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Sweetpotato (lpomoea batatas [L.] Lam) is an economically important, nutrient- and
pigment-rich root vegetable used as both food and feed. Root-knot nematode (RKN),
Meloidogyne incognita, causes major yield losses in sweetpotato and other crops
worldwide. The identification of genes and mechanisms responsible for resistance to
RKN will facilitate the development of RKN resistant cultivars not only in sweetpotato
but also in other crops. In this study, we performed RNA-seq analysis of RKN
resistant cultivars (RCs; Danjami, Pungwonmi and Juhwangmi) and susceptible cultivars
(SCs; Dahomi, Shinhwangmi and Yulmi) of sweetpotato infected with M. incognita to
examine the induced and constitutive defense response-related transcriptional changes.
During induced defense, genes related to defense and secondary metabolites were
induced in SCs, whereas those related to receptor protein kinase signaling and protein
phosphorylation were induced in RCs. In the uninfected control, genes involved in
proteolysis and biotic stimuli showed differential expression levels between RCs and
SCs during constitutive defense. Additionally, genes related to redox regulation, lipid
and cell wall metabolism, protease inhibitor and proteases were putatively identified as
RKN defense-related genes. The root transcriptome of SCs was also analyzed under
uninfected conditions, and several potential candidate genes were identified. Overall,
our data provide key insights into the transcriptional changes in sweetpotato genes that
occur during induced and constitutive defense responses against RKN infection.

Keywords: constitutive defense, induced defense response, resistant cultivars, root-knot nematodes, susceptible
cultivar, sweetpotato, transcriptome
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Defense Response of Sweetpotato Resistance to Nematode

INTRODUCTION

Sweetpotato (Ipomoea batatas [L.] Lam) is the fifth most
important food crop in the world and a representative root
vegetable, with a total production of 91.8 million tons worldwide
and an annual harvest area of 7.7 million ha. Sweetpotato is
cultivated primarily in Asia and Africa (Afuape et al, 2014;
Heider et al, 2021), where it plays an important role in
sustainable agriculture, as it serves as a valuable source of
nutrients, including minerals, vitamins and pigments, as well
as processed foods, animal feeds and alcohol (Diaz et al., 2014;
Grace et al, 2014). However, given the narrow genetic base
of cultivated sweetpotato, together with its complex hexaploid
genome, the development of sweetpotato cultivars with pathogen
resistance, high yield, high quality and other desirable traits
remains challenging.

Sweetpotato production around the world is affected by
various pathogens, including viruses, fungi and parasitic
nematodes (Clark and Moyer, 1998; Kreuze, 2002; Palomares-
Rius and Kikuchi, 2013). Among the plant parasitic nematodes,
root-knot nematodes (RKNs), members of the genus
Meloidogyne, represent a major threat to many agricultural
crops including sweetpotato (Castagnone-Sereno et al., 2013;
Kim and Yang, 2019). Meloidogyne incognita is a destructive
RKN and the most common nematode species found in
agricultural regions worldwide. Sweetpotato is highly susceptible
to RKN, especially M. incognita, which occurs in tropical
regions throughout the world and causes severe damage to plant
roots (Bridge and Starr, 2010; Kim and Yang, 2019). However,
studies on the mechanism of resistance to RKN in sweetpotato
are still lacking.

To respond to pathogen infection, including plant parasitic
nematode infestation, host plants employ both constitutive
and induced defense mechanisms (Boots and Best, 2018).
Constitutive defense prevents infection in the first place,
while induced defense typically shortens the infectious period.
Therefore, these two defense routes have very different
implications, not only in individuals but also in terms of the
epidemiology of the disease. Moreover, the cost of constitutive
defense mechanisms is likely to be paid even in the absence of
the pathogen, while induced defense is likely to incur the most
substantial cost when used in response to pathogen infection
(Lam et al., 2001; Wittstock and Gershenzon, 2002). However,
there has been no research on the inducible and constitutive
defense mechanisms of host plants under nematode attack.

