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Tar spot complex (TSC) is one of the most important foliar diseases in tropical maize.
TSC resistance could be furtherly improved by implementing marker-assisted selection
(MAS) and genomic selection (GS) individually, or by implementing them stepwise.
Implementation of GS requires a profound understanding of factors affecting genomic
prediction accuracy. In the present study, an association-mapping panel and three
doubled haploid populations, genotyped with genotyping-by-sequencing, were used
to estimate the effectiveness of GS for improving TSC resistance. When the training
and prediction sets were independent, moderate-to-high prediction accuracies were
achieved across populations by using the training sets with broader genetic diversity,
or in pairwise populations having closer genetic relationships. A collection of inbred
lines with broader genetic diversity could be used as a permanent training set for TSC
improvement, which can be updated by adding more phenotyped lines having closer
genetic relationships with the prediction set. The prediction accuracies estimated with a
few significantly associated SNPs were moderate-to-high, and continuously increased
as more significantly associated SNPs were included. It confirmed that TSC resistance
could be furtherly improved by implementing GS for selecting multiple stable genomic
regions simultaneously, or by implementing MAS and GS stepwise. The factors of
marker density, marker quality, and heterozygosity rate of samples had minor effects
on the estimation of the genomic prediction accuracy. The training set size, the genetic
relationship between training and prediction sets, phenotypic and genotypic diversity
of the training sets, and incorporating known trait-marker associations played more
important roles in improving prediction accuracy. The result of the present study provides
insight into less complex trait improvement via GS in maize.
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INTRODUCTION

Tar spot complex (TSC), caused by an interaction of at least
three fungal species: Phyllachora maydis; Monographella maydis;
and Coniothyrium phyllachorae, is one of the most important
foliar diseases of maize (Zea mays L. subsp. mays) in many
Central and South American tropical and subtropical areas
(Hock et al., 1992; Pereyda-Hernández et al., 2009). TSC can
result in up to 75% grain yield loss, due to reduced ear
weight, low kernel filling, and loose kernels. Development and
deployment of maize varieties with genetic resistance is the
most economical and effective strategy for controlling TSC
(Ceballos and Deutsch, 1992).

Understanding the genetic architecture of TSC resistance
will allow breeders to improve their breeding efficiency by
the implementation of marker-assisted selection (MAS) or
genomic selection (GS) to introgress the resistance genes into
susceptible germplasm. A few studies have been conducted
to dissect the genetic architecture of TSC resistance in maize
(Mahuku et al., 2016; Cao et al., 2017). In a collection of 890
inbred lines genotyped with 56 K SNPs, three TSC resistance
loci on chromosomes 2, 7, and 8 were identified through
association mapping (AM) analysis. The major quantitative
resistance locus (QTL) detected on maize chromosome bin
8.03, was furtherly validated in three bi-parental populations
through linkage mapping analysis. Identification of the major
QTL on bin 8.03 provides the foundation for fine mapping this
major QTL and developing functional markers for implementing
MAS (Mahuku et al., 2016). The genetic architecture of TSC
resistance in maize was confirmed by combined AM and
linkage mapping using higher marker density, the major QTL
on bin 8.03 was narrowed down to a 33.6 million base pair
region, and the results showed that TSC resistance in maize
is controlled by a major QTL on bin 8.03, coupled with
several minor QTL with smaller effects on other chromosomes
(Cao et al., 2017).

Genomic selection is an extension of MAS that uses genome-
wide markers to predict the genomic estimated breeding values
(GEBVs) of the un-tested lines for selection, where the genome-
wide markers are used for selection without detection QTL
(Meuwissen et al., 2001; Edriss et al., 2017). In maize, GS
has been investigated to improve several major diseases, e.g.,
maize lethal necrosis resistance (Gowda et al., 2015; Sitonik
et al., 2019), northern corn leaf blight resistance (Technow
et al., 2013), ear rot resistance (Han et al., 2018; Liu et al.,
2020). These studies showed that GS is a promising approach
to improve the major diseases, which are under polygenic
control. Medium-to-high prediction accuracies were achieved in
these studies, and the factors affecting prediction accuracy were
assessed over a wide range of target traits. Key factors affecting
prediction accuracy include the heritability of the predicted
trait (Combs and Bernardo, 2013; Zhang et al., 2015), size of
the training set (Zhang et al., 2017), marker density (Spindel
et al., 2015), marker quality (Guo et al., 2020), phenotypic,
and genotypic variations of the target trait (Gowda et al.,
2015), the genetic relationship between training and prediction
sets (Isidro et al., 2015; Santantonio et al., 2020; Atanda et al.,

2021), and incorporating known trait-marker associations
(Bernardo, 2014; Wang et al., 2019), etc. A preliminary genomic
prediction analysis has been conducted to investigate the
effectiveness of implementing GS for improving TSC resistance
in maize, results showed that moderate-to-high prediction
accuracies were achieved within different populations using
various population sizes and marker densities (Cao et al.,
2017). The accuracy of predicting TSC resistance across
populations is still unknown under the different factors affecting
prediction accuracy.

