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The root-knot nematode (RKN), Meloidogyne incognita, is a devastating pathogen for
cucumber (Cucumis sativus L.) specially in production under protected environments
or continuous cropping. High level RKN resistance has been identified in African
horned melon Cucumis metuliferus (CM). However, the resistance mechanism remains
unclear. In this study, the comparative analysis on phenotypic and transcriptomic
responses in the susceptible cucumber inbred line Q24 and the resistant CM, after
M. incognita infection, was performed. The results showed that, in comparison with
Q24, the CM was able to significantly reduce penetration numbers of second stage
juveniles (J2), slow its development in the roots resulting in fewer galls and smaller giant
cells suggesting the presence of host resistance in CM. Comparative transcriptomes
analysis of Q24 and CM before and after M. incognita infection was conducted and
differentially expressed genes (DEGs) associated with host resistance were identified in
CM. Enrichment analyses revealed most enriched DEGs in Ca2+ signaling, salicylic acid
(SA)/jamonate signaling (JA), as well as auxin (IAA) signaling pathways. In particular,
in CM, DEGs in the Ca2+ signaling pathway such as those for the calmodulin and
calcium-binding proteins were upregulated at the early stage of M. incognita infection;
genes for SA/JA synthesis/signal transduction were markedly activated, whereas the
IAA signaling pathway genes were inhibited upon infection suggesting the importance
of SA/JA signaling pathways in mediating M. incognita resistance in CM. A model was
established to explain the different molecular mechanisms on M. incognita susceptibility
in cucumber and resistance to M. incognita infection in CM.

Keywords: cucumber, transcriptome analysis, defense responses, Cucumis sativus, Cucumis metuliferus,
Meloidogyne incognita
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INTRODUCTION

The root-knot nematode (RKN), Meloidogyne incognita, is
among the most destructive pathogens of many crop plants.
Nematodes use a hollow protrusible stylet to break into the
cells of host roots to induce highly specialized nematode feeding
sites (NFS), withdraw nutrients, and inhibit the plant immune
system (Abad and Williamson, 2010; Siddique and Grundler,
2018). A large number of galls are formed on the host roots,
the nutrition balance in the host plant is disrupted resulting in
significant yield reduction (Kayani et al., 2017). Globally, annual
losses caused by the RKNs are estimated to be over $118 billion
(Atkinson et al., 2012).

As a warm-season vegetable, cucumber (Cucumis sativus L.)
is mainly cultivated in greenhouses or plastic tunnels in China.
In recent years, RKN and other soil-borne diseases have become
a serious constraint in cucumber production (Gine et al., 2014;
Mao et al., 2016). Host resistance against M. incognita has been
identified in some wild relatives in Cucumis like C. metuliferus
Naud, C. hystrix Chakr, and C. melo var. texanus (Faske, 2013;
Expósito et al., 2018; Cheng et al., 2019). Among them, upon
infection of M. incognita on the resistant C. metuliferus, fewer J2
(second-stage juveniles) nematodes were able to penetrate in the
roots, form smaller giant cells (GCs); the nematodes grow slower
and produce fewer eggs than on susceptible plants (Faske, 2013;
Ye et al., 2017).

The defense responses induced by plant-parasitic nematodes
are associated with both pattern-triggered immunity (PTI)
and effector-triggered immunity (ETI) (Teixeira et al., 2016).
The tomato resistance gene Mi-1.2 (R gene) is involved
in PTI, which is associated with the nematode recognition
and signal transduction pathway, and ETI is also related to
defense responses and mitogen-activated protein kinase (MAPK)
signaling cascades (Liu et al., 2016); the defense responses
induced by nematodes are associated with Ca2+ signaling
and WRKY, which both consists of positive regulators of
plant defense transcriptional networks (Davies et al., 2015;
Manosalva et al., 2015).

Researchers also believe that phytohormones might play an
important role in the plant defense against nematode infection,
such as salicylic acid (SA), jasmonic acid (JA), auxin (IAA) and
the responsive signaling pathway (Gheysen and Mitchum, 2019).
SA and JA pathway are activated when plants are infected by
RKNs, leading to a hypersensitive response (HR) and systemic
acquired resistance (SAR) (Nahar et al., 2011; Molinari et al.,
2014). During the parasitic stage of RKN, the initiation and
maturation of NFS are associated with the local accumulation
of IAA (Siddique and Grundler, 2018). The expression network
of defense-related genes functioning in nematode resistance
currently includes IAA and cell cycle-related genes in cucumber
(Wang et al., 2018), phenylpropanoid biosynthesis in cucumber
(Ye et al., 2017), metabolite defense signaling pathways and
hormones in tomato (Shukla et al., 2018), transcription factors
and hormones in sweet potato (Lee et al., 2019), and defense-
related genes in tobacco (Li et al., 2018). Therefore, the resistance
mechanism of host to RKN involves in complex and multiple
metabolic pathways.