Sweetpotato cultivars show differences in their susceptibility
and resistance to RKNs, which can be exploited to reveal
the genes and mechanisms responsible for resistance to RKN.
We previously conducted proteome and transcriptome profiling
of two sweetpotato cultivars, Yulmi and Juhwangmi, with
contrasting responses to infection with M. incognita (Ha
et al, 2017; Lee et al., 2019). Recently, we identified and
studied the responses of candidate genes to RKN infection
in these two cultivars (Sung et al, 2019; Lee et al, 2020).
However, these studies were limited in their ability to elucidate
the mechanism of RKN resistance in sweetpotato because
the analysis was limited to only two cultivars, and the

late response to RKN (generation of number of galls) was
confirmed after 2 months in the growth chamber and 3
months in the greenhouse. In the experimental conditions of
this study, transcriptome analysis was performed at 1 week
after RKN egg inoculation to confirm the early response,
and the numbers of galls produced by RKN were counted
at 4 weeks from the eggs of nematodes. Therefore, in the
present study, considering that RKN infection is a major
limiting factor affecting sweetpotato production, we aimed to
decipher the RKN resistance mechanism of sweetpotato by
performing RNA-seq analysis of three susceptible cultivars
(SCs; Dahomi, Shinhwangmi and Yulmi) and three resistant
cultivars (RCs; Danjami, Pungwonmi and Juhwangmi) of
sweetpotato infected with M. incognita, and examined the
induced and constitutive defense response-related transcriptional
changes in these cultivars. The results revealed transcriptional
changes in genes involved in defense response, secondary
metabolites, cellular response and macromolecule metabolism
during induced defense response. During constitutive defense,
genes related to redox regulation, lipid and cell wall metabolism,
protease inhibitor and proteases were putatively identified as
RKN resistance genes in RCs. Several downregulated potential
candidate genes involved in regulations of metabolism, signal and
cell wall were also identified in SCs, based on their transcriptome
analysis under uninfected root conditions.

MATERIALS AND METHODS

Plant Materials and M. incognita

Treatment

Six sweetpotato (Ipomoea batatas [L.] Lam) cultivars obtained
from the Bioenergy Crop Research Center, National Crop
Research Institute (RDA, Muan, Jeonnam, Korea) were used
in this study; these included RKN sensitive cultivars (SCs),
namely Dahomi (DHM), Shinhwangmi (SHM) and Yulmi (YM),
and RKN resistant cultivars (RCs), including Danjami (DJM),
Pungwonmi (PWM), and Juhwangmi (JHM). The six cultivars
used in this study had different origins. Among RCs, DJM was
the result of a cross between Yeonjami and Yeonhwangmi. PWM
was the result of a cross between benisazma and Luby3074, and
JHM was the result of a cross between SQ27 and BB95024-2.
Among SCs, DHM was the result of a cross between Muan-4 and
Jinhongmi. SHM was the result of a cross between MI874-1 and
Ddosabeni, and YM was the result of a cross between Jinmi and
M1I78001-15. Fifteen plants per sweetpotato variety were planted
in sterilized sand: soil mixture (50:50) in perforated 500-cm? clay
pots arranged in a completely randomized design. The pots were
placed in a greenhouse maintained at 25 & 3°C, and plants were
watered as required. Two weeks after planting, approximately
3,000 M. incognita eggs were applied to the soil in each pot and
covered with a moist layer of sand. Inoculated and uninoculated
plants were harvested 1 week, and the number of galls was
visually rated by staining with 0.015% Phloxin B solution for
15 min in roots harvested at 4 weeks after inoculation, as
described previously (Fassuliotis, 1985). For each cultivar, seven
root samples were ground to a fine powder in liquid nitrogen
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FIGURE 1 | Effect of the root-knot nematode (RKN) Meloidogyne incognita on susceptible cultivars (SCs; DHM, SHM, and YM) and resistant cultivars (RCs; DJM,
PWM, and JHM) of sweetpotato. Plants were grown under greenhouse conditions for 1 month. Egg masses were formed in non-sterilized sand containing
M. incognita but not in sweetpotato plants cultured in sterilized soil. Data represent mean =+ standard deviation (SD) of 10 replicates. DHM, Dahomi; SHM,

PWM

DJM JHM

using a pestle and mortar, and stored at -70°C until needed for
further analysis.

RNA Extraction, cDNA Library

Construction, and Sequencing

Total RNA was isolated from fibrous sweetpotato roots using
TRIzol RNA Isolation Kit (Invitrogen, United States). Samples
with an RNA integrity number (RIN) > 8 were used for
library construction. Each paired-end cDNA library was prepared
according to the TruSeq RNA Sample Preparation Guide
(Ilumina, San Diego, CA, United States) and then sequenced on
the HiSeq 2500 platform. Three independent replications were
performed for each sample.

