IRT1), also associated to a
reduced translocation of Fe to the shoot, as shown by abolished
expression of the NA synthase (LeNAS) gene (Zuchi et al.,
2009). These findings suggested that an adequate S availability
is needed to sustain the ethylene (ET) and NA biosynthetic
pathways (Zuchi et al., 2009). Quite different behavior on
exposure to S deficiency was found for oilseed rape, which
exhibited an upregulation of IRT1 and FRO1 in the earlier
phase. However, the expression of both genes and FCR activity
decreased in the later phases, in agreement with Zuchi et al.
(2009) (Muneer et al., 2014).

Now, it is well established that the abolished expression
of SlNAS gene following S deficiency condition effectively
resulted in reduced NA levels in tomato (Zuchi et al., 2015).
In addition, it has been observed that the two components
of the Fe deficiency response (reduction and transmembrane
transport) are differentially sensitive to or regulated by ET
levels, confirming and extending previous findings in tomato
(Zuchi et al., 2009). This is strongly evident considering that ET
levels seem to stimulate the components of the Fe deficiency
response: the expression of FIT (FER), the ability to acidify
the external medium with regulation of plasma membrane H+-
ATPase (Lucena et al., 2015), and the reduction of ferric Fe
(Romera and Alcántara, 2004). However, increased root ET
production following imposition of S deficiency only significantly
affected the expression of SlIRT1 (Zuchi et al., 2015). It has been
suggested that S deficiency can result in the induction of the
ET pathway (Wawrzynska et al., 2015). Ethylene biosynthesis
is indeed related to S through the formation of S-containing
metabolites in the S assimilatory pathway such as cysteine (Cys),
Met, and S-adenosylmethionine (SAM) (Khan et al., 2016).
Ethylene and S operate interdependently in regulating plant
adaptation processes and abiotic stress tolerance in both optimal
and stress environmental growth conditions (Iqbal et al., 2013).

Although these findings account for the hampered capability
of dicots to cope with the Fe nutritional disorder under the
simultaneous imposition of S deficiency, the question remains,
however, whether plant S status and/or S external concentration
could modify the capability to take up and accumulate Fe.
This challenge has been highlighted recently by Coppa et al.
(2018) using a split-root approach, showing that both SlFER and
SlFRO1 expression, and Fe3+-reducing activity, were induced in
the portion of the root system subjected to combined S and
Fe deficiency compared to the portion of the root subjected
only to Fe deficiency. In addition, it was again confirmed that
distinct regulatory processes target SlFRO1 and SlIRT1, since
the expression of this latter did not change between the two
separated portions of the root system (Coppa et al., 2018). In
particular, it was suggested that SlIRT1 might be controlled by

regulatory mechanisms more complex with respect to SlFRO1
(Coppa et al., 2018).

IRON DEFICIENCY MODULATES
SULFUR UPTAKE AND ASSIMILATION
RATE

Sulfur is present in soils in different oxidation states (from −2
of sulfide S2− to + 6 of sulfate SO4

2−) (Lewandowska and Sirko,
2008). Plants can use sulfur dioxide (SO2) through open stomata
but sulfate taken up by roots represents the most important
source of S for plants (Marschner, 2012). Sulfate transport across
the plasma membrane into the root cells is a secondary active
transport system with energy consumption (obtained from ATP
hydrolysis) and coupled with protons (at least 3H+ per SO4

2−)
(Clarkson et al., 1993). Both sulfate uptake from soil and its
distribution within plant requires specific transporters, which
have been isolated, characterized, and divided into five groups
(Buchner et al., 2004).