While no cucumber cultivars with high resistance to root
knot nematodes in China, the identification of host resistance
in C. metuliferus presents us an opportunity to understand the
phenotypic and molecular mechanisms of host resistance against
this pest. Thus, in this study, we conducted microscopic and
histological investigation in the susceptible cucumber inbred
line Q24 and a resistant CM upon M. incognita infection.
We also conducted transcriptome profiling in the two lines
before and after infection, and identified differentially expressed
genes (DEGs) and defense responsive pathways associated with
host resistance.

MATERIALS AND METHODS

Plant Materials and M. incognita
Inoculum Preparation
The cultivated cucumber inbred line Q24 (Chinese Long, north
China fresh market type) and an inbred of cucumber wild
relative, Cucumis metuliferus (CM) were used in this study. CM
was a derivative of PI 482443 through self-pollination for at least
three generations. The germinated seeds were sown in 8 × 8 cm
plastic pots with autoclaved sands. All pots were arranged in
an illumination incubator (RXZ-5COB-LED, Ningbo, Zhejiang,
China) under conditions of 26◦C, 14 h-light/18◦C, 10 h-dark,
and RH 85–90%. The seedlings were watered with 1/2 Hoagland’s
nutrient solution twice weekly.

M. incognita were maintained on the susceptible tomato
cultivar “Dongfen No. 3” in a glasshouse at 22–26◦C. The roots of
plants were cut and sterilized with 0.5% NaOCl, and then rinsed
with distilled water (dH2O). The eggs were collected using a 25-
µm sieve and kept for hatching in double layered paper tissues in
a Petri dish with dH2O at 28◦C for 24 h (Fudali et al., 2013). J2s
were re-suspended in dH2O, and the concentration was adjusted
to 1,000 J2’s per mL for inoculation.

Comparative Analysis of M. incognita
Development in Resistant and
Susceptible Lines
Q24 and CM seedlings with two fully expanded true leaves were
inoculated by dropping 1 mL J2s suspension into a 2 cm deep
hole that was 1 cm away from the seedling. The control plants
were watered with 1 mL dH2O.

The roots at 3 days post inoculation (dpi) were isolated
from Q24, CM and stained with acid fuchsin according to
Zhang et al. (2017) to count the number of J2s under a
stereoscopic fluorescence microscope (MZ10F-Leica, Germany).
For the developmental stages of the M. incognita within the galls
were observed at 25 dpi, the numbers of nematodes at J3, J4,
female and male were recorded in the roots of CM Q24 and CM.
For each sample, there were four biological replicates (3 seedlings
per replicates) and three technical replicates.

The number of galls on roots was counted at 25 dpi.
The galls were also photographed using a stereoscopic
fluorescence microscope (MZ10F-Leica, Germany) to measure
the gall size under the microscope using the SPOT software
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(SPOT Imaging, United States). Twenty-four seedlings were
used for every biological replicate, and the experiment was
repeated in three times.

To observe the cellular changes induced by M. incognita
infection, paraffin sections of Q24 and CM roots were prepared
according to Wang et al. (2018). Root samples at both 3 and
15 dpi were fixed in FAA, transferred into a graded ethanol
series (10–100%) and chloroform series (10–100%), and followed
by embedding in paraffin. The samples were cut into 8-µm-
thick sections, stained with hematoxylin eosin, sealed with gum,
and observed under a fully automatic upright fluorescence
microscope (OLYMPUS BX63).

Expression Analysis by qRT-PCR
The expression patterns of 4 genes related to hormone
metabolism were analysis with quantitative real-time PCR
(qPCR). The qPCR primers of the four genes are provided
in Supplementary Table 1. Total RNAs were extracted from
the roots of Q24 and CM at 2, 3, 4, 5 dpi using the
RNA plus kit (TaKaRa Biotechnology, Dalian, China). cDNA
synthesis was performed with the RevertAid First Strand cDNA
Synthesis Kit (Roche Diagnostics, Indianapolis, United States).
qPCR was performed with SYBR green (TaKaRa Biotechnology,
Dalian, China) on a QuantStudio5 real time-PCR machine
(Life Technologies, United States). Expression values were
normalized to the CsUBQ5 (Csa2G301530) gene. Reactions were
carried out using two biological, and three technical replicates
for each sample.