RNA-Seq Data Analysis

Paired-end reads were cleaned using prinseq-lite version 0.20.4,
with the following parameters: min_len 50; min_qual_score 5;
min_qual_mean 20; derep 14; trim_qual_left 20; trim_qual_right
20. Clean paired-end reads of each sample were aligned to
the sweetpotato reference genome sequence' using Bowtie2.
The RSEM 1.3.0 software was used to obtain read counts and
TMM-normalized TPM (trimmed mean of M value-normalized
transcripts per million) values for each transcript. EdgeR version
3.16.5 was used to calculate the negative binomial dispersion
across conditions for differential gene expression analysis. Genes
were determined to be significantly differentially expressed if they

Uhttps://ipomoea-genome.org/

showed >4-fold change in expression, with a false discovery rate
(FDR)-adjusted P < 0.001. Principal component analysis (PCA)
plot and heatmap analysis was utilized to visualize and assess the
clustering of the data using programs of Mev and PtR of Trinity
package (Howe et al., 2011; Haas et al., 2013; Braich et al., 2019).

Functional Annotation

Functional annotation of differentially expressed genes (DEGs)
was performed via sequence similarity searches using the BLAST
program against the Arabidopsis thaliana protein database, with
an e-value threshold of 1E-5. Gene Ontology (GO) term and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed using DAVID?. To conduct
MapMan analysis, Arabidopsis homolog gene IDs and fold
changes of DEGs in the six sweetpotato cultivars were mapped
to biotic stress pathways. Pictorial representations of the biotic
stress pathways were uploaded from the MapMan website’.

Quantitative Real-Time PCR (qQRT-PCR)

Gene expression was verified by qRT-PCR analysis in a
fluorometric thermal cycler (DNA Engine Opticon 2; M]J
Research, Waltham, MA, United States) using gene-specific
primers (Supplementary Table 1) and EvaGreen fluorescent
dye, according to the manufacturers instructions. Data were
normalized relative to the mean CT value of the stable reference

Zhttps://david.ncifcrf.gov/
3https://mapman.gabipd.org/home
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FIGURE 2 | Statistical analysis of differentially expressed genes (DEGs) across samples. (A) Principal component analysis (PCA) of all samples by treatment shows
general clustering of samples with a few outliers. Colors denote different cultivars and treatment conditions. (B) Clustered heatmap showing the Pearson correlation
matrix of pairwise sample comparisons. The color key was adjusted based on the log2-centered values for optimal visual detection of differences, and the
dendrogram illustrates the relationship among samples. DHM, Dahomi; DJM, Danjami; PWM, Pungwonmi; SHM, Shinhwangmi; JHM, Juhwangmi; YM, Yulmi; RCs,
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gene, ADP-ribosylation factor (ARF) (Livak and Schmittgen,
2001; Park et al., 2012).

Statistical Analyses

Data were analyzed by one-way analysis of variance (ANOVA).
Statistical significance levels were set at P < 0.05. The subsequent
multiple comparisons were examined based on Dunnetts
multiple range test. All statistical analyses were performed using
Statistical Package for the Social Sciences software (SPSS 12).

RESULTS

RKN Resistance Differs Between
Sweetpotato Cultivars

According to the Bioenergy Crop Research Center and our
previous study on Korean sweetpotato accessions maintained
in South Korea (Choi et al., 2006; Lee et al.,, 2012; Ha et al,,
2017), cultivars DHM, SHM and YM are highly sensitive to
RKNs, specifically M. incognita, whereas DJM, PWM and JHM
are highly resistant. Therefore, we compared the resistance of
SCs and RCs to M. incognita by measuring nematode egg
mass formation after infestation under greenhouse conditions.

The experiment was conducted by checking the roots at 1
week (7 days) and 4 weeks (28 days) after infection with
RKN eggs. At 1 week after infection, the state of the roots
was not significantly changed by RKN infection irrespective
of the cultivar. Interestingly, at 4 weeks after infection,
galls were found only in susceptible cultivars. M. incognita
formed 210, 216, and 295 egg masses in DHM, SHM and
YM plants, respectively, but only 0-0.6 egg masses in RCs,
such as DJM, PWM, and JHM (Figure 1). Thus, these
data confirm the differences in M. incognita resistance levels
between SCs and RCs.