In the present study, an association-mapping panel and
three doubled haploid (DH) populations, genotyped with
genotyping-by-sequencing (GBS), were used to estimate the
genomic prediction accuracy of TSC resistance in maize. The
main objectives of the present study are to: (1) estimate
the genomic prediction accuracy of TSC resistance across
populations, where the training and prediction sets are
different; (2) assess the effect of marker density, marker
quality, heterozygosity rate (HT) of samples, the genetic
relationship between training and prediction sets, incorporating
known trait-marker associations on estimation the genomic
prediction accuracy of TSC resistance; (3) explore training
population development base on the phenotypic variation
of TSC resistance.

MATERIALS AND METHODS

Plant Materials, Phenotyping, and
Phenotypic Data Analysis
In the present study, an AM panel and three bi-parental DH
populations were used. The AM panel, designated Drought
Tolerant Maize for Africa (DTMA) AM panel, consists of 282
tropical and subtropical inbred lines developed by the Global
Maize Program of International Maize and Wheat Improvement
Center (CIMMYT).

The three DH populations, namely Pop1, Pop2, and Pop3,
consists of 174, 100, and 111 lines, respectively. Each of the DH
populations was derived from an F1 cross formed between a
TSC resistant line and a TSC susceptible line, the protocol of
generating DH lines was described by Prasanna et al. (2012).
The resistant parental lines are widely used CIMMYT maize lines
showing good resistance to TSC, and the susceptible parental
lines are drought or drought and heat stress-tolerant lines (Yuan
et al., 2019) showing severe susceptibility to TSC. The Pop2 and
Pop3 shared a common donor line, and the susceptible parental
lines of these two populations were derived from the same genetic
pool through population improvement. The detailed information
of the parental lines was described by Cao et al. (2017).

The DTMA AM panel was evaluated for TSC response in
Mexico at five environments, i.e., in Puebla (Latitude: 20◦28′;
Longitude: −97◦38′; Mega environment: lowland tropical) in
2009, 2011 and 2012; in Guerrero (Latitude: 17◦02′; Longitude:
−99◦38′; Mega environment: lowland tropical) in 2012; and
in Veracruz (Latitude: 19◦15′; Longitude: −96◦12′; Mega
environment: lowland tropical) in 2012. Pop1 was evaluated for
TSC response at three environments, i.e., in Puebla in 2011
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and 2014; and in Guerrero in 2013. Pop2 was evaluated for
TSC response at four environments, i.e., in Puebla in 2012 and
2014, each year had two planting dates. Pop3 was evaluated
for TSC response at three environments, i.e., in Puebla in 2012
with two planting dates; and in Puebla in 2014 (Cao et al.,
2017). All the locations used for disease screening had high
and consistent natural pressure of TSC. A randomised complete
block design was used for all experiments with three replications
per location. Each plot consisted of a single 2-m row with
10 plants per row. The TSC score evaluation was performed
according to the methods described by Mahuku et al. (2016).
The disease severity was recorded using a scale of 1–5 with
a 0.5 increment, where 1 = highly resistant (HR), no visible
disease symptoms or lesions identifiable on any of the leaves;
5 = highly susceptible (HS), all leaves are dead, no green leaf
tissue remaining or disease symptoms on more than 80% of
the leaf surface.

MEATA-R software1 (Alvarado et al., 2020) was used to
analyze multi-location trials using a mixed linear model to
estimate the best linear unbiased prediction (BLUP) value of
genotypes and the broad-send heritability of the target trait in
each population based on the entry mean within trials. The mixed
linear model was applied as follows:

Yijk = µ+gi+ej+geij+rkej+εijk

where Yijk is the target trait, µ is the overall mean, gi, ej, and geij
are the effects of the i-th genotype, j-th environment, and i-th
genotype by j-th environment interaction, respectively. rkej is the
effect of the k-th replication within the j-th environment. εijk is
the residual effect of the i-th genotype, j-th environment, and k-th
replication. Genotype is considered as the fixed effect, whereas all
other terms are declared as the random effects.

Broad-sense heritability (H2) based on the entry means within
trials was estimated as follows:

H2
=

σ2
g

σ2
g+

σ2
ge
ne +

σ2
e

ne nr

where σ2
g , σ2

e , and σ2
ge are the genotypic variance, error

variance, and genotype-by-environment interaction variance,
respectively, and nr and ne are the numbers of replications and
environments, respectively.