Transcriptome Profiling and Enrichment
Analysis
For RNA-Seq, roots of M. incognita-inoculated (T, 3 dpi) and
control (CK) plants of Q24 and CM were selected and collected,
gently washed, flash frozen in liquid nitrogen and stored at
−80◦C. The roots of three plants were used as one replicate
and three replicates are included (total 12 samples). Total RNA
isolation, cDNA synthesis/library construction, and sequencing
were all conducted through commercial service at the Novogene
Inc. (Beijing, China). The cDNA samples were further enriched
by PCR to construct the final cDNA libraries that were sequenced
using the Hiseq 2500 (150 bp paired-ends) sequencing platform.

High quality, clean reads were aligned to the 9930 cucumber
reference genome (v2.0)1 using HISAT2 (v2.0.5). Differentially
expressed genes (DEGs) in CM-T, CM-CK, Q24-T, and Q24-
CK pairs were identified using the DESeq2 R package (1.16.1).
A DEG in a particular comparison was defined as the adjusted
P < 0.05 and|log2FoldChange|>0.0. All DEGs were subjected
to enrichment analysis including Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG), which were
conducted in the ClusterProfiler R package (V.3.4.4). Additional
analysis was performed for DEGs involving in plant-pathogen
interactions (PPI), hormone signaling, and signal transduction in
host defense responses. RNA-seq raw data are available under the
website of NCBI2 with the Bioproject ID PRJNA707668.

1http://cucurbitgenomics.org/organism/2/
2https://www.ncbi.nlm.nih.gov/

Statistical Analysis of Data
All numerical data collected from this study were subjected
to statistical analysis and significance tests. Specifically,
physiological data measured upon nematode infection were
analyzed by one-way analysis of variance (ANOVA), and
statistical significance was determined by pairwise comparisons
(P < 0.05), which was implemented in SPSS 22.0 (Statistical
Package for the Social Sciences, Chicago, IL, United States).
The expression patterns of DEGs were showed the value of the
log2FoldChange and presented as a heat map by using MeV
software (MultiExperiment Viewer 4.7.4).

RESULTS

Comparison of Symptom and Gall
Development in the Roots of Q24 and CM
in Response to M. incognita Inoculation
The galls formed on the roots of the susceptible Q24 and resistant
CM were counted and measured. In the susceptible Q24, there
were significantly more and larger galls that were observed
throughout the root system than in CM, where the small galls
were clustered mainly on some lateral roots (Figure 1A). At
25 dpi, on average, 63 and 17 galls on roots of Q24 and CM, which
were 1.73 and 1.03 mm in size, respectively (Figure 1B).

The microscopic root structures in the two lines were
comparing by histological examination before and after
M. incognita infection. In roots of control, there were no visible
differences in root tip cell structure between Q24 and CM; the
root crown was intact with regular arrangement of root tip cells.
At 3 dpi, loose cells and void tissue in the apical meristem zone
of Q24 were observed, whereas those in CM remained compact
(Figure 1C). At 15 dpi, much larger GCs and more nuclei in
GCs were observed in Q24 roots than that in CM, and GCs
connected with parenchyma cells were observed in Q24, which
may facilitate supply of nutrients to GCs from the surrounding
parenchyma cells. In contrast, fewer GCs were observed in CM;
there were also few nuclei in the GCs. Hollow cells around the
GCs in the roots of CM were observed, which separated GCs
from parenchymal cells. This may result in difficulty for GCs
to obtain nutrients from the surrounding parenchyma cells
(Figure 1D). The GC size in CM was significantly smaller than
that in Q24 (Figure 1B). Taken together, these results suggested
host resistance in CM plant plays an important role in reducing
the severity of symptom development although the CM plant is
not immune to M. incognita infection.