Transcriptome Sequencing of
Sweetpotato Fibrous Roots in Response
to RKN

In order to confirm the mechanism of resistance during the
early response to RKN infection, transcriptome analysis was
performed on roots at 7 days after infection. To analyze the effect
of M. incognita infection on the transcriptome of fibrous roots of
SCs and RCs, we performed RNA-seq analysis of M. incognita-
infected and uninfected (control) plants using the Illumina
HiSeq2500 platform. A total of 693,206,233 raw paired-end reads
(140,027,659,066 bp) were generated from the six cultivars. After
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comparisons between control (C) and treatment (T). The heatmap shows Benjamini-Hochberg-adjusted (P < 0.05) for DEGs enriched in specific GO terms in the
biological process category. DHM, Dahomi; DJM, Danjami; PWM, Pungwonmi; SHM, Shinhwangmi; JHM, Juhwangmi; YM, Yulmi; RCs, resistant cultivars; SCs,
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filtering out low-quality and unpaired reads using the prinseq-lite
software, we obtained 612,064,327 high-quality paired-end reads
(Supplementary Table 2). All raw read data were deposited
at the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) database under the accession
number SRP128609 (PRJNA429283).

Global Statistical Evaluation of Samples

Used for Comparative Transcriptomics
To perform a statistical evaluation of samples used for
comparative transcriptome analyses, we mapped high-quality

reads to the reported transcriptome®, and calculated transcript
abundance. Next, we performed principal component analysis
(PCA) to evaluate the transcriptomic differences among the
six sweetpotato cultivars under M. incognita treated (T) and
control conditions (C) (Figure 2A). In pairwise comparisons,
independent biological replicates were more highly correlated
within samples than between samples, and biological replicates
of a given cultivar clustered with each other than with other
cultivars, regardless of the treatment (M. incognita-infected
or control) (Figure 2B). We also identified DEGs based

“https://ipomoea-genome.org/
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FIGURE 4 | Comparison of the expression levels of induced defense response-related specific candidate genes in six sweetpotato cultivars under RKN-infected and
control conditions. DEGs include (A) RC-specific and (B) SC-specific up- and downregulated genes. DHM, Dahomi; DJM, Danjami; PWM, Pungwonmi; SHM,
Shinhwangmi; JHM, Juhwangmi; YM, Yulmi; RCs, resistant cultivars; SCs, sensitive cultivars; C, control; T, treatment. The heatmap was constructed using Multi

on pairwise sample comparisons. Each SC and RC showed
different patterns of DEG distribution between the control and
M. incognita infection treatments, as shown by the volcano
plots (Supplementary Figure 1). Thus, each of RCs and
SCs showed different patterns between untreated and RKN-
treated conditions.

Identification and Characterization of

DEGs of the Induced Defense Response
To analyze the induced defense response of sweetpotato during
M. incognita infection via RNA-seq, we identified putative unique

transcripts as reliable DEGs (fold change > 2; Kal’s z-test
FDR P < 0.005) in pairwise sample comparisons (Figure 3A).
First, we examined the transcriptional responses of both SC
and RC groups against M. incognita. Among the identified
DEGs, 116 and 55 were significantly up- and downregulated
in SCs, respectively, after M. incognita infection compared
with the control, consistent with the three cultivars DHM,
SHM and YM (Figure 3A and Supplementary Table 3). Fifty
upregulated and 44 downregulated DEGs were identified in
RCs infected with M. incognita compared with the control
(Figure 3A and Supplementary Table 4). To functionally
characterize the DEGs, we identified their encoded products
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FIGURE 5 | Comparison of quantitative real-time PCR (qRT-PCR) results and RNA-seq data. The graphs show relative transcript levels of two RC-specific genes,
hydroxymethylglutaryl-CoA synthase (HMG; G20053| TU32787) and zinc finger protein (ZFN; G21190| TU34637), and two SC-specific genes, cationic peroxidase
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via comparisons with A. thaliana protein database, and then
performed GO and KEGG pathway enrichment analyses of the
annotated genes (with Benjamini-Hochberg-adjusted P < 0.05;
Figure 3B). In SCs, several genes differentially expressed
between M. incognita-infected and control treatments were
enriched in the biological process category under various
GO terms, including process of oxidation-reduction, secondary
metabolic process, response to bacterium, cellular response
to fatty acid and response to salicylic acid, and in KEGG
pathways including biosynthetic secondary metabolites, starch
and sucrose metabolism, phenylpropanoid biosynthesis and
monoterpenoid biosynthesis. In RCs, GO terms enriched
in the biological process category included transmembrane
receptor protein tyrosine kinase signaling pathway, mitotic
recombination, and protein phosphorylation with untreated
control and RKN infection.