Genotyping and SNP Calling
A commonly used GBS protocol was applied in the present
study, which was described in the previous studies (Elshire et al.,
2011; Wu et al., 2016; Wang et al., 2020). The SNP calling and
imputation was performed according to the methods previously
described (Glaubitz et al., 2014; Swarts et al., 2014). Both the un-
imputed and the imputed datasets were generated for all four
populations of the present study. The un-imputed datasets were
only used in the three DH populations to build the block maps to
perform linkage mapping analyses. The rest of the analyses were
performed with the imputed datasets. Initially, 955,690 SNPs,

1http://hdl.handle.net/11529/10201

evenly distributed on the 10 maize chromosomes, were called for
each of the genotyped samples.

Population Structure Analysis
The population structure analysis was performed with the
principal components analysis (PCA) in all the four populations,
where 232,538 SNPs, filtered with minor allele frequency (MAF)
greater than 0.05 and missing rate (MR) less than 20%, were
utilised. In the DTMA AM panel, the population structure
analysis was applied in software Structure V2.3.3 using an
admixture model-based clustering method (Hubisz et al., 2009),
where a sub-set of 10,000 SNPs with no missing values were
randomly selected to perform this analysis. The heat map of the
number of SNPs within 1 Mb physical position was shown in
Supplementary Figure 1, which indicates that the 10,000 SNPs
almost evenly distribute in 10 maize chromosomes. The average
linkage disequilibrium decay distance reported in the previous
study was 3.5 Kb at r2 = 0.1 (Cao et al., 2017). In the DTMA AM
panel, evenly distributed SNPs and rapid linkage disequilibrium
decay are able to avoid the introduction of bias of oversampling
SNPs in the linkage disequilibrium regions in the population
structure analysis. Hypotheses were tested for sub-population
number K ranging from 1 to 10, and each K was run seven times
with burn-in time and replications both to 100,000.

Genomic Prediction Analysis
The genomic prediction was implemented in the rrBLUP package
(Endelman, 2011). In each population, a five-fold cross-validation
scheme with 100 replications was used to estimate the prediction
accuracy of rMG. The 80% of the lines in each population were
randomly assigned as a training set to estimate the effect of the
molecular markers and train the prediction model, the rest of the
20% lines were assigned as a validation set in each replication
to get the GEBV of each line in the validation set. The average
correlation coefficient between the GEBVs and the observed
breeding values of the lines in the validation set was defined as
the prediction accuracy rMG. Within each of the four populations,
SNPs filtered with MAF greater than 0.05 and MR less than 20%,
were used for the genomic prediction analyses with a five-fold
cross-validation scheme.

Effect of the Genetic Relationship on the
Estimation of the Prediction Accuracy
According to the changes of ad hoc statistic delta K (1K) value,
the DTMA AM panel was divided into several subgroups. Within
each subgroup, a five-fold cross-validation scheme was used to
estimate the prediction accuracy of rMG. Besides, the predictions
were also conducted between pairwise subgroups, when one
subgroup was used as a training set to predict the other subgroup.

Across all the four populations, the predictions were also
conducted between pairwise populations, where SNPs filtered
with MAF greater than 0.05 and MR less than 20% across all
the four populations, were used for the genomic prediction
analyses. When the predictions were made across subgroups or
populations, the training and validation sets were independent,
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and the prediction accuracy of rMG estimated in the validation set
was calculated from only a one-time analysis.

Effect of Marker Quantity and Quality on
the Estimation of the Prediction
Accuracy
To assess the effect of marker quantity and quality on the
estimation of the prediction accuracy, different parameters were
applied to filter the SNP dataset within each population to
perform the genomic prediction analyses. In each population, a
five-fold cross-validation scheme with 100 replications was used
to estimate the prediction accuracies. The prediction accuracies
were compared, when the SNP datasets filtered with different
parameters, were used for genomic prediction analyses.

Different levels of MAF, MR, and HT of the SNPs were used
to control the marker quantity and quality. Nine combinations
between three MAF levels and three MR levels were used to filter
the SNP dataset within each population, MAF setting at 0.05,
0.20, and 0.40; MR setting at 0.00, 10, and 20%. The HT of the
SNPs in the DTMA AM panel was set at 1, 3, 5, and 10% after
the SNPs were filtered with MAF of 0.05 and MR of 0%, and
the prediction accuracies were estimated with a five-fold cross-
validation scheme. The effect of the HT of the samples on the
estimation of the prediction accuracy was evaluated by setting
the HT of the samples at 1, 3, 5, and 10% in the populations
of DTMA and Pop1, where the SNPs filtered with MAF greater
than 0.05 and MR of 0% were used for prediction analyses. The
software of TASSEL V5.0 (Bradbury et al., 2007) was used to filter
the imputed dataset with MAF and MR. The customised R scripts
were used to filter the HT of the SNPs and samples.