Number Invasion and Development
Difference of M. incognita in Roots of
Resistant and Susceptible Plants
The number and development of nematodes were compared in
the roots of CM and Q24. The significant difference in nematode
invasion was observed between Q24 and CM at 3 dpi, on average,
36 and 10 J2s, respectively. The J2s invaded into the roots of CM
was hindered to some extent. In Q24 at 25 dpi, after J2s invasion,
33.6% of J2s developed to adult females and 11.9% developed
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FIGURE 1 | Symptom development and growth on susceptible Q24 and resistant CM plants. (A) The roots of Q24 and CM at 25 dpi; (B) comparison of disease
indexes of Q24 and CM at 25 dpi. Error bars indicate the standard error of the means. Different letters on the bars “a, b, c” indicate statistically significant means
between Q24 and CM at 25 dpi at P < 0.05 based on Duncan’s t-tests; (C) root tips of Q24 and CM at 3 dpi and the corresponding controls; (D) cross and
longitudinal sections of nematode feeding sites (NFS) inside the galls at 15 dpi. GC, giant cell; VC, vacant cell; V, vacuole.

to adult males. The J2s development in CM roots was obviously
different from J2s in roots of Q24, which were only 13.7% females
and 8.4% males at 25 dpi. The development of most J2s in CM was
blocked to J3 and J4 stages. These observations indicated that,
few J2s were able to penetrate into roots of CM at the stage of
infection and J2s were developing poorly in roots of CM at the
parasitic stage (Figure 1B).

Relative Expression of Selected Genes
Related to Defense Response and
Hormone Metabolism
In order to determine the expression time of genes induced
by M. incognita infection, the expression patterns of several
genes were validated in the roots of Q24 and CM at 2, 3, 4,
5 dpi. Among them, MAPK9 (Csa2G361890) was known to be
involved in plant-pathogen interaction, phenylalanine ammonia-
lyase genes (PAL, Csa6G445760), bZIP transcription factor
TGA7 (Csa2G403160) were related to SA and indole-3-acetic

acid-amido synthetase GH3 (GH3.6, Csa6G125240) were related
to IAA. It showed that MAPK9, TGA7 was significantly
downregulated after M. incognita infection and GH3.6 and
PAL were upregulated significantly at 3 dpi in Q24. In CM
after infection, the TGA7, PAL were significantly upregulated
at 3 dpi and then TGA7 downregulated at 4, 5 dpi. The
MAPK9 was significantly downregulated at 3 dpi and gradually
return to expression at 5 dpi. The expression of GH3.6 in
CM was low and changed little after M. incognita infection
(Supplementary Figure 1).

Transcriptional Sequencing of Cucumber
Plants in Response to M. incognita
Based on the expression pattern of genes selected in qPCR in
Q24 and CM after infection, 3 dpi and the CK were selected
for transcriptome analysis. Approximately 47.47–67.57 million
150 bp paired-end clean reads per sample were obtained after
cleaning and checking. Approximately 97% of clean reads were
aligned uniquely to the cucumber genome using the software
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HISAT2 v2.0.5 (Supplementary Table 2). The correlation
clustering among the three biological replicates of each sample
was conducted based on the expression level of all genes. All
biological replicates showed correlation coefficients above 0.9
indicating good reproducibility between biological replicates
(Supplementary Figure 2).

Differential Gene Expression Analysis
and Functional Categorization
A total of 17,612 and 17,966 genes were identified by the
DESeq2 R package among inoculated samples compared with
respective non-inoculated controls of Q24 and CM, respectively
(false discovery rate < 0.03, DESeq2 padj < 0.05 and |
log2FoldChange| > 0.0). There were 4,556 significantly
differentially expressed genes (DEGs) between Q24 and the
control, and 5,258 DEGs were identified between CM and
the control. From these, there were 1,586 DEGs identified
in both genotypes (Figure 2A). Among the identified DEGs,
2,386 DEGs and 2,700 DEGs were significantly upregulated
in Q24 and CM, respectively, and 793 were upregulated
in both genotypes (Figure 2B). There were 2,170 DEGs
significantly downregulated in Q24 and 2,558 DEGs significantly
downregulated in CM. 365 DEGs were downregulated in both
Q24 and CM after M. incognita infection (Figure 2C). Among
these DEGs, MAPK9 (Csa2G361890), PAL (Csa6G445760),
TGA7 (Csa2G403160), and GH3.6 (Csa6G125240) were all

identified among inoculated samples compared with respective
controls of Q24 and CM. The expression of these four genes in
transcriptomic were in accordance with the results of qRT-PCR
(Supplementary Figure 3).