Differential Regulation of RKN
Resistance-Related Candidate Genes

Involved in Induced Defense Response

We identified RC- and SC-specific DEGs involved in induced
defense response (Figure 4). Among the RC-specific induced
defense response-related DEGs (Figure 4A), genes encoding
hydroxymethylglutaryl-CoA synthase (G20053| TU32787),
phototropin 2 (G4378| TU7232), phospholipase A-2-activating
protein (G43835| TU71159) and beta-1,3-galactosyltransferase
2 (G35567| TU58318) were upregulated, whereas those
encoding a S-adenosyl-L-methionine: salicylic acid carboxyl
methyltransferase (G30967| TU50766), two zinc finger transport-
like proteins (G21190| TU34637) and a pectinacetylesterase
family protein (G16907| TU27646) were downregulated RKN
infection. Among the SC-specific DEGs (Figure 4B), genes
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encoding ACC oxidase 1 (G20891| TU34171), thiosulfate
sulfurtransferase 16 (G5291| TU8734), chloroplast beta-amylase
(G17170] TU28084), polyprenol reductase 2 (G18703| TU30556),
phosphoenolpyruvate carboxylase (G16057| TU26231), trehalose
6-phosphate phosphatase (G42693| TU69581) and cationic
peroxidase (G45573| TU73531) were upregulated, whereas
those encoding phototropin 2 (G4378| TU7232), isoleucine-
tRNA ligase (G48053| TU77232) and glycerol-3-phosphate
acyltransferase 1 (G14568| TU23786) were downregulated.

Expression Profiling of RKN-Responsive

Candidate Genes by qRT-PCR

We performed qRT-PCR to analyze the expression patterns of
four candidate RKN-responsive genes, including two RC-specific
genes, hydroxymethylglutaryl-CoA synthase (HMG; G20053|
TU32787) and zinc finger protein (ZFN; G21190| TU34637),

and two SC-specific genes, cationic peroxidase (POD; G45573|
TU73531) and glycerol-3-phosphate acyltransferase (GPA;
G14568| TU23786), in the root tissues all six cultivars infected
with M. incognita (Figure 5). Both qRT-PCR and RNA-seq
analysis revealed significant DEGs between the two groups (SCs
and RCs). The HMG gene was specifically induced, whereas
the ZFN gene specifically downregulated in RCs during RKN
infection. On the other hand, the POD gene was specifically
induced in SCs during RKN infection, whereas the GPA gene
was downregulated.

Identification and Characterization of
DEGs of the Constitutive Defense

Response
In RKN-resistant plants, defense related systems are active
not only during infection but also under uninfected (normal)
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conditions (Boots and Best, 2018). Therefore, to confirm the
constitutive defense-mediated resistance mechanism in RCs, we
compared the transcriptional responses of RCs and SCs under
the untreated (control) condition (Figure 6), and identified
putative unique transcripts as reliable DEGs (fold change > 2;
Kal’s z-test FDR P < 0.005) in pairwise sample comparisons
(Figure 6A). Among the identified DEGs, 4,360 and 2,804 were
upregulated and downregulated, respectively, in DJM (an RC)
compared with SCs (DHM, SHM, and YM). In addition, 2,254
and 4,004 were significantly up- and downregulated in PWM,
while 1,744 and 2,855 were significantly up- and downregulated
in JHM compared with SCs. Finally, 112 genes were significantly
upregulated in RCs compared with SCs, whereas 78 genes were
significantly upregulated in SCs compared with RCs (Figure 6B
and Supplementary Tables 5, 6). To functionally characterize the
DEGs, we also identified their encoded products via comparisons
with A. thaliana protein database, and then performed GO and
KEGG pathway enrichment analyses of the annotated genes

(with Benjamini-Hochberg-adjusted P < 0.05). Several biotic
stress related GO terms were enriched in the biological process
category, including proteolysis, defense response to bacterium,
response to nematode, and response to auxin, in RCs compared
with SCs under control conditions. GO terms including defense
response to fungus, incompatible interaction, protein prenylation
and response to herbivore were enriched in SCs compared with
RCs under control conditions.