Genomic Prediction Analyses With the
Significantly Associated Markers
Detected From the Genetic Mapping
Genomic prediction analyses with significantly associated
markers were performed to simulate MAS. In the previous study,
261,948 filtered SNPs were used to perform AM analysis in
the DTMA AM panel. In total, 155 SNPs were identified that
were significantly associated with TSC resistance in maize at
the threshold of −log10 (P) > 4.53 (Cao et al., 2017). A five-
fold cross-validation scheme was used to assess the accuracies of
genomic predictions conducted with the significantly associated
markers and the same number of random-selected markers, the
number of markers was set as 1, 2, 3, 4, 5, 10, 20, 155, 500,
1000, 3000, 5000, 10,000, 30,000, 50,000, 100,000, and 200,000.
The significant markers were selected based on their −log10 (P)
value, and their chromosome positions. The most significantly
associated SNPs were selected on all chromosomes firstly, and
then the second significant-associated SNPs were selected.

A block map was constructed in each of the three DH
populations to perform linkage mapping in a previous study (Cao
et al., 2017), where the blocks were treated as genetic markers to
construct the genetic map. In total, 437 blocks in Pop1, 494 blocks
in Pop2, and 493 blocks in Pop3 were built with 20,473, 27,818
and 326,07 SNPs, respectively. In the software of QTL IciMapping
Version 4.1 (Meng et al., 2015), the single-marker analysis

method was used to perform the linkage mapping analyses and
rank the scores of the log of the odds of all the blocks, the scores
of the log of the odds representing the significant levels of the
association between the block and the TSC resistance. A five-
fold cross-validation scheme was used to assess the accuracies of
genomic predictions conducted with the significantly associated
markers and the same number of random-selected markers, the
number of markers was set as 5, 10, 15, 20, 30, 50, 100, 200, 300,
400, and all the blocks in each population.

In the above analyses, the prediction accuracy could be
overestimated, because the same population was used to identify
the significantly associated markers firstly, and then it was
used to calculate the prediction accuracy estimated with the
significantly associated markers. To avoid the overestimated
prediction accuracy, the 150 significantly associated markers
detected from the DTMA AM panel were used for estimating
the prediction accuracy in each of the three DH populations,
when the DTMA AM panel was used as the training set, and the
DH population was used as the validation set. For comparison,
150 randomly selected markers were also used to estimate the
prediction accuracy in each of the three DH populations.

Training Set Development Based on the
Phenotypic Variation of TSC Resistance
According to the phenotypic variation information of the TSC
resistance in each population, training sets were formed. Four
scenarios were simulated and compared within each of the four
populations, where the training set was formed by sampling the
same percentage of materials with a selection from both resistant
and susceptible tails (R + S), with random selection (RD), with
a selection from the resistant tail (R), with a selection from the
susceptible tails (S), respectively. In each scenario, the validation
set was the whole population, and the training set ranged from 20
to 60%, with an interval of 20%. In each of the four populations,
a total of 12 combinations and comparisons were conducted
between the four scenarios and the three percentage levels of
the training set.

RESULTS

Phenotypic Variation, Heritability, and
Phenotypic Correlation Between
Locations
The BLUP value of TSC resistance of all the genotypes across
the four populations ranged from 1.31 to 4.39. The Pop3 had
the widest range of variation among the four populations. The
minimum BLUP value was 1.31,1.81, 1.18, and 1.37 in the DTMA
AM panel, Pop1, Pop2, and Pop3, respectively. The maximum
BLUP value was 3.23, 3.00, 3.95, and 4.39 in the DTMA AM
panel, Pop1, Pop2, and Pop3, respectively. The heritability of
TSC resistance across locations was 0.80, 0.54, 0.88, and 0.93
in the DTMA AM panel, Pop1, Pop2, and Pop3, respectively.
The average phenotypic correlation coefficient of TSC resistance
between locations was 0.47, 0.37, 0.68, and 0.84 in the DTMA AM
panel, Pop1, Pop2, and Pop3, respectively.

Frontiers in Plant Science | www.frontiersin.org 4 July 2021 | Volume 12 | Article 672525

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-672525 July 12, 2021 Time: 17:44 # 5

Cao et al. GP of Maize TSC Resistance

Population Structure Analysis Within and
Among Populations
According to the ad hoc statistic 1K value changes, the DTMA
AM panel was divided into three subgroups, the number of lines
was 40, 111, and 131 in Subgroups 1, 2, and 3, respectively (Cao
et al., 2017). Most of the lines in Subgroup 1 were from the
Mexico physiology research group, lines in Subgroup 2 were
mainly from the subtropical breeding program, and lines in
Subgroup 3 were mainly from the lowland tropical breeding
program. The result of the structure split for all the Ks (1–
10) was provided in Supplementary File 1. The population
structure within the DTMA AM panel was illustrated with the
first two principal components in Figure 1A, where the results
showed the first and second principal components explained
4.48 and 3.66% of the total SNP variation, respectively. Some
lines from each subgroup centrally clustered with each other,
indicating the moderate level of genetic relatedness among
the subgroups. The inbred lines in the Subgroup 3 were
most widely scattered, implying the broadest genetic diversity
presented in Subgroup 3 among all the three subgroups.
These observations are consistent with the current germplasm
exchange patterns where there is a constant flow of germplasm
among the subgroups.