Once inside roots, sulfate is first reduced and then
incorporated into organic compounds (Hawkesford, 2000;
Leustek et al., 2000). Both reduction and assimilation mainly
occur in leaf tissues since the enzymes involved in these
processes are localized in chloroplasts (and, to a lesser extent,
in root plastids) (Feldman-Salit et al., 2019). The assimilatory
pathway of sulfate starts with sulfate activation, catalyzed
by the enzyme ATP sulfurylase (ATPS) which produces
adenosine 5′-phosphosulfate (APS), which in turn is reduced
to sulfite (SO3

2−) by the activity of APS reductase (APR)
with glutathione (GSH) as electron donor. Sulfite is then
reduced to sulfide (S2−) by the enzyme sulfite reductase
(SiR). The first stable compound of S assimilation pathway
is the amino acid Cys, synthesized by condensation of
O-acetylserine (OAS) (produced by the activity of serine
acetyl-transferase, SERAT) and S2− in the reaction catalyzed
by O-acetylserine-(thiol)lyase (OAS-TL) (Hatzfeld et al., 2000;
Leustek et al., 2000; Kopriva, 2006; Lewandowska and Sirko,
2008; Koprivova and Kopriva, 2014).

The second S-containing amino acid, Met, is synthesized
in three steps using as precursor Cys. In the first step, the
enzyme cystathionine-γ-synthase (CGL) catalyzes cystathionine
production from Cys and O-phosphoserine (OPH), which
derives from aspartate. An α, β-elimination of cystathionine is
determined by the subsequent activity of cystathionine-β-lyase
(CBL), which catalyzes the penultimate step in the biosynthesis of
Met, in which cystathionine is cleaved to produce homocysteine
(homo-Cys), pyruvate, and ammonia (Ravanel et al., 1998;
Saito, 2000). In the last step, a methyl group from N5-methyl-
tetrahydrofolate (5-CH3H4PteGlun) is transferred to homo-Cys
by the cobalamin-independent Met synthase (MS), producing
tetrahydrofolate and Met (Ravanel et al., 1998). Methionine
is then incorporated into proteins or converted to SAM by
SAM synthetase (SAMS) (Hoefgen and Hesse, 2007; Amir, 2010;
Jobe et al., 2019).

S-adenosylmethionine is the precursor of ET, biotin,
polyamines, NA, and many other secondary metabolites, such as
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PS. Moreover, SAM is the key substrate of different enzymes and
the methyl donor in RNA and DNA modification.

Cysteine is also the precursor of the tripeptide glutathione
(γ-glutamylcysteinglycin, GSH), which is synthesized in
two ATP-dependent steps (Hoefgen and Hesse, 2007; North
and Kopriva, 2007; Takahashi et al., 2011; Jobe et al., 2019).
Firstly, γ-glutamylcysteine synthetase (ECS) catalyzes the
synthesis of γ-glutamylcysteine (γ-EC) from L-glutamate and
L-Cys, then GSH synthetase (GSHS) catalyzes the addition
of glycine to the C-terminus to form GSH, which is the
main form of reduced S in the phloem. Finally, Cys seems
to also be the S-donor for Fe/S-cluster synthesis (Balk and
Lobréaux, 2005). Other S-compounds are produced through
an alternative pattern in which APS can be phosphorylated
by the APS kinase (APSK) with the formation of adenosine
3’-phosphate 5’-phosphosulfate (PAPS), which is used as
a precursor by the multiprotein family of sulfotransferases
(SOTs) for the synthesis of coumarins, glucosinolates,
flavonoids, gibberellic acids, hydroxyjasmonates, phenolic
acids, steroids, or sulfate esters (Klein and Papenbrock, 2004;
Lewandowska and Sirko, 2008).

Sulfate uptake, translocation, and assimilation require tight
and coordinated regulation, which is achieved by both induction
and repression. For instance, S deficiency in the growth medium
commonly causes an increase in uptake rate, by upregulation
of transporters, whereas the accumulation of S-containing
compounds in plant cells inhibits uptake rate by downregulation
of sulfate transporters (Hawkesford, 2003).

In addition to S availability, other factors are able to positively
or negatively modulate S metabolism, such as heavy metals
(Astolfi et al., 2004b, 2014; Yamaguchi et al., 2016; Ma et al., 2018).