Based on GO enrichment analysis, the categories of total
DEGs were enriched significantly in biological terms in both
phenotypes in response to M. incognita (adjusted P < 0.05).
In comparison of 3 dpi with the control of Q24, GO
biological enriched significantly in the categories of response
to stimulus and signaling, secondary metabolites metabolic
processes and biosynthetic processes, protein related with cell
wall and membrane synthesis process, transcription factor
activity, reduction and scavenging of reactive oxygen species
(ROS) products, and more genes showing upregulation than
downregulation in these terms (Figure 2D). In resistant plants
of CM, more GO biological terms were enriched than that in
Q24, including translation process, organonitrogen compound
metabolic process, peptide biosynthetic process and metabolic
process, transmembrane transport, transporter activity and so
on. Comparing the DEGs in each biological term, more DEGs
were identified in CM than that in Q24, and most of them
were downregulated in each term, all of them indicating that a
large number of genes played a vital role in CM responding to
M. incognita (Figure 2E).

On the basis of the KEGG Pathway database, the DEGs
enrichment were analyzed using clusterProfiler R package
to identify the metabolic pathways in which they function

FIGURE 2 | The number of differentially expressed genes (DEGs) and Gene Ontology (GO) enrichment analysis in responding to the infection of M. incognita in Q24,
CM. (A) All DEGs mapped in Q24 and CM (adjusted P < 0.05); (B) the upregulated DEGs mapped in Q24 and CM (adjusted P < 0.05); (C) the downregulated
DEGs mapped in Q24 and CM (adjusted P < 0.05). The percentage in (A–C) was the number of DEGs related to the total of identified DEGs in all DEGs, in all
upregulated DEGs or in all downregulated DEGs in Q24, CM; (D) GO terms of DEGs in Q24; (E) GO terms of DEGs in CM. Yellow indicated upregulation and blue
indicated downregulation. DEGs were classified into specific biological process categories with high classification stringency (adjusted P < 0.05). The horizontal
ordinate represents the number of genes in the category. MF, molecular function; CC, cellular component; BP, biological process.
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(adjusted P < 0.05). In comparison of infection with the
control of Q24, the enrichment of upregulated biological
process was involving PPI, phenylpropanoid biosynthesis, MAPK
signaling pathway and protein processing in endoplasmic
reticulum. Furthermore, a small part of genes was enriched
in downregulated process including photosynthesis, nitrogen
metabolism and carbon fixation in photosynthetic organisms
(Figure 3A). Comparing with the biological process of Q24
enrichment, more biological process and more DEGs were
involved in the response of resistant plant CM to M. incognita,
such as upregulated biological process MAPK signaling pathway,
PPI, Carbon metabolism, Biosynthesis of amino acids and
downregulated process Ribosome (Figure 3B). The difference
in metabolic pathways between Q24 and CM indicated that
the mechanisms were different in two genotypes facing to
M. incognita infection.

Most researchers believed that genes related to nematode
recognition and phytohormones metabolism might play an
important role in the plant defense against RKN infection. So
multiple DEGs were related to PPI, MAPK signaling cascades,
hormone biosynthesis and signal transduction were analysis in
this study. The number of DEGs related to PPI was greatest
between the treatment and its control; 35 DEGs were identified

in Q24, and 40 were identified in CM. The second largest number
of DEGs were related to MAPK signaling cascades, which was
consisting of 21 DEGs in Q24 and 33 in CM (Figure 3C).
Between the two genotypes and their controls, more than half of
the DEGs related to PPI, MAPK signaling cascades, JA pathway
were upregulated, while most of the DEGs related to IAA were
downregulated. DEGs related to MAPK signaling cascades and
SA showed a significant difference between the two genotypes
and their controls. Most DEGs related to SA were downregulated
in Q24 and upregulated in CM (Figures 3D,E).

Differentially Expressed Genes Related
to Ca2+ and MAPK Signaling
Some DEGs were involved in the plant defense were identified
in the cucumber plant after M. incognita infection (Figure 4A).
Most of them were involved in the Ca2+ and MAPK signaling
pathways and were significantly upregulated at the early stage
of M. incognita infection, and there was a notable difference
between Q24 and CM. The calcium-binding protein genes (CML,
Csa5G067670, Csa4G639730, Csa3G823060), calmodulin gene
(CaM, Csa3G727960), MAPK (Csa1G479630), serine/threonine
protein kinase (OXI1), respiratory burst oxidase (Rboh) were

FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis in responding to the M. incognita infection of Q24, CM. DEGs were classified
into pathway categories with high classification stringency (adjusted P < 0.05). The horizontal ordinate represents the number of genes in the category. (A) KEGG
terms of DEGs in Q24; (B) KEGG terms of DEGs in CM. Yellow indicated upregulation and blue indicated downregulation; (C) the DEGs mapped to hormone
metabolism and plant pathogen interactions of Q24 and CM responding to infection (adjusted P < 0.05); (D) the number of upregulated DEGs and downregulated
DEGs mapped to hormone metabolism and plant pathogen interactions of Q24 (adjusted P < 0.05); (E) the upregulated DEGs and downregulated DEGs mapped to
hormone metabolism and plant pathogen interactions of CM (adjusted P < 0.05). PPI, plant-pathogen interactions; MAPK, mitogen-activated protein kinase
signaling cascades.
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identified clearly upregulated in Q24, which indicating that
the defense response of Q24 to M. incognita mainly referred
to signal transduction upon CaM/CML, later the activation
of defense response genes and the outbreak of ROS. While
the defense response of CM to M. incognita referred to
signal transduction upon pathogen perception through not
only CaM/CML, but also cyclic nucleotide gated channel
(CNGCs)/calcium-dependent protein kinase (CDPK), such as
CNGC (Csa3G835850, Csa5G638350) and CDPK (Csa6g052030)
were upregulated in CM. Additionally, more genes involved in
the defense response genes, HR and cell wall reinforcement were
also induced in CM than in Q24, such as WRKY transcription
factor 23 (WRKY23, Csa3G121580), chitin elicitor receptor
kinase 1(CERK1, Csa7G041930), Serine/threonine-protein kinase

(PBS1, Csa6G092530), SGT1 suppressor of G2 allele of
SKP1(SGT1, Csa3G184080). All of them indicated that the
activation of defense response genes, HR, cell wall reinforcement,
ROS and programmed cell death in CM were induced after
M. incognita infection (Figure 4B).

Differentially Expressed Genes Related
to the SA Biosynthesis and Signaling
Pathway
Three gene families associated with the SA pathway were
identified both in Q24 and CM in response to M. incognita
infection (Figure 5A), including PAL, regulatory protein gene
NPR (NPR1-1), and bZIP transcription factor (bZIP/TGA).

FIGURE 4 | Ca2+ signaling pathway and heat map of differentially expressed genes in Q24 and CM responding to infection. (A) All differentially expressed genes
mapped to Ca2+ signaling of Q24 and CM responding to infection; (B) the heat map showed the value of the log2FoldChange of genes compared with that of the
control in plant defense in Q24 and CM. Yellow indicated up expression and blue indicated down expression.
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FIGURE 5 | SA and JA biosynthesis and signal transduction pathways and heat map of differentially expressed genes in Q24 and CM responding to infection.
(A) SA biosynthesis and signal transduction; (B) JA biosynthesis and signal transduction; (C) the heat map showed the value of the log2FoldChange of genes
compared with that of the control in SA and JA pathway in Q24 and CM. Yellow indicated up expression and blue indicated down expression.

The PAL genes (Csa6G445760, Csa6G446280), which encode
a critical enzyme in the SA biosynthesis pathway, were
significantly upregulated both in Q24 and CM. On the other
hand, the NPR1-1 (Csa4G063470), which is a key regulator
of the SA signaling pathway, and the bZIP transcription
factors (Csa4G036580, Csa2G403160, Csa3G819960) were not
induced or significantly downregulated in Q24 and they
were highly induced in CM after infection (Figure 5B).
The SA biosynthesis and signaling pathways were markedly
activated in CM.

Differentially Expressed Genes Related
to the JA Biosynthesis and Signaling
Pathway
Some molecules associated with the JA biosynthesis and
signaling pathway were identified after M. incognita infection
(Figure 5C). Most genes upstream of JA biosynthesis were
highly induced after infection, particularly in Q24, such as
the lipoxygenase gene (LOX, Csa7G449420, Csa4G286990),
allene oxide synthase (AOS, Csa2G360780), and allene oxide
cyclase 2 (AOC2, Csa5G366670). While some key genes

participated in both JA biosynthesis and JA-dependent SAR,
maintaining a low level of expression in Q24 and induction in
CM during M. incognita infection, such as the acyl-coenzyme
a oxidase (ACX, Csa4G028450) encoding key enzymes for
acyl-CoA oxidase, and the fatty acid oxidation complex
subunit alpha genes (MFP, Csa2G003610, Csa6G319770)
encoding a multifunctional protein in JA biosynthesis.
Additionally, the negative regulatory factors in the JA
signaling pathway, JAZs (Csa1G597690, Csa7G448810),
were significantly induced in Q24 and not changed in CM at
3 dpi (Figure 5B).