The genetic relationship among the four populations was
illustrated with the first two principal components in Figure 1B,
where the results showed the first and second principal
components explained 14.11 and 7.57% of the total SNP
variation, respectively. The inbred lines in the DTMA AM
panel were most widely scattered, implying the broadest genetic
diversity presented in the DTMA AM panel among all four
populations. The DTMA AM panel was not overlapped with any
of the three bi-parental populations, the Pop1 was not overlapped
with either the Pop2 or the Pop3. The Pop2 was overlapped
with the Pop3, due to the common parent shared by these two
populations, it indicated the closest relationships between these
two populations.

Genomic Prediction Accuracies
Obtained Within and Across Populations
and Subgroups
Genomic prediction accuracies obtained from five-fold cross-
validations and 100 replications were high in all four populations,
when the SNP datasets, filtered with MAF greater than 0.05 and
MR less than 20%, were used to perform prediction within each
population. The number of SNPs after filter in the DTMA AM
panel, Pop1, Pop2, and Pop3 were 261,948, 98,018, 102,204, and
104,046, respectively. The rMG values observed in the DTMA AM
panel, Pop1, Pop2, and Pop3 were 0.56, 0.60, 0.75, and 0.69. The
rMG value observed in the DTMA AM panel was lower than those
observed in the DH populations.

Genomic prediction accuracies obtained from five-fold cross-
validations and 100 replications were low to moderate within the
three subgroups of the DTMA AM panel (Table 1). The rMG
values observed in the Subgroup 1, Subgroup 2, and Subgroup
3 were 0.27, 0.55, 0.35, respectively. The rMG values observed in

the subgroups of the DTMA AM panel were lower than those
observed in the DTMA AM panel.

Genomic prediction accuracies obtained across subgroups
were relatively low when the predictions were performed between
pairwise subgroups (Table 1). The rMG values observed between
pairwise subgroups ranged from −0.30 to 0.33, the relative high
prediction accuracies were observed, when Subgroup 3 was used
as a training set to predict the other two subgroups, because of the
bigger population size and broadest genetic diversity presented
in Subgroup 3 contributing to the improvement of prediction
accuracy. The rMG values observed between pairwise subgroups
were lower than those observed within the subgroups.

Genomic prediction accuracies obtained across populations
varied in different scenarios and ranged from 0.20 to 0.64
(Table 2). The plots of the correlation between the predicted and
the observed BLUP values for these predictions were shown in
Supplementary Figure 2. When the DTMA AM panel was used
as the training set, the rMG values observed in the Pop1, Pop2,
and Pop3 were 0.45, 0.61, and 0.55, respectively. When the DH
populations were used as the training set to predict the DTMA
AM panel, the rMG values observed in the DTMA AM panel
were relatively low and ranged from 0.20 to 026. The rMG values
observed between the pairwise DH populations were moderate
to high and ranged from 0.36 to 0.64. The highest rMG values
were observed in pairwise populations of Pop2 and Pop3, i.e.,
0.64 and 0.60. The lowest rMG values were observed in pairwise
populations of Pop1 and Pop3, i.e., 0.36 and 0.40.

Genomic Prediction Accuracies
Obtained From Different Levels of
Marker Density, Marker Quality, and
Heterozygosity Rate of Samples
Across all the populations, the number of markers decreased as
the MAF increased and the MR decreased, the marker quality
improved as the number of markers decreased. The maximum
number of markers and the highest MD were observed by filtered
the SNPs with the combination of MAF of 0.05 and MR of
20%, the minimum number of markers and the lowest MD were
observed by filtered the SNPs with the combination of MAF
of 0.40 and MR of 0%. The number of SNPs filtered with the
combination of MAF of 0.05 and MR of 20% in the DTMA
AM panel, Pop1, Pop2, and Pop3 was 261,948, 98,018, 102,204,
and 104,046, respectively. The number of SNPs filtered with
the combination of MAF of 0.40 and MR of 0% in the DTMA
AM panel, Pop1, Pop2, and Pop3 was 1144, 61,471, 65,923, and
61,525, respectively.

The prediction accuracy results estimated in all the four
populations under the nine marker datasets filtered with the
combinations of MAF and MR were shown in Figure 2. Within
each population, the rMG values estimated with the different
marker datasets were slightly different. The rMG values ranged
from 0.54 to 0.58 in the DTMA AM panel, from 0.59 to 0.61 in
the Pop1 population, from 0.75 to 0.78 in the Pop2 population,
and from 0.65 to 0.71 in the Pop3 population. Across all the
populations, relatively high and similar prediction accuracies
were obtained across all levels of MAF and MR, indicating that
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FIGURE 1 | Results of the principal components (PC) analysis in the (A) DTMA association mapping panel, and in (B) all the four populations of DTMA association
mapping panel, Pop1, Pop2, and Pop3.

the levels of MAF and MR had minor effects on the estimation of
the prediction accuracy.