Recently, it has been highlighted that one of the most
striking adaptations to Fe shortage in plants relies on the
plant ability to modulate sulfate uptake and assimilation
rates (Astolfi et al., 2004a, 2006b; Ciaffi et al., 2013; Paolacci
et al., 2014). Overall, Fe deficiency induces a significant
increase in the demand for S, and thus activates S uptake
and assimilation rate similarly to S deficiency condition.
In particular, Fe deficiency increased 35SO4

2− uptake
rates by maize and barley roots (Astolfi et al., 2004a,
2006b). Furthermore, Fe deficiency affected the partitioning
from the shoots to the roots of reduced S pool within
the plant: barley plants exhibited an increased root Cys
concentration (Astolfi et al., 2006b), whereas tomato plants
showed an increased root-to-shoot translocation of thiols
(Paolacci et al., 2014).

Iron availability modulates the expression level of genes
involved in both uptake and assimilation of sulfate in grasses,
such as barley and durum wheat (Astolfi et al., 2012; Ciaffi
et al., 2013), as well as in tomato (Paolacci et al., 2014;
Zuchi et al., 2015).

In particular, the expression of the high-affinity sulfate
transporter TdSultr1.3 was significantly induced by Fe deficiency
both in shoots and roots of durum wheat plants, as well as most of
the genes of the S assimilatory pathway (i.e., TdATPSul1, TdAPR,
TdSir, TdSAT1, and TdSAT2) (Ciaffi et al., 2013). On the other
hand, the expression of most of the tomato sulfate transporter

genes, belonging to Group 1 (SlST 1.1 and 1.2), 2 (SlST 2.1), and
4 (SlST 4.1), was significantly up-regulated in Fe-deficient roots
(Paolacci et al., 2014).

Recently, the dose-response effect in the activation of the
adaptive mechanisms in durum wheat has been characterized,
and the minimum level of Fe availability (i.e., an Fe concentration
threshold) triggering the quite expensive response has been
identified. In this respect, it has been demonstrated that there
is an Fe-availability threshold (25 µM) below which a complex
reorganization of S metabolism (and allocation) is required to
guarantee an efficient plant response to the nutritional disorder.
This hypothesis is supported by the increase of root ATPS
activity, followed by the enhancement of both leaf ATPS and root
OASTL activities and the rise of shoot thiols concentrations. It is
evident that this process is very expensive and, when activated,
could have detrimental consequences on biomass accumulation,
thus limiting crop yields as well as weakening the grain quality
(Celletti et al., 2016b).

WHAT ARE THE REASONS FOR THE
CROSSTALK BETWEEN SULFUR AND
IRON NUTRITION? ARE THERE
COMMON SIGNALS INVOLVED IN THEIR
HOMEOSTASIS?

The description of both Fe acquisition systems indicates that the
amino acid Met could reasonably represent the first connection
between Fe and S, since ET, NA, and PS biosynthesis feed
on a common precursor, SAM (Hesse and Hoefgen, 2003;
Bürstenbinder et al., 2007). The coexistence of traits of both
strategies in crossed-form between monocots and dicots (Astolfi
et al., 2020) further corroborates this hypothesis (Figure 1A).

Ethylene plays a key role in many processes, such as root hair
development, fruit ripening, and seed germination (Wang et al.,
2002; Corbineau et al., 2014; Khan et al., 2017). Furthermore,
together with jasmonic acid and salicylic acid, ET seems to be
involved in abiotic and biotic stress responses (Wang et al.,
2002; Yang et al., 2019). More importantly, it has been shown
that ET biosynthesis increases under Fe deficiency at root
level and is closely correlated with Fe3+-reducing capacity
(Romera et al., 1999).