Differential Regulation of RKN
Resistance-Related Candidate Genes
Involved in Constitutive Defense

Response

First, we identified RC-specific DEGs as candidates for
constitutive defense response-related genes (Figure 7). Genes

encoding various transcription factors, including putative
jasmonic acid (JA)-dependent WRKY7 (G22312| TU36474),
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a zinc finger protein (G43493| TU70696), auxin repressor
TAA17 (G18159| TU29683) and ABA signaling related PP2C
(G41944| TU68516), were specifically expressed in RCs under
M. incognita-infected and control conditions. Genes encoding
redox-related GRX (G28581| TU46856), CYP450 (G10622]
TU17505), lipid-related GDSL lipase (G2956| TU4870) and acyl-
CoA thioesterase (G7607| TU12515) were highly and specifically
expressed in RCs. Cell wall and metabolism related genes were
also highly expressed in RCs. Interestingly, genes encoding
protease inhibitors, including sporamin (G13622| TU22283,
G13675| TU22356), which exhibits trypsin inhibitor activity (Cai
et al., 2003), and cysteine inhibitor (G8602| TU14149), showed
extremely high expression levels in RCs under infected and
control conditions. Next, we identified DEGs showing SC-specific
expression (Figure 8). Metabolism, signal and cell wall related
genes were specifically expressed in SCs under infected and
control conditions.

Temporal Profiling of RKN Resistance

Related Genes

In order to confirm the responses of genes that are specifically
regulated in RCs via the constitutive defense response, we
investigated for changes in expression at the early (day 7)

and late period (day 28) of RKN infection using qRT-PCR
(Figure 9). In general, the expression of RC-specific genes,
such as those encoding sporamin A (G13675| TU22356),
GDSL esterase/lipase  (G2956] TU4870), flavin-containing
monooxygenase 1 (G37877| TU62031) and metacapase 1
(G29775| TU48782), was upregulated in RCs upon M. incognita
infection but was downregulated in SCs. Even within RCs, there
were changes in the expression of each gene. The expression of
sporamin A was lower in all RCs on day 28 after infection than
on day 7. By contrast, the expression of GDSL esterase/lipase,
flavin-containing monooxygenase 1, and metacapase 1 was
higher on day 7 than on day 28 after infection. Interestingly, their
levels were the highest in the resistant cultivar DJM. However,
the expression of these four genes was higher in RCs than in SCs
on both days 7 and 28. Detailed examination of the qRT-PCR
data revealed that M. incognita infection triggered changes in the
expression of RC-specific genes, and the defense mechanism was
different between RCs and SCs.

Differential Regulation of ROS-Related

Candidate Genes in Response to RKN

During RKN infection, resistance is often associated with
hypersensitive response (HR)-mediated programmed cell death
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(PCD), in which rapid localized cell death in root tissue around
the nematode prevents the formation of a developed feeding site.
This has been reported for many plant species such as tomato
(Williamson, 1999; Melillo et al., 2006), pepper (Pegard et al.,
2005), and coffee (Anthony et al, 2005), which show typical
HR-mediated PCD during incompatible plant-RKN interactions.
At the biochemical level, the rapid generation of reactive
oxygen species (ROS), such as superoxide anionic radicals
(O27) and hydrogen peroxide (H,O;), is the first reaction
in response to attack by avirulent and virulent pathogens.
In incompatible interactions between avirulent pathogens and
resistant plants, transient ROS production is followed by massive
and prolonged ROS accumulation, and the latter is intimately
associated with the HR response (De Gara et al, 2003).
These two-phase kinetics of ROS production are typical of the
incompatible defense mechanism of HR-mediated PCD. ROS
play an important role in plant defense, and during pathogen