The prediction accuracy results of all the four populations
estimated at the four levels of HT of SNPs at 1, 3, 5, and 10%
were shown in Figure 3. Under the combination of MAF of 0.05
and MR of 0%, the number of markers in the DTMA AM panel

TABLE 1 | Genomic prediction accuracies for TSC resistance obtained between
the three subgroups of the DTMA association mapping panel.

Training set (number of lines) Validation set Prediction accuracy

Subgroup 1 (40) Subgroup 1 0.27

Subgroup 2 −0.08

Subgroup 3 −0.03

Subgroup 2 (111) Subgroup 2 0.55

Subgroup 1 −0.3

Subgroup 3 0.07

Subgroup 3 (131) Subgroup 3 0.35

Subgroup 1 0.16

Subgroup 2 0.33

TABLE 2 | Genomic prediction accuracies for TSC resistance obtained between all
the four populations of DTMA association mapping panel, Pop1, Pop2, and Pop3.

Training set (number of lines) Validation set Prediction accuracy

DTMA (282) Pop1 0.45

Pop2 0.61

Pop3 0.55

Pop1 (174) DTMA 0.26

Pop2 0.61

Pop3 0.40

Pop2 (100) DTMA 0.20

Pop1 0.52

Pop3 0.60

Pop3 (111) DTMA 0.23

Pop1 0.36

Pop2 0.64

filtered with the HT of SNPs at 1, 3, 5, and 10% were 582, 4274,
7503, and 10,065, respectively. The rMG values estimated from the
number of SNPs of 582, 4274, 7503, and 10,065 were 0.45, 0.53,
0.53, and 0.54, respectively (Figure 3A). A significant increase
of the rMG value was observed in the DTMA AM panel, when
the HT of SNPs changed from 1 to 3% and the number of SNPs
increased from 582 to 4274. Under the combination of MAF
of 0.05 and MR of 20%, the number of markers in all the DH
populations were filtered with the HT of SNPs at 1, 3, 5, and 10%.
The slight differences were observed on the rMG values, as the
HT of SNPs increased in all the DH populations (Figures 3B–D).
These results indicated that the effect of HT of SNPs on the
estimation of the prediction accuracy is mainly caused by the
changes in the number of SNPs.

The prediction accuracy results of all the four populations
estimated at the four levels of HT of samples at 1, 3, 5, and
10% were shown in Figure 4. Under the combination of MAF
of 0.05 and MR of 0%, the number of samples in the DTMA
AM panel filtered with the HT of the sample at 1, 3, 5, and 10%
were 120, 184, 219, 250, respectively. The rMG values estimated
in the DTMA AM panel at the HT of samples of 1, 3, 5, and
10% were 0.53, 0.57, 0.56, and 0.56, respectively. In Pop1, the
number of samples filtered with the HT of samples at 1, 3, 5,
and 10% was 92, 165, 171, and 174, respectively. The rMG values
estimated in Pop1 at the HT of samples of 1, 3, 5, and 10% were
0.59, 0.59, 0.59, and 0.61, respectively. In Pop2, the number of
samples filtered with the HT of samples at 1, 3, 5, and 10% was
46, 95, 100, and 100, respectively. The rMG values estimated in
the Pop2 at the HT of samples of 1, 3, 5, and 10% were 0.65,
0.76, 0.77, and 0.77, respectively. In the Pop3, the number of
samples filtered with the HT of samples at 1, 3, 5, and 10% was
77, 111, 111, and 111, respectively. The rMG values estimated
in Pop3 at the HT of samples of 1, 3, 5, and 10% were 0.68,
0.69, 0.69, and 0.69, respectively. Similar trends were observed
across all four populations, the slight increases were observed on
the rMG values, as the HT of samples increased. These results
showed that the effect of HT of samples on the estimation of
the prediction accuracy is mainly caused by the changes in the
number of samples.
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FIGURE 2 | Genomic prediction accuracies for TSC resistance estimated from the five-fold cross-validation scheme in all the four populations of (A) DTMA
association mapping panel, (B) Pop1, (C) Pop2, and (D) Pop3, under the nine levels of marker density (MD) filtered with the combinations of three levels of minor
allele frequency (MAF) and three levels of missing rate (MR).

FIGURE 3 | Genomic prediction accuracies for TSC resistance obtained in the (A) DTMA association mapping panel, (B) Pop1; (C) Pop2; (D) Pop3, under the
different levels of marker density (MD) at the four levels of heterozygosity rate (HT) of SNPs at 1, 3, 5, and 10%, and filtered with the combination of minor allele
frequency (MAF) of 0.05 and missing rate (MR) of 0%.
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FIGURE 4 | Genomic prediction accuracies for TSC resistance obtained in the four populations of the (A) DTMA association mapping panel, (B) Pop1, (C) Pop2,
and (D) Pop3, at the four levels of heterozygosity rate (HT) of samples of 1, 3, 5, and 10%, and the different number of samples (NS).