Phytosiderophores are secreted by the roots of grasses
into the rhizosphere, where PS can form stable complexes
with cationic micronutrients, such as Fe3+. The most
common PS are mugineic acid (MA), deoxymugineic acid
(DMA) and epi-hydroxymugineic acid (epi-HMA). Mori and
Nishizawa (1987) identified the S-containing amino acid Met as
their sole precursor.

The distribution of Fe within the plant is mainly governed
by NA (Rudolph et al., 1985; Douchkov et al., 2002;
Takahashi et al., 2003).

Based on this evidence, the interplay could be ascribed to
a decrease in the production and release of PS induced by
S deficiency in grasses, whereas to an impaired ET and NA
production in tomato (Figure 1A).
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FIGURE 1 | Overview of Fe and S Interaction in plants. (A) In plants, Fe and S availability affect S and Fe homeostasis, respectively (left panel, see text for details).
The metabolic interlinks between Fe and S seem to be related to the biosynthesis of specific compounds: S is essential for Met synthesis, the pivotal precursor of ET,
NA, and PS through the SAM biosynthesis pathway (right panel). (B) Hypothetical involvement of organelles (such as mitochondria) in the modulation of Fe and S
deficiency-induced responses. The engagement of specific cellular sensing and signaling pathways might depend on the progression/severity degree of nutrient
deficiency. Mitochondria impairment might be a source of still unknown signals (likely ROS and/or citric acid) able to modulate cellular responses. ET, ethylene; Met,
methionine; NA, nicotianamine; PS, phytosiderophore; SAM, S-adenosylmethionine.

It has been clearly demonstrated that S limited availability
hinders plant capability to take up and accumulate Fe by
decreasing PS release rate in grasses (Bouranis et al., 2003;
Astolfi et al., 2006a; Zuchi et al., 2012; Celletti et al., 2016a)
and by inhibiting ET and NA biosynthesis in dicots (Zuchi
et al., 2009, 2015). In this respect, and specifically considering
grasses, the altered PS release induced by the onset of the
xenobiotic detoxification metabolism (Del Buono et al., 2015;
Bartucca et al., 2017a,b), which mainly depends on S metabolites,
further supports the hypothesis of the relevance of the S
pools in plants for an appropriate response to Fe shortage.

Furthermore, it has been suggested that limited availability
of S could impact the Fe metabolism for its effect on Met
synthesis. Under Fe deficiency, Strategy I plants increase ET
and NA synthesis (Li and Li, 2004; Molassiotis et al., 2005;
Zuchi et al., 2009) with relevant consumption of Met, which
represents the precursor of both compounds (Hesse and Hoefgen,
2003), and the same could occur in Strategy II plants, in
which Met is the precursor of PS (Guerinot and Yi, 1994).
Consequently, the observed regulation of S uptake by roots
and root-to-shoot translocation rate might be explained by
the need to meet the increased demand for Met and its
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derivatives in response to Fe starvation (Zuchi et al., 2009, 2015;
Paolacci et al., 2014).

However, higher S needs to sustain the activation of Strategy
I and II mechanisms cannot fully account for the responses to
combined S/Fe deficiency observed in plants.

For example, Fe limitation in wheat plants under adequate S
nutrition produced a S deficiency-like response at the molecular
level, resulting in higher expression of genes encoding high-
affinity sulfate transporters. However, under S deficiency sulfate
uptake, capacity of the roots was increased by the upregulation of
TdSultr1.1, whereas under Fe deficiency it occurred through the
upregulation of TdSultr1.3, highlighting that the mechanism at
the base of the sulfate uptake modulation by Fe or S deficiency
might be different (Ciaffi et al., 2013). On the other hand, in
tomato plants the transcriptional level of SlIRT1, encoding the
Fe transporter involved in Fe2+ uptake from the soil, in roots
exposed to both Fe and S deficiency was approximately seven
times higher than in control plants, which corresponded to the
sum of the transcript increases observed in the -Fe (five times
higher than in control plants) and -S (about two-fold higher
than in control plants) plants. This finding suggests that IRT1
gene expression could be regulated by complex mechanisms that
might differ from Fe supply. Several factors regulating the IRT1
expression at a post-translational level have been identified and
characterized in recent years (Shin et al., 2013; Ivanov et al., 2014).
In Arabidopsis thaliana, IRT1 acts as metal transceptor critical for
optimal Fe and non-Fe metal homeostasis (Dubeaux et al., 2018).
In particular, these authors demonstrated that IRT1 transporters
are able to perceive metal excess (for instance Mn and Zn) and to
address IRT1 to protein degradation.