attack ROS, such as H;O,, are generated by the enzyme
superoxide dismutases (SODs), and H,O; detoxifying enzymes
such as ascorbate peroxidase (APX) and catalase (CAT) are often
suppressed in pathogen resistant plants (Klessig et al., 2000). As
a result, plants produce more ROS and interactions with these
components lead to a HR-mediated defense response in plant
cells. Particularly, the H,O, plays a major role in triggering
HR-mediated defense mechanisms in incompatible interactions
between plants and pathogens including RKN (Dangl and
Jones, 2001; Melillo et al,, 2006). In this study, we identified
DEGs that are specifically involved in the regulation of ROS
(H203) generation during the defense response in RCs and
SCs (Figure 10). In RCs, genes encoding H,O, generating
SODs were expressed at higher levels than in SCs, whereas
genes encoding H,O; scavenging cytosolic APXs (cAPXs) and
CATs were expressed at lower levels in RCs than in SCs,
which could indicate that RCs generate more H,O; than SCs.
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These DEG patterns correlated with phenotypic responses in
sweetpotato (Figure 1).

DISCUSSION

Defense against pathogens, including plant parasitic nematodes,
results from a complex set of interdependent mechanisms,
ranging from mechanical and chemical barriers to the complex
array of initial effector molecules in the plant immune system
(Boots and Best, 2018). Preformed elements of defense, such
as cell wall modification, toxic metabolites and phytochemicals,
represent the first barrier for any kind of pathogenic invader.
The complicated induced defense response system, which is
activated upon infection, is based on the capability of plants
to recognize and identify pathogenic invaders including plant
parasitic nematodes. During pathogen infection, plants exhibit
resistance by altering the global transcriptional responses to

activate induced and/or constitutive defense. Plant parasitic
nematodes induce a wide range of resistance responses in
plants, with some interactions resulting in a qualitative response,
which involves induced and/or constitutive defense. However,
the molecular mechanisms of nematode resistance in sweetpotato
are poorly understood. Although multiple resistance genes
involved in qualitative response to nematode infection have
been discovered in sweetpotato through transcriptome, proteome
and transgenic analyses, the exact function and mode of action
of these genes remain unknown (Fan et al., 2015; Zhai et al,
2016; Ha et al, 2017; Lee et al., 2019). Here, we performed
a comprehensive analysis of gene expression in three RCs
and three SCs of sweetpotato before and after infection with
M. incognita infection to characterize induced and constitutive
defense responses.

During the induced defense response, different resistance
related genes can function in different ways in the contrasting
sweetpotato cultivars. When examining gene expression data, the
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majority of the known resistance genes, such as those encoding
ethylene biosynthesis-related ACC oxidases (G2553| TU4254,
G3204| TU5260, and G20891| TU34171), polyprenol reductase
(G18703] TU30556), trehalose 6-phosphate phosphatases
(G42399] TU69169 and G42693| TU69581) and cationic
peroxidases (G41119] TU67300 and G45573| TU73531), which
are upregulated, especially in SCs, upon nematode infection,
are often the central focus, as pathogen resistance pathways
are expected to be induced (Figure 4 and Supplementary
Table 3; Bajda et al., 2009; Melillo et al., 2014; Zhang et al,,

2016; Leonetti et al., 2017; Sung et al., 2019). There can also be
considerable value in genes downregulated upon RKN infection,
especially in SCs, which may explain RKN success (Figure 4 and
Supplementary Table 4) as noted in other studies (Guimaraes
et al,, 2015; Shukla et al., 2018).

With respect to the constitutive defense response, we
identified 177 genes uniquely upregulated in RCs compared
with SCs under untreated control conditions (Figure 6 and
Supplementary Table 5). Notably, we identified JA- or ethylene-
dependent genes encoding WRKY?7 (G22312| TU36474), CYP450
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(G19945| TU32621, G39488| TU64782, and G10622| TU17505),
GDSL lipase (G6356| TU10476 and G2956| TU4870), sporamin
(G13622| TU22283, G13675| TU22356, and G34367| TU56356)
and metacaspase (G29775| TU48782), indicating that the
pathways involving these genes might be important for
nematode defense (Wang et al., 2000, 2002; Kim et al,
2006; Kandel et al., 2007; Kwon et al, 2009; Rajendran
et al, 2014; Liu et al, 2016). Interestingly, these genes
were upregulated in RCs but downregulated in SCs during
M. incognita infection (Figures 7, 9). However, the involvement
of these genes in nematode resistance is not verified and needs
further investigation.