FIGURE 5 | Genomic prediction accuracies for TSC resistance estimated with the same number of significant and random markers in all the four populations of
(A) DTMA association mapping panel, (B) Pop1, (C) Pop2, and (D) Pop3.
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Genomic Prediction Accuracies
Obtained From the Significantly
Associated Marker
Genomic prediction accuracies in all the four populations
estimated with the significantly associated SNPs were shown
in Figure 5, where relatively high rMG values were obtained
with a few significantly associated markers in each of the four
populations. The rMG values obtained from the significantly
associated SNPs were consistently higher than those obtained
from the same number of randomly selected markers. In the
DTMA AM panel, the number of significant-associated markers
detected on the chromosomes of 2, 3, 7, and 8, were 1, 3, 1,
and 150, respectively. The significantly associated SNPs used
for prediction were ranked based on the information of their
significant p-values and physical positions, and the top five
significantly associated SNPs with the lowest p-values used for
prediction were selected from the chromosomes of 8, 3, 2, 7, and
3, respectively. In the DTMA panel, the rMG value obtained from
the most significantly associated SNP on chromosome 8 was 0.37.
The rMG values obtained from the top two, top three, top four,
and top five significantly associated SNPs were 0.49, 0.54, 0.58,
and 0.59, respectively. The rMG values consistently increased, as
more significantly associated SNPs were used for prediction. The
rMG values reached the plateau, once the number of significantly
associated SNPs used for prediction increased to more than 500.
Similar trends were observed in the three DH populations, the
rMG values obtained from the significantly associated markers
were consistently higher than those obtained from the same
number of randomly selected markers, the rMG values reached the
plateaus in the DH populations, once the number of significantly
associated markers used for prediction increased to more than
50. These results indicated that incorporating the significantly
associated SNPs into GS has the potential for improving the
prediction accuracy.

Genomic prediction accuracies in the DH populations of
Pop1, Pop2, and Pop3 estimated with the 150 significantly
associated SNPs were higher than those estimated with the
same number of randomly selected SNPs (Table 3), when the
DTMA AM panel was used as the training set to predict the
DH population as the validation set. The genomic prediction
accuracies estimated with the 150 significantly associated SNPs
were 0.39, 0.49, and 0.43 in the Pop1, Pop2, and Pop3,
respectively. The genomic prediction accuracies estimated with

TABLE 3 | Genomic prediction accuracies in the DH populations of Pop1, Pop2,
and Pop3 estimated with the 150 significantly associated SNPs and the same
number of randomly selected SNPs.

Training
set

Validation
set

Prediction accuracy
estimated with the

150 significantly
associated SNPs

Prediction accuracy
estimated with the

150 randomly
selected SNPs

DTMA Pop1 0.39 0.09

DTMA Pop2 0.49 0.15

DTMA Pop3 0.43 0.11

the 150 randomly selected SNPs were 0.09, 0.15, and 0.11 in the
Pop1, Pop2, and Pop3, respectively.

Training Set Development Based on the
Phenotypic Variation of the Target Trait
For all the four populations, the results of the prediction
accuracies estimated in the 12 combinations between the four
scenarios and the three percentage levels of the training set were
presented in Figure 6. Across all four scenarios, the prediction
accuracy increased in all the populations as the increase of
percentage of the training set. For example, the prediction
accuracies in the scenario of R+S were 0.72, 0.82, and 0.87, when
the percentages of the training set in the DTMA panel were set as
20, 40, and 60%, respectively. Under the same percentage of the
training set, the scenario of R+S outperformed the other three
scenarios, and the scenario of RD outperformed the other two
scenarios of R and S. For example, the prediction accuracy in
the DTMA panel at the percentage of the training set at 60%
were 0.87, 0.81, 0.59 and 0.71 for the scenario of R+S, RD, R,
and S, respectively. Similar trends were also observed in the three
DH populations. These results indicated that the training set
development with broad phenotypic variation has the potential
improving prediction accuracy.

DISCUSSION

In tropical and subtropical areas of Central and South America,
TSC is one of the most destructive foliar diseases of maize, it
may cause up to 75% grain yield loss. A few genetic studies
have been conducted to dissect the genetic architecture of
resistance to TSC of maize (Mahuku et al., 2016; Cao et al.,
2017), where the heritabilities of TSC in different populations
were medium-to-high, revealing that the phenotypic selection
is effective for improving TSC resistance. However, improving
TSC resistance through phenotypic selection is cost-intensive and
time-consuming, because multiple location trials are required to
improve TSC resistance through phenotypic selection.