Differentially Expressed Genes Related
to the IAA Biosynthesis and Signaling
Pathway
IAA has been reported to be involved in the formation of GCs.
In this study, IAA-related DEGs showed significant differences
between Q24 and CM (Figure 6A). Many major auxin-related
genes were significantly downregulated in CM at 3 dpi, including
the indole-3-pyruvate monooxygenase (YUCCA, Csa2G379350,
Csa3G133910), auxin signaling F-box 2 (TIR, Csa7G393970),

Frontiers in Plant Science | www.frontiersin.org 8 June 2021 | Volume 12 | Article 675429

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-675429 June 8, 2021 Time: 16:52 # 9

Li et al. Transcriptome, Histology of M. incognita-Infected Cucumber

FIGURE 6 | IAA biosynthesis and signal transduction pathways and heat map of differentially expressed genes in Q24 and CM. (A) IAA biosynthesis and signal
transduction pathway; (B) the heat map showed the value of the log2FoldChange of genes compared with that of the control in IAA pathway. Yellow indicated up
expression and blue indicated down expression.

auxin response factor (ARF, Csa6G518210, Csa3G866510), GH3
(GH.3.17, Csa4G007100), which were the key gene in the
TAA-YUC pathway of auxin biosynthesis and auxin signaling
pathways. While the genes of TIR (Csa7G393970) and GH3
(Csa6G125240, Csa3G198490, Csa6G492310, Csa4G007100)
were upregulation in Q24 after nematode infection, indicating
that the IAA signal was transduced and affected the GC
formation in Q24. Several genes related to IAA signal
transduction were also found upregulated in CM, such as
auxin-responsive protein genes AUX/IAA (Csa2G0010920) and
GH3 (Csa3G198490, Csa6G492310), auxin-induced protein gene
(SAUR, Csa2G010920), which indicated that the invasive J2s
interfered with signal transmission in the NFS of CM (Figure 6B).
These results indicated that auxin biosynthesis and signaling
pathways were inhibited more strongly in CM than in Q24.

DISCUSSION

The Plant Defense Response Was
Activated by M. incognita Infection Upon
Ca2+ Signaling
Ca2+/calmodulin has long been considered a crucial component
in the mediating plant defense against various biotic attackers,
and cellular Ca2+ fluxes are among the earliest detectable
biochemical features upon pathogen recognition (Reddy et al.,
2011). It was proved that Ca2+ signaling is then triggered
and translated by CaM, CMLs, calcineurin-like proteins (CBLs),

and CDPKs in order to interact with effector proteins of
plant-parasitic nematodes (Perochon et al., 2011; Haegeman
et al., 2012). Ca2+ signaling mediators that also induced
PTI, ETI and participated in SA- or JA-mediated long-term
resistance to pathogens. In addition, the sequential activation
of the MAPK cascade eventually leads to activation of the
expression of specific genes and, subsequently, the induction
of HR, ROS, cell wall reinforcement and defense-related gene
expression (Bigeard et al., 2015). Other studies have shown
that the resistance of gene RMc1(blb) in potato to Meloidogyne
chitwoodi were dependent on a hypersensitive response and
involves calcium, indicating that Ca2+ plays a role in the
RMc1(blb)-mediated resistance against M. chitwoodi in potato
(Davies et al., 2015). Calcium/calmodulin-mediated signaling
might coordinate various regulatory pathways in response to
Heterodera glycine infection in soybeans (Zhang et al., 2017).
We speculate that Ca2+ mediated regulation might function
as a dispatcher between MAPK cascade, PTI, ETI, SA-, and
JA-mediated resistance to response to M. incognita infection.
Therefore, the differences in DEGs of Ca2+ signals between Q24
and CM may mediate different regulatory pathways to respond to
M. incognita infestation, which requires further research.

SA and JA Signal Pathway Activation
Was Involved in the Basal Defense of CM
Against M. incognita Infestation
At the early stage of J2 infection, chorismate mutase was
secreted and suppressed plant immunity by regulating the
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FIGURE 7 | Model depicting how the coordinated signaling network in cucumber leads to the induction of local and systemic defense against M. incognita invasion.