Figure 11 show genes involved in the response to nematode
infection including those related to pathogen recognition,
defense response signaling, phytohormones, cell wall
metabolism, proteolysis, redox state, transcription factors
and secondary metabolism. Overall, the MapMan ontology
analysis enabled us to construct a genome-wide outline of the
expression of sweetpotato genes that respond to M. incognita
infection by identifying pathways involved in the main steps
leading to induced and constitutive defense responses. During
the induced defense response, genes related to phytohormones,
cell wall and proteolysis-mediated response were upregulated in
SCs during M. incognita infection (Figure 11A). Additionally,
genes related to beta-glucanase, peroxidase and secondary
metabolites were also upregulated. However, in RCs, genes
related to phytohormones, cell wall, proteolysis, redox regulation
and abiotic stress were downregulated upon M. incognita
infection. These data suggest that SCs respond to RKN infection,
whereas RCs do not exhibit induced defense response upon
RKN infection. In the case of constitutive defense response,
interestingly, genes involved in phytohormones (auxin, ethylene,
and JA) and proteolysis-related defense signaling pathways
(such as protease inhibitor and protease), which are directly
or indirectly related to resistance responses and play a role
in plant immunity, were upregulated in RCs under control
conditions (Figure 11B).

Previously, we reported the proteome and transcriptome
profiling of two sweetpotato cultivars, namely JHM and YM,
at different temporal points after infection with the RKN
M. incognita (Ha et al., 2017; Lee et al., 2019). The results
showed that JHM was more resistant to RKN infection than
YM when plants were cultivated for 50 days in a growth
chamber and 90 days under greenhouse conditions. A proteomic
study of 50-day cultivated sweetpotato, confirmed differences in
the intensities of 64 protein spots on 2-D gel electrophoresis
gels between the two cultivars during RKN infection (Ha
et al, 2017). Of these 64 protein spots, 20 were identified
as belonging to widely different functional categories, such as
the defense response, cell structure, and energy metabolism.
In a transcriptomic study of 90-day cultivated sweetpotato,
74,733 transcripts were assembled and a number of unique
genes were found to be differentially expressed upon RKN
infection (Lee et al., 2019). DEGs encoding transcription factors
involved in various hormonal signaling-related pathways were
identified as being associated with RKN infection. SA-dependent
WRKY genes were not expressed or were slightly induced upon

RKN infection in both cultivars. By contrast, the expression
of ET-dependent ERF and JA-dependent MYC genes was more
upregulated in JHM than in YM during RKN infection. Various
pathogenesis-related (PR) genes activated through transcription
factor dependent pathways were also regulated during RKN
infection. Previous transcriptome and proteomic analysis were
limited in their ability to elucidate the mechanism of RKN
resistance in sweet potato because the analysis was limited to
only two representative cultivars, YM and JHM. In this study,
six cultivars from different origins were used and the study was
conducted by dividing the cultivars into two groups according to
susceptibility to RKN, namely RCs (DHM, PWM, and JHM) and
SCs (DJM, SHM, and YM). Transcriptomics examined induced
and constitutive defense response-related transcriptional changes
in these cultivars 7 days after inoculation with RKN, which
revealed transcriptional changes in genes involved in the induced
defense response and constitutive defense during RKN infection.
This study is the first to study to examine the common resistance
and susceptibility mechanisms of sweetpotato using cultivars of
different origins.

CONCLUSION

In conclusion, we identified changes in the expression of defense
response-related genes in a total of six sweetpotato cultivars
sensitive or resistant to M. incognita infection, thus characterizing
the induced and constitutive defense response mechanisms. We
identified many candidate genes that might trigger changes in
specific induced and constitutive defense responses involved in
phytohormone regulation, defense related metabolism and RKN
signaling in sweetpotato. The identification of RKN resistance-
related genes by marker-assisted selection could offer several
advantages for nematode control in an integrated management
system. Further investigation is needed to elucidate the exact
role of each candidate gene in the regulation of the signaling
pathway involved in the induced and/or constitutive defense
response of sweetpotato during infection with RKN. Transgenic
plants overexpressing or underexpressing each candidate gene
will be generated to determine their roles in RKN-resistant
mechanisms. Overall, our results provide valuable information
for the development of crops with enhanced resistance to RKNs.
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