Recently, Robe et al. (2020) showed that, in Arabidopsis
thaliana, the S deficiency-mediated negative regulation of the
Fe uptake machinery might be induced to limit the unspecific
transport into the root of potentially toxic divalent cations such as
Mn and Zn by IRT1 (and other transporters like NRAMP1). Such
findings highlight the importance to investigate the regulation of
Fe/S interplay by considering the interaction of both Fe and S also
with other essential nutrients.

Thus, it is reasonable to suggest a direct interference
of Fe with the signal transduction pathway involved in S
metabolism (and vice versa), and with the activation of different
acquisition strategies.

On the other hand, Fe-S clusters’ assembly has emerged as
a further important link between S and Fe (Balk and Pilon,
2011; Mapolelo et al., 2013; Balk and Schaedler, 2014), even
if there is no information about the coordination between the
assembly of Fe-S clusters and the assimilation pathways of S
and Fe. These clusters are the most ubiquitous and versatile
prosthetic groups (Pala et al., 2018) and their biogenesis involves
three different assembly machineries: SUF machinery located
in chloroplast, the Fe-S cluster (ISC) assembly machinery in
mitochondria, and the cytosolic Fe-S protein assembly (CIA)
machinery located in cytosol (Balk and Schaedler, 2014). In
particular, mitochondrion and the ISC has a central role,
since this machinery matures all organellar Fe-S protein and
provides an unknown S-containing compound, translocated by
an ABC transporter into the cytosol, that is necessary for the

extramitochondrial Fe-S protein maturation (Stehling and Lill,
2013). However, the evidence that both nutrients are needed
for Fe-S cluster biosynthesis, even explaining reduced Fe uptake
under S deficiency, does not explain increased S uptake and
assimilation under Fe deficiency, suggesting the existence of
unknown regulation/signaling mechanisms involved in their
close interplay.

All these pieces of evidence seem to support a model in which
Fe and S metabolism need to be coordinated, at least up to a
certain level, so as to guarantee an adequate formation of the Fe-
S clusters. On the other hand, having S metabolism additionally
involved in multiple steps of primary and secondary metabolism,
an independent form of modulation between the metabolism of
the two nutrients, cannot be completely excluded.

At least in part, this hypothesis is mirrored by the intensive
overlapping concurrently to a series of distinct responses
observed by using metabolome (in tomato, Zuchi et al., 2015) and
transcriptome-wide (in wheat, Zamboni et al., 2017) approaches
to study the S/Fe interplay.

The potential role of citric acid in plant-adaptation to Fe
deficiency and combined S and Fe deficiency has been recently
suggested (Coppa et al., 2018; Vigani et al., 2018). The rationale
for such an explanation has been that citric acid is produced in
mitochondria, where the assembly of Fe-S clusters also occurs
(Balk and Pilon, 2011). However, the role of both citrate and
retrograde signaling in such regulating process still remains to
be elucidated, as recently reviewed by Mendoza-Cózatl et al.
(2019). To disentangle the involvement of organelles-nucleus
communication in the Fe/S interplay, a broader interaction
among nutrients should be considered. Indeed, mitochondria as
well as chloroplasts are important cellular sites where complex
nutrient interactions take place (Vigani and Hanikenne, 2018;
Courbet et al., 2019).