SA pathway (Wang et al., 2018). Studies have shown that
increasing SA levels enhance the resistance of host plant against
RKN infection (Priya et al., 2011). The bZIP transcription
factor is a transcriptional co-activator of NPR1 in the
transduction of SA, and loss-of-function studies have shown
that class II TGA factors (bZIP transcription factor) in
particular play important roles in SA-mediated gene expression.
The tga2/tga5/tga6 triple mutant shows compromised PR-
1 expression (Zhang et al., 2003), indicating that the SA
transduction signal was activated in CM during the early
infection stage. Therefore, we assumed that the basic defense
mechanisms of CM were activated by the upregulated expression
of bZIP and NPR related to SA signal transduction during
M. incognita infection.

The functions of the genes in the JA metabolic pathway were
more complex during the process of nematode infection. Many
studies have shown that JA acts as a defense factor against
nematode in plants (Nahar et al., 2011; Zhou et al., 2015),
and overexpression of OsAOS in rice enhances resistance to
M. graminicola (Mei et al., 2006). The Arabidopsis mutant lox3-1,
lox4-1, and aoc are all more susceptible to RKN infection (Ozalvo
et al., 2014; Naor et al., 2018). It has also been reported that JA-
related genes in GCs are suppressed, as verified by transcriptome
analyses (Ji et al., 2013). Our results showed that the expression
of most genes related to JA biosynthesis were not significantly
induced in the susceptible Q24 compared with the resistant
CM. In addition, two alleles of JAZ, a negative regulator of the
JA signaling pathway, were significantly induced in Q24 but
suppressed in CM after M. incognita infection, indicating that JA

played a positive role in the defense of the resistant germplasm
against M. incognita.

Suppression of the Expression of Genes
Related to IAA Limited the Development
of GCs in CM
GCs formation is a key factor for a successful plant-nematode
interaction after the nematode arrive into the cortical cylinder.
If GCs appear as degenerated, the nematode development or
reproduction will be suppressed (Expósito et al., 2018). Studies
have shown that the GCs in feeding site of C. metuliferus were
smaller and less voluminous, with fewer nuclei than susceptible
plants and some of them were empty of cytoplasm along with
a slow nematode development (Ye et al., 2017; Expósito et al.,
2018, 2020). In our study, smaller galls and GCs and fewer
nuclei in the GCs of CM than Q24 were observed, and the J2s
development in CM roots was significantly slower in comparison
to that in Q24, which was consistent with previous reports
(Wang et al., 2018).

IAA is the key factor for NFS formation (Perrot-Rechenmann,
2010). The cell wall growth and cell cycle activation of GCs
was promoted by IAA biosynthesis and response genes in the
host cell after nematode infection (Hwang and Williamson,
2003). GH3, an auxin-responsive promoter, was rapidly and
transiently activated during root gall initiation by Meloidogyne
(Hutangura et al., 1999). Other studies showed that the
nematode development was impaired in auxin insensitive
mutants because of the arrest in early feeding cell formation
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(Goverse et al., 2000; Gheysen and Mitchum, 2009). Moreover,
the expression of most homologous genes of auxin-responsive
promoter GH3 were inhibited in the resistance material
cucumber introgression line “IL10–1” (Wang et al., 2018). In
the present study, fewer members of the GH3 gene family were
found upregulated in resistant CM than in susceptible Q24, which
was consistent with previously published reports. In addition,
the upregulation of AUX/IAA, the auxin/indole-3-acetic acid
transcriptional repressor gene, and the downregulation of TIR
in resistant CM after M. incognita infection, indicating that the
IAA concentration was significantly lower in resistant CM than
that in the control. Thus, we conjectured that the lack of auxin
contributed greatly to the abnormal development of GCs in
CM, which was consistent with the in resistant line “IL10–1”
(Wang et al., 2018).

CONCLUSION

In conclusion, studies on an inbred of cucumber wild relative CM
identified with M. incognita resistance, indicated that reducing
J2s invasion, suppressing the development of J2s and the GCs of
M. incognita were the resistance characteristics. Comparison of
transcriptomes revealed that Ca2+ signaling, SA/JA genes were
activated, which triggered an active defense response that leading
to the resistance of CM against M. incognita. Transcriptomes
also revealed that IAA genes were inhibited in CM, which
caused the abnormal development of GCs, and finally resulted
in the blocking of M. incognita development. According to our
data, a model was established to probe the changes of gene
expression involved in the biological processes of M. incognita
recognition, signal transduction, hormone biosynthesis and
signal transmission in different resistant species (Figure 7).
A number of genes involved in the recognition and signaling of
nematode infestation in CM were identified, thus providing a
basis for research examining the interaction between cucumber
plants and M. incognita.
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