Previously published studies revealed that TSC resistance in
maize is controlled by a major QTL on bin 8.03, coupled with
several minor QTL with smaller effects on other chromosomes.
Fine mapping the major QTL on bin 8.03 and developing
function markers associated with this major QTL will facilitate
the implementation of MAS for improving breeding efficiency,
and saving cost. In the present study, the effectiveness of MAS was
simulated, when a few significantly associated SNPs were used
for GS. In the DTMA panel, the prediction accuracy estimated
with the most significantly associated SNPs on bin 8.03 was
0.37, and the prediction accuracy continuously increased as more
significantly associated SNPs were used for GS. A similar trend
was also observed in the three DH populations. These results
implied that it is effective to improve the TSC resistance in maize
by implementing MAS for introgression of the major QTL on
bin 8.03 into susceptible germplasm. Moreover, TSC resistance
in tropical maize could be furtherly improved by implementing
GS for selecting multiple stable genomic regions simultaneously,
or by implementing MAS and GS stepwise.
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FIGURE 6 | Genomic prediction accuracies estimated in the 12 combinations between the four scenarios and the three percentage levels of the training set (20, 40,
and 60%) in the four populations of (A) DTMA association mapping panel, (B) Pop1, (C) Pop2, and (D) Pop3. The scenario of R + S represents the selection from
both resistant and susceptible tails, RD represents the random selection, R represents the selection from the resistant tail, S represents the selection from the
susceptible tail.

In maize, GS has been shown as an effective genomic tool
to improve breeding efficiency and accelerate genetic gain over
a wide range of target traits with different levels of genetic
complexity (Crossa et al., 2017). GS was implemented in various
kinds of the population to estimate the genomic prediction
accuracy of different target traits in several previous studies (Zhao
et al., 2012; Vélez-Torres et al., 2018). In the previous study,
moderate-to-high prediction accuracies of TSC resistance were
achieved within each of the four populations (Cao et al., 2017).
In the present study, moderate-to-high prediction accuracies
were achieved across populations by using the training sets
with broader genetic diversity, and in pairwise populations
having closer genetic relationships. These results implied that a
collection of inbred lines with broader genetic diversity could
be phenotyped in multiple locations and used as a permanent
training set, which will be employed to implement GP on the
untested new populations. The training set could be updated
by incorporating more new phenotyped lines, which have closer
genetic relationships with the prediction set. Therefore, higher
prediction accuracies can be achieved by strengthening the
genetic relationship between the training and prediction sets
and increasing the size of the training set (Riedelsheimer et al.,
2013). This strategy will enhance breeding efficiency and save
costs dramatically for improving TSC resistance in a breeding
program. Moreover, a common training set also could be built
for the implementation of GS on multiple traits improvement,

especially for the less complex traits of foliar diseases or
nutritional quality traits in maize, which can be predicted very
well by using a collection of inbred lines with broad genetic
diversity as the training set.

Implementation of GS requires a profound understanding of
factors affecting genomic prediction accuracy (Zhang et al., 2017).
In the previous study, the effects of training set size and marker
density on the estimation of the genomic prediction accuracy
of TSC resistance were investigated (Cao et al., 2017). In the
present study, the effects of factors of marker density, marker
quality, HT of samples, phenotypic diversity of the training set,
incorporating known trait-marker associations on the estimation
of the genomic prediction accuracy of TSC resistance were
furtherly assessed. Results showed that the levels of MAF, MR,
and HT of SNPs had minor effects on the estimation of the
prediction accuracy. The effects of MAF, MR, and HT of SNPs
on the estimation of the prediction accuracy are mainly caused
by the changes in the number of SNPs. Once the number of
SNPs is saturated on each chromosome, and at least one SNP
per linkage disequilibrium block is selected for prediction, the
prediction accuracy reaches a plateau (Lorenzana and Bernardo,
2009). There is a tradeoff between the number of markers and
marker quality, marker quality becomes lower as the number
of markers increases in a specific marker dataset. Appropriate
levels of MAF, MR, and HT of SNPs should be considered
and selected to improve the prediction accuracy and reduce the
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computational burden by balancing the number of markers and
marker quality, this result is consistent with several previous
studies (Guo et al., 2020). Within each of the four populations,
slight increases in prediction accuracy were also observed, as
the HT of samples increased and the training set size enlarged,
indicating that training set size is an important factor improving
prediction accuracy (Combs and Bernardo, 2013).

Selective genotyping is proposed to improve QTL mapping
and save cost in bi-parental populations, where only the
individuals from one or two tails with extreme phenotypic values
are genotyped (Sun et al., 2010). In the present study, the R + S
scenario built the training set by selecting the individuals from
two tails with extreme phenotypic values, the R + S scenario had
higher prediction accuracies than those in other scenarios. Taking
the advantages of more accurate phenotyping and abundant
phenotypic variation, the R + S scenario outperformed other
scenarios. It implies that prediction accuracy can be improved by
developing a training set with broad phenotypic variation, as well
as broad genotypic diversity indicated in several previous studies
(Gowda et al., 2015; Guo et al., 2020).
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