CONCLUDING REMARKS

Identifying a suitable approach to unravel the mechanism
underling the Fe/S interplay still remains challenging. The
complex regulation of both Fe and S homeostasis involves
different regulating pathways with likely different signal
molecules (Wawrzyñska and Sirko, 2020). Such complexity
relies mainly on the following aspects: (i) different regulating
mechanisms might act at local (cell and/or tissue) and systemic
level (shoot-root communication); and (ii) nutrient deficiency-
induced responses of plants are tailored on the harshness
degree of stress.

Due to the high Fe and S demand for both mitochondria
and chloroplasts, at the cellular level particular interest has
been devoted to the role of retrograde signaling pathway in the
regulation of Fe- and S-responsive genes. It has been observed
that mitochondrial dysfunction displayed alteration of such
genes (Vigani and Briat, 2016). Although some indirect evidence
suggested that citrate might be involved in the organelles-nucleus
communication, signal molecules involved in such pathway
under Fe and S deficiency are still not known. As reviewed by
Mendoza-Cózatl et al. (2019), the oxidative stress and, in turn,
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ROS signaling, might drive retrograde pathway during Fe and S
deficiency, since the ROS generated in the Arabidopsis thaliana
mutants with diverse mitochondrial dysfunction phenotypes
might be responsible for the transcriptional reprogramming
observed across mutants (Schwarzländer et al., 2012). The
transcriptomic analysis of such mutants revealed that the
expression of several Fe- and S-responsive genes was affected in
plants showing an induced mitochondrial dysfunction (Vigani
and Briat, 2016), highlighting that a link between mitochondrial
impairment and Fe and S homeostasis would be possible.
However, if such regulation occurs directly or indirectly from
mitochondria, still remains to be elucidated.

The severity degree of nutrient deficiency also requires
different regulating mechanisms depending on stress phases
perceived by plants (Vigani and Murgia, 2018). The progression
of Fe deficiency perception occurs through three different
phases: (i) the alarm stress (referring to the homeostatic control
of nutrients content), (ii) the resistance stress (when plant
growth starts to be impaired), and (iii) the exhaustion phase
(when severe and prolonged deficiency determines growth
retardation and death). Such different stress phases involve
the engagement of different plant responses. Most likely,
such stress progression patterns might also occur for other
nutrients, such as S. Therefore, in order to discriminate the
molecular actors responsible for Fe/S interplay it is important
to identify which step of stress the plants are facing. In
this contest, organelles such as mitochondria could play a
role in modulation of cellular responses showing different
patterns in relation to different severity degrees of nutrient
deficiency (Figure 1B).

In conclusion, the analysis of the scientific literature
concerning plant mineral nutrition also reported in the present
review, clearly shows that the comprehension of the adaptive
responses of plants/crops to the nutrient fluctuations in soil
have had a notable development in recent years. However,
despite the undoubted progress in knowledge, these pieces of
information seem to be too limited to fully understand and then
to contribute to setting up appropriate agronomical practices
for more complex edaphic conditions where more than one
single nutrient/element of fertility is concurrently the cause of

the (nutritional) stress. Moreover, this aspect appears even more
important when the need for an adequate reserve of one nutrient
for an appropriate response to the shortage of another one is
also considered. A clear example in this sense is represented
by Fe and S interplay. The increasing frequency of these cases
at the field level, in particular in marginal soils, and the need
to rely on all arable land to overcome the challenge of food
demand and security, urge researchers to proceed with this
methodological approach focused on soil-root system in its
integrity and complexity, including the reciprocal interactions
among different nutrients. It is definitely complicated but the
non-additivity of the adaptive crop responses to each nutrient
seems to highlight its strategic nature. Moreover, the transition
toward sustainability that characterizes the entire agricultural
production system of our time cannot ignore a better and more
defined understanding of the phenomena underlying the soil-
plant interactions at the rhizosphere that are crucial for the best
use of the endogenous nutrient soil resources while preserving its
fertility in the long period.
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